
Sample Questions: Quantum Mechanics I

Q1) Show that the area element dx dy transforms as ρ dρ dϕ for the coordinate transformation
x = ρ cos(ϕ), y = ρ sin(ϕ).

Solution:

Given the transformations:

x = ρ cos(ϕ), y = ρ sin(ϕ),

we want to show that the area element dx dy in Cartesian coordinates transforms to ρ dρ dϕ in
polar coordinates. To find how the area element transforms, we need to compute the Jacobian’s
determinant of the transformation from (x, y) to (ρ, ϕ). The Jacobian determinant J is defined as:

J = det

(
∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

)
.

Calculate the partial derivatives:

∂x

∂ρ
= cos(ϕ),

∂x

∂ϕ
= −ρ sin(ϕ),

∂y

∂ρ
= sin(ϕ),

∂y

∂ϕ
= ρ cos(ϕ).

Substitute these into the Jacobian matrix:

J = det

(
cos(ϕ) −ρ sin(ϕ)
sin(ϕ) ρ cos(ϕ)

)
.

Evaluate the determinant:

J = cos(ϕ) · (ρ cos(ϕ))− (−ρ sin(ϕ)) · sin(ϕ)
= ρ cos2(ϕ) + ρ sin2(ϕ).

Using the trigonometric identity cos2(ϕ) + sin2(ϕ) = 1, we have:

J = ρ.

The area element dx dy transforms as:

dx dy = |J | dρ dϕ.

Since J = ρ, we get:

dx dy = ρ dρ dϕ.

We have shown that the area element dx dy in Cartesian coordinates transforms to ρ dρ dϕ in
polar coordinates.
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Try: To derive the volume element dV in spherical coordinates (r, θ, ϕ) from Cartesian coordi-
nates (x, y, z), we start with the transformations:

x = r sin(θ) cos(ϕ), y = r sin(θ) sin(ϕ), z = r cos(θ).

The volume element in Cartesian coordinates is given by dV = dx dy dz. To find how this
transforms into spherical coordinates, we need to compute the Jacobian determinant of the trans-
formation from (r, θ, ϕ) to (x, y, z).

The Jacobian matrix J of the transformation is defined as:

J =


∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

 .

compute the partial derivatives:

∂x

∂r
= sin(θ) cos(ϕ),

∂x

∂θ
= r cos(θ) cos(ϕ),

∂x

∂ϕ
= −r sin(θ) sin(ϕ),

∂y

∂r
= sin(θ) sin(ϕ),

∂y

∂θ
= r cos(θ) sin(ϕ),

∂y

∂ϕ
= r sin(θ) cos(ϕ),

∂z

∂r
= cos(θ),

∂z

∂θ
= −r sin(θ), ∂z

∂ϕ
= 0.

The Jacobian matrix J becomes:

J =

sin(θ) cos(ϕ) r cos(θ) cos(ϕ) −r sin(θ) sin(ϕ)
sin(θ) sin(ϕ) r cos(θ) sin(ϕ) r sin(θ) cos(ϕ)

cos(θ) −r sin(θ) 0

 .

The determinant of the Jacobian can be calculated as:

|J | = r2 sin(θ).

Thus, the volume element in spherical coordinates is given by:

dV = |J | dr dθ dϕ = r2 sin(θ) dr dθ dϕ.

Q2) Show that δ(cx) = 1
|c|δ(x), yδ

′(y) = −δ(y), and yδ(y) = 0

Solution:

Part 1: Show that δ(cx) = 1
|c|δ(x)

The Dirac delta function δ(x) satisfies the property that for any function f(x):∫ ∞

−∞
δ(x)f(x) dx = f(0).

we start by making a substitution u = cx, which implies:
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du = c dx ⇒ dx =
du

c
.

Substitute this into the integral:∫ ∞

−∞
δ(cx)f(x) dx =

∫ ∞

−∞
δ(u)f

(u
c

) du
|c|
.

Using the property of the delta function δ(u), we have:∫ ∞

−∞
δ(u)f

(u
c

)
du = f(0).

Therefore, the integral becomes:∫ ∞

−∞
δ(cx)f(x) dx =

1

|c|
f(0).

Now consider the integral involving δ(x) directly:∫ ∞

−∞

1

|c|
δ(x)f(x) dx =

1

|c|
f(0).

Since both integrals yield the same result, we conclude:

δ(cx) =
1

|c|
δ(x).

Part 2: Show that yδ′(y) = −δ(y)

We start by considering the integral:∫ ∞

−∞
yδ′(y)f(y) dy.

Using integration by parts, let:

u = y ⇒ du = dy,

dv = δ′(y)f(y) dy ⇒ v = f(y).

Applying the integration by parts formula
∫
u dv = uv −

∫
v du, we obtain:∫ ∞

−∞
yδ′(y)f(y) dy = [yf(y)δ(y)]∞−∞ −

∫ ∞

−∞
δ(y)f(y) dy.

We need to evaluate the boundary term:

[yf(y)δ(y)]∞−∞ .

