
Sample Questions II

1) a) What is
[
ϕ̂, L̂z

]
?

b) Calculate the root-mean-square deviation (∆ϕ) for a particle in the uniform state form −π to π.

Solution:
a) The position operator ϕ̂ represents the angle, and L̂z is the angular momentum operator:

L̂z = −iℏ ∂

∂ϕ
.

Using this expression, the commutator between ϕ̂ and L̂z is calculated as:

[ϕ̂, L̂z] = ϕ̂L̂z − L̂zϕ̂.

Substituting L̂z = −iℏ ∂
∂ϕ

into this:

[ϕ̂, L̂z] = ϕ̂

(
−iℏ ∂

∂ϕ

)
−
(
−iℏ ∂

∂ϕ

)
ϕ̂.

This simplifies to:

[ϕ̂, L̂z] = −iℏ
(
ϕ̂
∂

∂ϕ
− ∂

∂ϕ
ϕ̂

)
.

Now, let us act on a test function f(ϕ) to compute each term in the commutator.

First term: ϕ̂ ∂
∂ϕ
f(ϕ)

ϕ̂
∂

∂ϕ
f(ϕ) = ϕ

∂

∂ϕ
f(ϕ).

Second term: ∂
∂ϕ
ϕ̂f(ϕ)

∂

∂ϕ
ϕ̂f(ϕ) =

∂

∂ϕ
(ϕf(ϕ)) .

Using the product rule of differentiation:

∂

∂ϕ
(ϕf(ϕ)) = f(ϕ) + ϕ

∂

∂ϕ
f(ϕ).

Now substitute these results into the commutator:

[ϕ̂, L̂z]f(ϕ) = −iℏ
(
ϕ
∂

∂ϕ
f(ϕ)−

(
f(ϕ) + ϕ

∂

∂ϕ
f(ϕ)

))
.

[ϕ̂, L̂z]f(ϕ) = iℏf(ϕ).
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b) In this part, we need to calculate the uncertainty in the angle ϕ, denoted as ∆ϕ, for a particle in the
uniform state ψ(ϕ) = 1√

2π
, which represents a constant probability density over the interval [−π, π].

The standard deviation ∆ϕ is given by:

∆ϕ =

√
⟨ϕ̂2⟩ − ⟨ϕ̂⟩2.

The expectation value ⟨ϕ̂⟩ is given by:

⟨ϕ̂⟩ =
∫ π

−π

ψ∗(ϕ) ϕ̂ ψ(ϕ) dϕ.

Since ψ(ϕ) = 1√
2π
, we have:

⟨ϕ̂⟩ =
∫ π

−π

1

2π
ϕ dϕ = 0.

The expectation value of ϕ̂2 is:

⟨ϕ̂2⟩ =
∫ π

−π

1

2π
ϕ2 dϕ.

We can evaluate this integral as follows:

⟨ϕ̂2⟩ = 1

2π

∫ π

−π

ϕ2 dϕ =
1

2π
· 2

∫ π

0

ϕ2 dϕ =
1

π

[
ϕ3

3

]π
0

=
π2

3
.

Now, we can compute the uncertainty:

∆ϕ =

√
⟨ϕ̂2⟩ − ⟨ϕ̂⟩2 =

√
π2

3
− 0 =

π√
3
.

Thus, the root-mean-square deviation ∆ϕ is:

∆ϕ =
π√
3
.

2) Show that L̂2 may be written as:

L̂2 = −ℏ2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
.

Solution: To show that L̂2 can be expressed in the given form, we start with its definition and derive
the spherical coordinate representation.

The squared angular momentum operator L̂2 is defined as:

L̂2 = L̂2
x + L̂2

y + L̂2
z.

The components of the angular momentum operator in Cartesian coordinates are:

L̂x = −iℏ
(
y
∂

∂z
− z

∂

∂y

)
,

L̂y = −iℏ
(
z
∂

∂x
− x

∂

∂z

)
,
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L̂z = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
.

Transforming to Spherical Coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

The differential operators in spherical coordinates are:

∂

∂x
= sin θ cosϕ

∂

∂r
+

cos θ cosϕ

r

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ
,

∂

∂y
= sin θ sinϕ

∂

∂r
+

cos θ sinϕ

r

∂

∂θ
+

cosϕ

r sin θ

∂

∂ϕ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
.

It can be shown that L̂2 in spherical coordinates takes the form:

L̂2 = −ℏ2
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
.

Now, we simplify the term 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
:

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
=

∂2

∂θ2
+ cot θ

∂

∂θ
.

Substituting this back into the expression for L̂2, we have:

L̂2 = −ℏ2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
.

3) Prove that:

L̂2Y 2
2 = 6ℏ2Y 2

2

L̂zY
2
2 = 2ℏY 2

2

The function Y 2
2 :

(
15
32π

)1/2
sin2 θ e2iϕ.

Solution:
The operator L̂z is defined as:

L̂z = −iℏ ∂

∂ϕ
.

Applying L̂z to Y 2
2 :

L̂zY
2
2 = −iℏ ∂

∂ϕ

[(
15

32π

)1/2

sin2 θ e2iϕ

]
.

