Sample Questions: Quantum Mechanics |

Q1) Show that the area element dxdy transforms as pdpd¢ for the coordinate transformation
z = pcos(p), y = psin(¢).
Solution:

Given the transformations:

z = peos(¢), y=psin(¢),

we want to show that the area element dx dy in Cartesian coordinates transforms to pdpd¢ in
polar coordinates. To find how the area element transforms, we need to compute the Jacobian’s
determinant of the transformation from (z,y) to (p, ¢). The Jacobian determinant J is defined as:

0z O
J=det 50 9 |.
9 09

Calculate the partial derivatives:

9, =50 55 = —psin(0),
0 0
izmw,ﬁzmww

Substitute these into the Jacobian matrix:

T )

Evaluate the determinant:

J = cos(9) - (pcos(@)) — (—psin(¢)) - sin(@)
— peos(6) + psin®(g).

Using the trigonometric identity cos?(¢) + sin?(¢) = 1, we have:

J=p.

The area element dx dy transforms as:

dx dy = |J| dpde.
Since J = p, we get:

dedy = pdpdo.

We have shown that the area element dx dy in Cartesian coordinates transforms to pdpd¢ in
polar coordinates.



Try: To derive the volume element dV" in spherical coordinates (r, 6, ¢) from Cartesian coordi-
nates (x,y, z), we start with the transformations:
x =rsin(f) cos(p), y=rsin(0)sin(¢p), z=rcos(d).

The volume element in Cartesian coordinates is given by dV = dxdydz. To find how this
transforms into spherical coordinates, we need to compute the Jacobian determinant of the trans-
formation from (r, 6, ¢) to (z,y, 2).

The Jacobian matrix J of the transformation is defined as:

0z 0z Oa
or 90 0¢
J= |2 9 o
o 20 96
0 0z 0
or 00 0¢
compute the partial derivatives:
or . dx Oz : :
9 = sin(#) cos(¢), 50 = r cos() cos(o), 90 —rsin(f) sin(¢),
dy . : dy : oy .
= sin(0) sin(¢), %0~ r cos(6) sin(¢), 96 rsin(6) cos(¢),
0z 0z , 0z
i cos(0), %= " sin(0), 96 0.

The Jacobilan matrix J becomes:

sin(f) cos(¢p) 1 cos(0) cos(¢p) —rsin(f
J = | sin(f) sin(¢) rcos(f)sin(p) rsin(h)
cos(f) —rsin(0) 0

The determinant of the Jacobian can be calculated as:

) sin(¢)
cos()

|J| = r?sin(6).

Thus, the volume element in spherical coordinates is given by:

= |J| drdf dg = r*sin(0) dr d de.

Q2) Show that d(cx) = l—ilé(x), yo'(y) = —d(y), and yd(y) =0

Solution:
Part 1: Show that §(cz) =

The Dirac delta function §(z) satisfies the property that for any function f(x):

/ " 5(@) () de = £(0).

we start by making a substitution v = cx, which implies:



du=cdx = dx:d—u.
c

Substitute this into the integral:
o * u\ du
/ d(cx) f(z)dx = / o(u)f (—) —.
Using the property of the delta function d(u), we have:

st (2) du= o)

o c
Therefore, the integral becomes:
e 1
/ d(cx)f(z)dx = B (0).
Now consider the integral involving §(x) directly:
| b)) de = —500)
oo I e
Since both integrals yield the same result, we conclude:
S(er) = 0(a)
cr) = —0(x).
]

Part 2: Show that yd'(y) = —d(y)

We start by considering the integral:

/_ "y ) () dy.

o0

Using integration by parts, let:

u=y = du=dy,
dv=0"(y)fy)dy = v=[f(y).

Applying the integration by parts formula [wdv = uv — [ v du, we obtain:

/ W) ) dy = [y )Sw) ™ — / " 5 f(y) dy.

o0 o0

We need to evaluate the boundary term:

[ f(y)o(y)|= -

The Dirac delta function §(y) is non-zero only at y = 0, so the product yd(y) is zero everywhere,
including at y = 0, since multiplying y by d(y) results in zero. Thus, the boundary term is:

lf(y)o(y)]=, = 0.