The Dirac delta function δ(y) is non-zero only at y = 0, so the product yδ(y) is zero everywhere,
including at y = 0, since multiplying y by δ(y) results in zero. Thus, the boundary term is:

[yf(y)δ(y)]∞−∞ = 0.

Substituting the result of the boundary term back into the integration by parts formula, we get:∫ ∞

−∞
yδ′(y)f(y) dy = −

∫ ∞

−∞
δ(y)f(y) dy.

The sifting property of the Dirac delta function states that:
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∫ ∞

−∞
δ(y)f(y) dy = f(0).

Therefore, we have: ∫ ∞

−∞
yδ′(y)f(y) dy = −f(0).

Since this holds true for any test function f(y), this implies:

yδ′(y) = −δ(y).

Part 3: Show that yδ(y) = 0

The delta function δ(y) is nonzero only at y = 0. Therefore, multiplying y (which is zero at
y = 0) by δ(y): ∫ ∞

−∞
yδ(y)f(y) dy = 0,

for any test function f(y). Thus, we have:

yδ(y) = 0.

Q3) Show that:
[Li, Pj] = iℏϵijkPk,

where ϵijk is the Levi-Civita symbol, defined as:

ϵijk =


1, for even permutations of (123),

−1, for odd permutations of (123),

0, otherwise.

Solution:

The angular momentum operator L is given by:

L = r× p,

where r is the position operator and p is the linear momentum operator.

L1 = r2p3 − r3p2

= ϵ123r2p3 + ϵ132r3p2

L2 = r3p1 − r1p3

= ϵ213r1p3 + ϵ231r3p1

L3 = r1p2 − r2p1.

= ϵ312r1p2 + ϵ321r2p1
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The components of L are given by:
Li = ϵijkrjpk.

We need to find the commutation relation [Li, pj]. By substituting the expression for Li, we have:

[Li, pj] = [ϵilmrlpm, pj].

[Li, pj] = ϵilm[rlpm, pj].

Utilizing the product rule for commutators [AB,C] = A[B,C] + [A,C]B, we get:

[Li, Pj] = ϵilm (rl[pm, pj] + [rl, pj]pm) .

Substituting these results back into the expression for the commutator [Li, Pj]:

[Li, Pj] = ϵilm (rl · 0 + (iℏδlj)pm)
= iℏϵilmδljpm.

Now, summing over l using the property of the Kronecker delta:

[Li, Pj] = iℏϵijmpm.

Finally, we can rearrange this to match the desired form:

[Li, Pj] = iℏϵijkPk,

where we relabeled the index m as k.

Q4) Show that [Lx, Ly] = iℏLz and in general [Li, Lj] = iℏ
∑3

k=1 ϵijkLk

Solution: The angular momentum operators in quantum mechanics are defined as:

Lx = Y Pz − ZPy,

Ly = ZPx −XPz,

Lz = XPy − Y Px,

where X, Y , and Z are position operators, and Px, Py, and Pz are the corresponding momentum
operators.

Calculate [Lx, Ly]

We start with the expression for the commutator:

[Lx, Ly] = [Y Pz − ZPy, ZPx −XPz].

Expanding this using the linearity of the commutator:

[Lx, Ly] = [Y Pz, ZPx]︸ ︷︷ ︸
1

− [Y Pz, XPz]︸ ︷︷ ︸
2

− [ZPy, ZPx]︸ ︷︷ ︸
3

+ [ZPy, XPz]︸ ︷︷ ︸
4

.

1st Term: [Y Pz, ZPx]
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We start with the commutator:

[Y Pz, ZPx] = Y [Pz, ZPx] + [Y, ZPx]Pz.

Now we need to calculate the two commutators involved: [Pz, ZPx] and [Y, ZPx].

[Pz, ZPx] = [Pz, Z]Px + Z[Pz, Px].

[Pz, ZPx] = (−iℏ)Px + Z(0) = −iℏPx.

Again, using the product rule:

[Y, ZPx] = [Y, Z]Px + Z[Y, Px].

[Y, ZPx] = 0 · Px + Z(0) = 0.

Now we can substitute back into our expression for [Y Pz, ZPx]:

[Y Pz, ZPx] = Y (−iℏPx) + 0 · Pz = −iℏY Px.

2nd Term: [Y Pz, XPz]

[Y Pz, XPz] = Y [Pz, XPz] + [Y,XPz]Pz = 0.

3rd Term: [ZPy, ZPx]

[ZPy, ZPx] = Z[Py, ZPx] + [Z,ZPx]Py = 0.

4th Term: [ZPy, XPz]

[ZPy, XPz] = Z[Py, XPz] + [Z,XPz]Py = iℏXPy.

This simplifies to:
[Lx, Ly] = −iℏY Px + iℏXPy = iℏLZ .

Q5) Show that G† = G using the translation operator to order ϵ. The translation operator to first
order in ϵ is given by: T (ϵ) = I − iϵG

ℏ .

