Evaluation of the Position-Momentum Commutator

In quantum mechanics, the commutator of the position operator \( \hat{x} \) and the momentum operator \( \hat{p} \) plays a fundamental role. It is defined as:

\( [\hat{x}, \hat{p}] = \hat{x}~ \hat{p} - \hat{p} ~ \hat{x} \)

Step-by-Step Evaluation

To evaluate this commutator, follow these detailed steps:

1. Define the Operators

The position operator \( \hat{x} \) and the momentum operator \( \hat{p} \) in the position representation are:

\( \begin{align} \hat{x} & = x \\ \hat{p} & = -i\hbar \frac{d}{dx} \end{align} \)

2. Compute the Action of the Operators

First, apply \( \hat{x} \) and \( \hat{p} \) in sequence:

\( \begin{align} \hat{x}~\hat{p}~\psi(x) & = \hat{x}\left(-i\hbar \frac{d}{dx}\psi(x)\right) \\ & = -i\hbar x \frac{d}{dx}\psi(x) \\[1mm] \hat{p}~\hat{x}~\psi(x) & = -i\hbar \frac{d}{dx}(x\psi(x)) \end{align} \)

3. Apply the Derivative

Apply the derivative in the second term:

\( \frac{d}{dx}(x~\psi(x)) = \psi(x) + x ~ \frac{d}{dx}\psi(x) \)

4. Compute the Commutator

Now compute \( \hat{x}\hat{p} - \hat{p}\hat{x} \):

\( \begin{align} \hat{x}~\hat{p}~\psi(x) & = -i\hbar ~ x ~ \frac{d}{dx}\psi(x) \\ \hat{p}~\hat{x}~\psi(x) & = -i\hbar \left(\psi(x) + x \frac{d}{dx}\psi(x)\right) \\ & = -i\hbar \psi(x) - i\hbar x \frac{d}{dx}\psi(x) \\[1mm] [\hat{x}, \hat{p}]~\psi(x) & = \hat{x}~\hat{p}~\psi(x) - \hat{p}~\hat{x}~\psi(x) \\ & = -i\hbar ~x ~\frac{d}{dx}\psi(x) - \left(-i\hbar ~\psi(x) - i\hbar ~x ~\frac{d}{dx}\psi(x) \right) \\ & = i\hbar ~ \psi(x) \end{align} \)

5. Result

The commutator is:

\( [\hat{x}, \hat{p}] = i\hbar \)