Substituting the result of the boundary term back into the integration by parts formula, we get:

/ S ) () dy = — / " 5y f () dy.

—00

The sifting property of the Dirac delta function states that:



/_ 5 f(y) dy = £(0).

e}

Therefore, we have:

/ "y W) () dy = — £(0).

e}

Since this holds true for any test function f(y), this implies:

yd'(y) = =0 (y).
Part 3: Show that yd(y) =0

The delta function §(y) is nonzero only at y = 0. Therefore, multiplying y (which is zero at
y =0) by (y):
/ yo(y)f(y) dy =0,

for any test function f(y). Thus, we have:

yo(y) = 0.

Q3) Show that:
[Li, Pj] = iheijkPk,

where ¢, is the Levi-Civita symbol, defined as:

1,  for even permutations of (123),
€ijk = § —1, for odd permutations of (123),
0, otherwise.

Solution:

The angular momentum operator L is given by:

L=rxp,

where r is the position operator and p is the linear momentum operator.

Ly = rops — 1r3ps

= €12372P3 + €13273P2

Ly = r3p1 — rips

= €213T1P3 + €23173P1

Ls = rips — rap1.

= €31271P2 + €32172P1
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The components of L are given by:
L; = €;7ipk.

We need to find the commutation relation [L;, p;]. By substituting the expression for L;, we have:

[Li, pj] = [€itmT1Pm, ;-
[Lia p]] = €ilm [Tlpma p]]
Utilizing the product rule for commutators [AB, C] = A[B,C] + [A, C|B, we get:
[Li, Pj] = €ilm (Tl[pm,pj] + [Tl,pj]pm).
Substituting these results back into the expression for the commutator [L;, P;l:

(L, Py] = €itm (11 - 0+ (ih(slj)l?m)
= 1N€i1m 01 P

Now, summing over [ using the property of the Kronecker delta:
[Li, Pj] = ih€;jmpm.
Finally, we can rearrange this to match the desired form:
(L;, Pj| = theji Py,

where we relabeled the index m as k.

Q4) Show that [L,, L,] = kL, and in general [L;, L;] = ih S s_, enli

Solution: The angular momentum operators in quantum mechanics are defined as:
L,=YP,—-ZP,,
L,=7P, — XP,,
L,=XP,-YP,

where X, Y, and Z are position operators, and P,, P,, and P, are the corresponding momentum
operators.

Calculate [L,, L,]
We start with the expression for the commutator:
(L., L)) =[YP,—ZP,,ZP, — XP,].

Expanding this using the linearity of the commutator:

Ly, Ly = Y P., ZP,] - Y P., XP.| - [ZP,, ZP,] + |ZP,, X P.] .

7 N S/ .
-~ -~

1 2 3 4

1st Term: [YP,, ZFP,]



We start with the commutator:
YP,,ZP,|=Y|P,, ZP,) + |Y, ZP,| P..
Now we need to calculate the two commutators involved: [P,, ZP,| and [Y, ZP,].

[P, ZP,| = [P,, Z|P, + Z|P., P.].

[P, ZP,) = (—ih) P, + Z(0) = —ihP,.

Again, using the product rule:

Y, ZP,) = Y, Z|P, + ZIY, P.).

Y,ZP,] =0 P, + Z(0) = 0.
Now we can substitute back into our expression for [Y P,, ZP,|:
Y P.,ZP,] = Y(—ikP,) +0- P, = —ikY P,.

2nd Term: [YP,, XP,]

YP,,XP]=Y[P.,,XP,] +[Y,XP]P, = 0.
3rd Term: [ZP,, ZP,|

[ZP,, ZP,) = Z|P,, ZP,| + |Z, ZP,P, = .
4th Term: [ZP,, XP,]

[ZP,,XP.| = Z[P,, X P.] + |2, XP,]P, = ihX P,.

This simplifies to:
Ly, L)) = —ihY P, +ihX P, = ihL.