Since sin2 θ is independent of ϕ, we have:

∂

∂ϕ
e2iϕ = 2ie2iϕ.
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L̂zY
2
2 = −iℏ · 2i

(
15

32π

)1/2

sin2 θ e2iϕ.

Simplifying:

L̂zY
2
2 = 2ℏ

(
15

32π

)1/2

sin2 θ e2iϕ = 2ℏY 2
2 .

The operator L̂2 in spherical coordinates is given by:

L̂2 = −ℏ2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
.

Applying L̂2 to Y 2
2 :

Y 2
2 =

(
15

32π

)1/2

sin2 θ e2iϕ.

Second derivative with respect to ϕ:

∂2

∂ϕ2
e2iϕ = 4i2e2iϕ = −4e2iϕ.

So:
1

sin2 θ

∂2

∂ϕ2
Y 2
2 = − 4

sin2 θ

(
15

32π

)1/2

sin2 θ e2iϕ = −4

(
15

32π

)1/2

e2iϕ.

Derivatives with respect to θ:
∂

∂θ
(sin2 θ) = 2 sin θ cos θ,

∂2

∂θ2
(sin2 θ) = 2(cos2 θ − sin2 θ).

Substitute back into L̂2Y 2
2 :

L̂2Y 2
2 = 6ℏ2Y 2

2 .

Alternate: The function Y 2
2 is given by:

Y 2
2 =

(
15

32π

)1/2

sin2 θ e2iϕ,

which corresponds to the state |l = 2,m = 2⟩. Therefore, we can write:

|2, 2⟩ =
(

15

32π

)1/2

sin2 θ e2iϕ.

Action of L̂2:

L̂2|l,m⟩ = l(l + 1)ℏ2|l,m⟩.

For l = 2:

L̂2|2, 2⟩ = 2(2 + 1)ℏ2|2, 2⟩ = 6ℏ2|2, 2⟩.

Action of L̂z:
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L̂z|l,m⟩ = mℏ|l,m⟩.
For m = 2:

L̂z|2, 2⟩ = 2ℏ|2, 2⟩.

4) At a given instant of time, a rigid rotator is in the state:

φ(θ, ϕ) =

√
3

4π
sinϕ sin θ.

(a) What possible values of Lz will measurement find, and with what probability will these values occur?

(b) What is
〈
L̂x

〉
for this state?

(c) What is
〈
L̂2

〉
for this state?

Solution:
a) Measurement of Lz:

The operator L̂z has eigenfunctions Y m
l (θ, ϕ) in the basis of spherical harmonics:

L̂zY
m
l (θ, ϕ) = mℏY m

l (θ, ϕ).

To find the possible values of Lz and their probabilities, we need to expand φ(θ, ϕ) in terms of the
spherical harmonics Y m

l (θ, ϕ):

φ(θ, ϕ) =
∑
l,m

cl,mY
m
l (θ, ϕ),

Given φ(θ, ϕ) =
√

3
4π

sinϕ sin θ, we can express sinϕ in terms of spherical harmonics:

sinϕ =
eiϕ − e−iϕ

2i
.

The function sinϕ sin θ can be expanded as:

sinϕ sin θ =
1

2i
sin θ(eiϕ − e−iϕ).

Using the known spherical harmonics:

Y ±1
1 (θ, ϕ) = ∓

√
3

8π
sin θe±iϕ,

we can write:

φ(θ, ϕ) =

√
3

4π
sinϕ sin θ = − i√

2
Y 1
1 (θ, ϕ) +

i√
2
Y −1
1 (θ, ϕ).

Coefficients c1,±1:

c1,1 = − i√
2
, c1,−1 =

i√
2
.

Possible values of Lz:
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• m = 1: Lz = ℏ with probability |c1,1|2 = 1
2
.

• m = −1: Lz = −ℏ with probability |c1,−1|2 = 1
2
.

The possible values of Lz are ℏ and −ℏ, each occurring with a probability of 1
2
.

b) Expectation Value ⟨L̂x⟩:

The operator L̂x can be expressed in terms of L̂+ and L̂−:

L̂x =
L̂+ + L̂−

2
,

where:
L̂± = L̂x ± iL̂y.

The matrix elements ⟨Y m′

l′ |L̂x|Y m
l ⟩ are non-zero only when m′ = m± 1. In this case:

⟨L̂x⟩ =
∫ 2π

0

∫ π

0

φ∗(θ, ϕ)L̂xφ(θ, ϕ) sin θ dθ dϕ.

Since φ(θ, ϕ) is a linear combination of Y 1
1 and Y −1

1 , we need to evaluate:

⟨L̂x⟩ =
1

2

[
⟨1, 1|L̂+|1,−1⟩+ ⟨1,−1|L̂−|1, 1⟩

]
.

Calculating these matrix elements, we find:

⟨L̂x⟩ = 0.

c) Expectation Value ⟨L̂2⟩
For φ(θ, ϕ), we can use the fact that:

⟨L̂2⟩ =
∑
l,m

|cl,m|2l(l + 1)ℏ2.

Since the state is a combination of Y 1
1 and Y −1

1 , both corresponding to l = 1:

⟨L̂2⟩ = 1(1 + 1)ℏ2 = 2ℏ2.

5) Assume that a particle has an orbital angular momentum with z component ℏm and a square mag-
nitude ℏ2l(l + 1). Show the following:

a) Show that ