Sample Questions II

1) a) What is [03, iz} ?

b) Calculate the root-mean-square deviation (A¢) for a particle in the uniform state form —7 to .

Solution: A
a) The position operator ¢ represents the angle, and L, is the angular momentum operator:
A 0
L,=—ih—.
z a¢

Using this expression, the commutator between ¢ and L, is calculated as:

A A A A

[0, L.] = ¢L. — L.¢.
Substituting L, = —iha% into this:

e o D AW
[¢> Lz] = ¢ (_Zh(‘?—(b) - (_Zha_(b) Qb

6.0.] = —ih (@% _ a%@) |

Now, let us act on a test function f(¢) to compute each term in the commutator.

This simplifies to:

First term: &%f((b)

~ 0 0
¢a—¢f(¢) = ¢8—¢f(¢)-
Second term: a%gz;f(gb)
0 - 0
a—¢¢f(¢) = 9 (@f(0)).
Using the product rule of differentiation:

0
99

Now substitute these results into the commutator:

(6F(9) = F() + %f@).

6, L.1£(8) = —ih (cba%f(cb) - (f<¢>> " qzsa%fw))) .

6, L.] f(¢) = ihf ().



b) In this part, we need to calculate the uncertainty in the angle ¢, denoted as A¢, for a particle in the
uniform state (¢) = %, which represents a constant probability density over the interval [—m, 7].

The standard deviation A¢ is given by:

The expectation value <g£> is given by:

@-[ " () (o) do.

Since ¥(¢) = \/LQ?, we have:
. T
@ = [ s-odo=o

The expectation value of ¢? is:
@ = [

™ 1 9
— ¢ do.
5.9 4o

We can evaluate this integral as follows:
~ 1 [" 1 T 1 [¢3]7 2
= — d :—-2/ Pdp=—|=| =—.
(7 27T/_7r¢¢277' 0¢¢7T30 3
Now, we can compute the uncertainty:
Ao = \(8) — (02 =[5 0=
3 V3

Thus, the root-mean-square deviation A¢ is:

2) Show that L2 may be written as:

) o o 1 o
[ LY AR L S
(092 Teotuag T sin296¢2)

Solution: To show that L2 can be expressed in the given form, we start with its definition and derive

the spherical coordinate representation.
The squared angular momentum operator L? is defined as:
Fo 72 72 72
L*=L,+L,+L;.

The components of the angular momentum operator in Cartesian coordinates are:



Transforming to Spherical Coordinates

r=rsinfcosp, y=rsinfsing, z=rcosh.

The differential operators in spherical coordinates are:

g_'_cochosgbg_ sin ¢ 3
or r 00  rsinf 0¢’

gzsin@sin¢§+cosesm¢g cosgp 0
”

— =sinfcos¢

ox

Ay 89+Tsin98_¢’
9,0 sm00
0z or r 00

It can be shown that L? in spherical coordinates takes the form:

2o (20 (el ) L
L7 =—=n <Sin08€ sm&(%) +sin298¢2 '

Now, we simplify the term - % (sin 9%):

sin 6

L 0 Si 08 o —i—cot&8
— |sinf—= | = — —.
sin 6 00 00 00? 00
Substituting this back into the expression for L2, we have:

: o o 1 o
[ LY AR L S
(892 T sin208q§2>

3) Prove that:
LZ}/QQ — 6h21/22
LY} = 2hY}
The function Y: (35>) 2 gin? g %@,

Solution: )
The operator L, is defined as:

Applying L, to Y2




Foyr2 Lo (1) 2 g 2i¢
L)Yy = —ih-2i o sin” 6 e™'?.
™

Simplifying:

Foyr2 15 \"* 2 g 2i¢ 2
L.Y; =2h 39n sin” 0 e™? = 2RY;.
T

The operator L? in spherical coordinates is given by:

: o o 1 o
[ LY AR L S
(392 Teotigg sin208¢2>

Applying L? to Y7

15\ /2 '
Yy = (375) sin ) e*¢.
™

Second derivative with respect to ¢:

0% .. ) )
87&62745 — 4i2621¢ — —4622(;5.
So: 1/2 1/2
1 02 4 15 . 15 .
__Y2 - = == : 29 2i¢p _ 4 == 22(;5.
sn?0062 2 sin®f (327r> S ve 321) °©

Derivatives with respect to 6:

ﬁ(sinz ) = 2sin 6 cos b,

00

2
%(st 6) = 2(cos®  — sin® ).

Substitute back into L2Y: A
L2}/22 — 67:1/2}/22.