Solution: The adjoint (Hermitian conjugate) of the translation operator is:

T †(ϵ) =

(
I − iϵG

ℏ

)†

= I +
iϵG†

ℏ
.

To show that G† = G, we utilize the property of the translation operators, which states that the
product of the translation operator and its adjoint should yield the identity operator:

T †(ϵ)T (ϵ) = I.
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Substituting our expressions for T (ϵ) and T †(ϵ):

T †(ϵ)T (ϵ) =

(
I +

iϵG†

ℏ

)(
I − iϵG

ℏ

)
= I − iϵG

ℏ
+
iϵG†

ℏ
− ϵ2G†G

ℏ2

≈ I +

(
−iϵG

ℏ
+
iϵG†

ℏ

)
, (neglecting higher order terms).

T †(ϵ)T (ϵ) ≈ I +
iϵ(G† −G)

ℏ
= I.

For the above equality to hold, the term iϵ(G†−G)
ℏ must vanish:

G† −G = 0 =⇒ G† = G,

which indicates that G is a Hermitian operator.

Q6) Prove that if [P , H] = 0, a system that starts out in an even/odd state of parity maintains its
parity under time evolution.

Solution: The operator P reflects the spatial coordinate x to −x. Mathematically, this is expressed
as:

Pψ(x) = ψ(−x),

where ψ(x) represents the wave function of the quantum state in the position basis. The action
of the parity operator P on a wavefunction ψ(x) can be summarized as follows:

Pψ(x) =

{
ψ(x), if ψ(x) is even (i.e., ψ(x) = ψ(−x));
−ψ(x), if ψ(x) is odd (i.e., ψ(x) = −ψ(−x)).

The time evolution of a quantum state ψ(t) is given by:

ψ(t) =

{
e−iHt/ℏψ(0) for time-independent H,

T
{
e−i

∫ t
0 H(t′)dt′/ℏ

}
ψ(0) for time-dependent H.

Given that the initial state ψ(0) has a definite parity, either even or odd. Lets discuss in detail both
the cases.

Case 1: Even Parity

If ψ(0) is an even function, it satisfies:

Pψ(0) = ψ(0).

Pψ(t) = P
(
e−iHt/ℏψ(0)

)
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we start with the fact that the Hamiltonian H and the parity operator P commute:

[P , H] = PH −HP = 0.

This commutation relation implies that P and H can be interchanged in an operator expression.
Now, consider the time evolution operator e−iHt/ℏ, which is defined by its Taylor series expansion:

e−iHt/ℏ =
∞∑
n=0

1

n!

(
−iHt

ℏ

)n

.

Applying the parity operator P to e−iHt/ℏ:

P
(
e−iHt/ℏ) = P

(
∞∑
n=0

1

n!

(
−iHt

ℏ

)n
)
.

Since P and H commute, we can move P inside each term of the series expansion:

P

(
∞∑
n=0

1

n!

(
−iHt

ℏ

)n
)

=
∞∑
n=0

1

n!

(
−iHt

ℏ

)n

P = e−iHt/ℏP .

This shows that:

Pe−iHt/ℏ = e−iHt/ℏP .

Hence, when we apply P to the time-evolved state ψ(t), we have:

Pψ(t) = P
(
e−iHt/ℏψ(0)

)
= e−iHt/ℏPψ(0)
= e−iHt/ℏψ(0)

= ψ(t).

This shows that if the initial state has even parity, the state at time t also has even parity:

Pψ(t) = ψ(t).

Case 2: Odd Parity

If ψ(0) is an odd function, it satisfies:

Pψ(0) = −ψ(0).

Again, applying the time evolution operator e−iHt/ℏ to the state and using the commutation relation
[P , H] = 0, we have:

Pψ(t) = P
(
e−iHt/ℏψ(0)

)
= e−iHt/ℏPψ(0) (since [P , H] = 0)

= e−iHt/ℏ (−ψ(0))
= −e−iHt/ℏψ(0)

= −ψ(t).
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This demonstrates that if the initial state has odd parity, the state at time t also has odd parity:

Pψ(t) = −ψ(t).

Q7) Show that if P and H commute, then ψ(−x) is also a solution with the same eigenvalue as
ψ(x).

Solution:
The time-independent Schrödinger equation is given by:

Hψ(x) = Eψ(x),

where E is the energy eigenvalue associated with the eigenstate ψ(x).
Since P and H commute, we have:

PHψ(x) = HPψ(x).

The parity operator acts on a wave function as follows:

Pψ(x) = ψ(−x).

Now applying H to both sides of the equation:

H(Pψ(x)) = Hψ(−x)

Using the commutation relation, we can rewrite this as:

PHψ(x) = Hψ(−x).

Substituting Hψ(x) = Eψ(x):

Hψ(−x) = P(Eψ(x)) = EPψ(x) = Eψ(−x).

This shows that ψ(−x) also satisfies the time-independent Schrödinger equation with the same
eigenvalue E:

Hψ(−x) = Eψ(−x).
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