Q5) Show that GT = G using the translation operator to order e. The translation operator to first
order in € is given by: T'(e) = I — %

Solution: The adjoint (Hermitian conjugate) of the translation operator is:

T(e) = (1—%) =I+“§.

To show that GT = G, we utilize the property of the translation operators, which states that the
product of the translation operator and its adjoint should yield the identity operator:

T (e)T(e) = 1.



Substituting our expressions for T'(¢) and T7(¢):

. T .
Zﬂ(QYYe)::<I—%lif ) (1-9%3)
ieG  ieGT B eGHG

= [ —
RTTh T
. . -i-
~ I+ (—% + Zeg > ,  (neglecting higher order terms).
ie(GT — Q)

TT<€>T<€> ~ 1+ = 1.

h

ot )
w must vanish:

For the above equality to hold, the term

G-G=0 = G'=¢,

which indicates that GG is a Hermitian operator.

Q6) Prove that if [P, H] = 0, a system that starts out in an even/odd state of parity maintains its
parity under time evolution.

Solution: The operator P reflects the spatial coordinate z to —z. Mathematically, this is expressed
as:

where () represents the wave function of the quantum state in the position basis. The action
of the parity operator P on a wavefunction ¥ (x) can be summarized as follows:

P(x), if (x) is even (ie., P(x) = P(—x));

Pip(r) = {_¢(x)7 if ¥(x) is odd (i.e., ¥(x) = —(—2x)).

The time evolution of a quantum state ¢ (t) is given by:

o) {e_th/ "p(0) for time-independent H,

T {e—z‘ I H(t’)dt'/h} ¥ (0) for time-dependent H.

Given that the initial state ¢(0) has a definite parity, either even or odd. Lets discuss in detail both
the cases.

Case 1: Even Parity

If 4(0) is an even function, it satisfies:

Pu(t) =P (e”/"p(0))



we start with the fact that the Hamiltonian H and the parity operator P commute:

[P,H]=PH—HP =0.

This commutation relation implies that P and H can be interchanged in an operator expression.
Now, consider the time evolution operator e %" which is defined by its Taylor series expansion:

: 1 [ iHt\"
—iHt/h _ — | _
¢ > ( W ) ‘
n=0
Applying the parity operator P to e /"
: 1 [ iHt\"
7) —iHt/h — P § I .
(e ) s n! h

Since P and H commute, we can move P inside each term of the series expansion:

— 1 ( iHI\"\ L AHEN"
7’@5(‘7))‘%(‘7)7"6 "
This shows that:

Pefth/h — 671'Ht/h7).

Hence, when we apply P to the time-evolved state 1 (), we have:

Pu(t) =P (e71""p(0))
— e_th/ﬁ'P@/J(O)
— e—th/h¢(0)
= U(t).

This shows that if the initial state has even parity, the state at time ¢ also has even parity:

Case 2: Odd Parity
If 4(0) is an odd function, it satisfies:

Py(0) = =(0).

Again, applying the time evolution operator e *#*/" to the state and using the commutation relation
[P, H] =0, we have:

Pu(t) =P (e71114(0))
= 7 HYMPyY(0)  (since [P, H] = 0)
= eI ((0)
_ _671'Ht/h,¢(0)
= ().



This demonstrates that if the initial state has odd parity, the state at time ¢ also has odd parity:

Q7) Show that if P and H commute, then ¢(—x) is also a solution with the same eigenvalue as

().

Solution:
The time-independent Schrédinger equation is given by:

Hy(z) = Ey(z),

where F is the energy eigenvalue associated with the eigenstate ¥ (x).
Since P and H commute, we have:

PHY(x) = HPY(x).

The parity operator acts on a wave function as follows:

Pip(x) = P(—=).
Now applying H to both sides of the equation:

H(Py(z)) = Hy(—x)

Using the commutation relation, we can rewrite this as:

PH(z) = Hi(~a).
Substituting Hy(z) = Ey(z):

Hip(—x) = P(EY(x)) = EPY(x) = Ep(—2).

This shows that ¢ (—xz) also satisfies the time-independent Schrédinger equation with the same
eigenvalue £

Hip(—x) = Ep(—x).