Alternate: The function Y3 is given by:

15\ /2 ‘
Y = (37) sin? § %7,
T

which corresponds to the state |l = 2,m = 2). Therefore, we can write:

15 1/2 ‘
12,2) = (3—> sin? § %%

27

Action of L2

L2|l,m) = 1(1 + D))l m).
For [ = 2:

L?)2,2) = 2(2 + 1)R?|2,2) = 612[2,2).
Action of [A/Z:



L.|l,m) = mh|l,m).

For m = 2:

L.|2,2) = 2h|2,2).

4) At a given instant of time, a rigid rotator is in the state:

0(0,¢) = \/gsin ¢siné.

(a) What possible values of L, will measurement find, and with what probability will these values occur?
(b) What is <ﬁz> for this state?

(c) What is <f/2> for this state?

Solution:
a) Measurement of L,:

The operator L, has eigenfunctions Y;™(f, ¢) in the basis of spherical harmonics:

L.Y;™(6,¢) = mhy;" (6, ).

To find the possible values of L, and their probabilities, we need to expand (6, ¢) in terms of the
spherical harmonics Y, (0, ¢):

90(97 ¢) = Z Cl,mY}m(ea ¢)7
Im

Given ¢(0, ¢) = 1/ sin ¢sin f, we can express sin ¢ in terms of spherical harmonics:

el — e

sin ¢ = 5

The function sin ¢ sin # can be expanded as:
1 ) )
sin ¢sinf = % sinf(e" — 7).
i

Using the known spherical harmonics:

Vi (6,0) = ¥ o sin 6,

. | |
6, 6) = \/% sin ¢sin § = —%Yf(e,@ + %Yfl(&aﬁ)-

l

Cl1=———=, Cl_1=
1,1 \/5, 1,1

we can write:

Coefficients c¢; 41:

-

Possible values of L.,:




e m=1: L, = h with probability |ci > = 3.
e m = —1: L, = —h with probability |¢; ;|? = %

The possible values of L, are h and —h, each occurring with a probability of %
b) Expectation Value (L,):

The operator L, can be expressed in terms of Lr and L_:

where: ) X )
Ly=1L,+iL,

The matrix elements (Y |L,|Y;™) are non-zero only when m/ = m + 1. In this case:

(L) = /0 - /O " (0, 0) Lo (0, 6) sin 6.d6 do

Since (6, ¢) is a linear combination of Y;! and Y™, we need to evaluate:

(L) = % (LB, —1) + (1, 1B 1, 1]

Calculating these matrix elements, we find:
(Ly) = 0.

¢) Expectation Value (L?)
For ¢(6, ¢), we can use the fact that:

(L?) = Z |c1m|21(1 + 1) B2
Im

Since the state is a combination of Y;! and Y;™*, both corresponding to [ = 1:

(L% = 1(1 4+ 1)k? = 212,

5) Assume that a particle has an orbital angular momentum with z component Am and a square mag-
nitude 7%/(l + 1). Show the following:

a) Show that (L,) = (L,) =0

b) Show that

1) — m?h?
2

RA(1 +
(L) =(Ly) =
Solution:

a) The raising and lowering operators are defined as:



by —botily, b —1@.—il,

Action on Eigenstates: For an eigenstate |, m) of L? and L,:

Lyfl,m) = b /Il + 1) = m(m + 1)|l,m + 1),

L_|l,m) = h/I(I+1) —m(m — 1)|I,m — 1).

The expectation values (L,) and (L,) in the state |I, m)using the operators L, and L_:

1 ~ ~
(Le) = 5{LmlLs + L ji,m)

1 ~ o
(L) = 2—Z.<l,m|LJr — L_|l,m).
The expectation value of L, in the state |I,m) is:

(La) = (I, m|La|l,m) = (<z,m|ﬁ+|z,m> + <z,m|z_|z,m>) .

N | —

Taking the inner product for the first term:

{Lm|Ly|l,m) = b/ (L= m) (I +m +1) (I, m|l,m + 1)
Since |I,m) and |l,m + 1) are orthogonal for different m, we have:
(Il,m|l,m+ 1) = 0.

Similarly, for the second term:

(I, m|L_|l,m) = /(L +m)(I —m + 1) (I, m|l,m —1).

Again, due to orthogonality:
(I,m|l,;m—1) =0,

Substituting these results back into the expectation value of L,:
1 A A 1
(La) = 5 (Gl Lt m) + (1, ml Lol m) ) = 5(0+0) = 0.
Similarly, the expectation value of ﬁy is:
. 1 . .
(Ly) = {mlLltm) = = ((mlLyltm) = (@ mlL-|im)) =o0.
1

This is because L. |I, m) results in the orthogonal state |1, m + 1), and L_ |I, m) results in the orthogonal
state |l,m — 1), which are both orthogonal to |, m).

<Lx> = Oa <Ly> = 0.

b) We begin with the total angular momentum operator:

o2y i i



Taking the expectation value in the state |, m), we have:
(L, ml E2JL, m) = BA(1+ 1),
and R
(I, m|L2|l,m) = h*m?.

From the identity for L2, we can write:

RA(L+1) = (L2) + (L) + (L?).

Yy
Substituting (L2) = A2m? into the equation:
2 _ /72 72 2,2
REI(L41) = (Ly) + (L) + h*m”.
Rearranging this gives: ) )
(L2) + (L2y = R*(I(1 + 1) —m?).

To proceed, we compute (L2) and <ﬁ§) separately. The operator L, can be written in terms of the ladder
operators as:

A

1
Le=5(Ly +Lo).

1
4

Now, to compute the expectation value ([:g), we use the action of the ladder operators on the states
|l,m). The ladder operators L, and L_ act as:

. 1
L2= (L +L )= Z(Li + 12+ L L_+L_L,).

Ly|l,m) =B/ (1 —m)(l+m+ 1)|l,m+ 1),

L_|l,m) = hy/ (I +m)(l —m+1)|l,m —1).

Substituting these matrix elements into the expression for fli, we get:

- 1
(L%) = 1 ({,m|LA|l,m) + (I, m|L%|l,m) + (I, m|Ls L_|l,m) + (I, m|L_L,|l,m)) .
After simplifying, we obtain:
N h?
(2 ="y - o)

Similarly, we compute @12/} using the corresponding expression for I:y:
A 1

L=~

Yoo

(Ly — L_).

Following the same procedure, we find:

2

A D)
(L2) = > (I(1+1) —m?)
Finally, adding the results for (L2) and (L2), we obtain:

(L2) + (L% = B*(I(1 + 1) — m?).

Therefore, the final result is:



(£2) = (£2) = = (10 + 1) = m?)

6) What is the expectation of the operator % (ﬁxﬁy + f}yﬁx> in the Y, state?
Solution:
The operator

1/~ » A A
5 (LxLy + Lny>
can be expressed in terms of the ladder operators i+ and L_. First, recall that:

o 1y/s - A 1 /. .
L= (Li+ L), Ly=o (La—1).

g\ T v T
Substituting these into the operator:

A A

PN ~ A 1 ~ ~ ~ ~ ~ ~
Loby+LyLe = (B + L)L = L) + (Ly = L) (B4 + 1))

Expanding the products:

1 /4 ~ A A A A ~ ~ A A A A
-2 (L2+ S SN S R N Y ;. QR S ) S L_L+> .
Simplifying:
1 - .
— (212 - i? )
(203 - 1)
Thus, the operator reduces to:
Lis s ro7 L /29 72
5 (LoLy+ Lyl ) = o (L2 -12)

Expectation Value in Y™

The action of L, and L_ on the state |I,m) is given by:
Eoltym) = /A= m)@+m o+ Dll,m+ 1),

L_|l,m) = h\/(L+m)(l —m+1)|l,m—1).
Applying f,i and L2 to |I,m), we get:

f/i|l,m> < |lm+2),  L|l,m) o |l,m—2).
Since the states |I,m + 2) and |l,m — 2) are orthogonal to |l,m), their expectation values vanish:
(I, m|L2|l,m) =0, (I,m|L*|l,m) = 0.

Thus, the expectation value of the operator is:

<% (ﬁxﬁy + ﬁyﬁx)> - % (<z,m|£i|z,m> . <z,m|£%yz,m>) —0.




7) A Dy molecule at 30 K, at t = 0, is known to be in the state
3] +4Y7 + V!
0,6,0) = —1 L7
(0, ,0) %6
a) What values of L and L, will measurement find, and with what probabilities will these values occur?
b) What is (0, ¢,t)?
c) What is (E) for the molecule at ¢ > 07

Energy levels E; of the molecule is given by:

I(l+1)
E =nmr——"

1 2] )
where [ is the moment of inertia of the molecule.

(Note: For the purely rotational states of Ds, assume that i/4wlc = 30.4 cm™!.)

Solution:

a) Given a superposition of spherical harmonic states, we must determine the possible values of L and
L, and their corresponding probabilities.

The given state is:

YL +4Y3 + Y
0,6,0) = LT

This is a linear combination of the spherical harmonics Y, Y2, and Y
Eigenvalues of L,: The eigenvalue of L, for the state Y;™ is mh. The corresponding m values are:

e For V!, m=1,
e For Y}, m =3,
e For Y, m=1.

The probability of measuring a particular m is the square of the coefficient of the corresponding spherical
harmonic. Therefore, the probabilities for each m are:

e For Y}', the probability is \/i% =2
2 3

e For Y2}, the probability is \/L%, =
2

o For Y7, the probability is | 4=| = 5

Thus, the possible values of L, are:

L, =mh with probabilities:

9 1 10
L.=1h (probability: — + — = —).
(probability 26+26 26>

16
L, =3h (probability: 2—6)

Possible Values of L:
The quantum number [ determines the total angular momentum L. From the given spherical harmonics:

e For Y, I=1,

10



e For Y2 and Y, [ =T.

Thus, the possible values of L are:

L=h/I(I+1) withl=1,7.

The probabilities for each [ are:

e [ =1 occurs with probability o,

1641 _ 17

e [ =T occurs with probability == = .

b) To find (6, ¢, t), we need to express the time evolution of the state. The time-dependent wavefunc-
tion is given by:

77Z}(67 b, t) = Z CleEm(Qv gb)e_iElmt/h?

I,m

where ¢;,,, are the coefficients in the expansion of the initial wavefunction.

For the given initial state, the time-dependent wavefunction is:

3 o 4 , 1 ‘
Qﬂ(@, ¢’ t) = \/_2_6}/11€sz115/?1 + _26)/736sz§1§/}1 + 26}/71671E%t/h.
l(l+1
El — h2 ( 57 )7

¢)The expectation value of the energy is given by:

<E> - Z |Clm|2Elm-
Im

For the state ¥(6, ¢,0), we already have the coefficients ¢;,,, and the corresponding energy eigenvalues.

The energy expectation value is:
9 16
=—FE+—FE+—F
26 T T T
where F; and FE; are the energies for [ = 1 and [ = 7, respectively.

The energies are:

(E)

(1+1)

1 1
E1:h2 7<7+ )

B, =m T
of = T or

Using the given constant /i/4nlc = 30.4cm™!, we can calculate (F).

8) Consider a particle in a state described by
Y=N(@x+y+2z)e ™

where N is a normalization factor.
(a) Show, by rewriting the ¥;*' functions in terms of z,v, z, and r, that

i (3 V20 4y
rooT AT 21/2p

o 3 1/22
L \dr T

11



(b) Using this result, show that for a particle described by ¥ above, P (I,
1/6 =P (l, = —h).

Solution:

a) Definitions of Spherical Harmonics

The spherical harmonics for [ = 1 are:

3\ 12
Y10, ¢) = — (8_7r> '’ sin 6,

3\
Y6, 6) = (g) e sind,

Convert to Cartesian Coordinates
Using the relations:

and r = /2% +y2 + 2%

e For Y}!:

r=rsinfcos¢p, y=rsinfsing, z=rcosb,

Substituting sin fe’® = £

vio _ 3 1/2x+iy
! 8 ro

Multiplying numerator and denominator by v/2:
on (L)
! 47 \/57“

(3N,
Y = 3 sin fe™"?.

— 3 12
Lo\ s ro

Multiplying numerator and denominator by V2

Y-l = (i) Pa—iy
! 47 \/57‘ ’

. 3\ /2
Y/ = i cosf.

e For Yfl:

Substituting sin fe =" = £

e For YIO:

Substituting cos ) = 2:

0)=2/3,P(l,=+h) =



b) The wavefunction is given by:
Y=N@+y+2z2)e ™.

Using the spherical harmonic expansions:

x 2m _ y . |27 _ z 47
P e I A e
2 2 1
rty+2z=r [@/g(—Yf +Y1‘1)+W§(Y11 +Y7Y +2\/§Y10

Grouping terms:

we rewrite:

T4+y+2z=r(al] + ¥ +aY),

27 27 27
1 \/ 3 + iy / 3 \/ 3( +1),
2r . 27 27 )
e=—\5 g =y 50,
47

C3 — 2“ ?
Normalization and Probabilities

To find the probabilities, calculate the magnitudes:

where the coeflicients are:

2

2 . 2 47
erf” = \/ g(—l +i)| = 5 X (1 +1%) = 5

27 2T 41
=\ (-1-0) == x(1P+1%) = —
af = | S1-0)| =2 x (2413 =T
4 ’ 4 16
2_19 Sl 4 r_ 0T
| 3 3 T3
The sum of squares is:
4 4 16 24
S leal =leal + ool + leaf = 5 + 5+ 57 = 55 =8m.
The probabilities are:
Yy
P(l :_i_h):ﬂzizl
¢ Slem|> 87 67
|ca|? 4?” 1
P(l,=—h =2 =
( ) Ylem? 87 6
2 167
= 2
P = 0) = % 3

Thus, the probabilities are:

13




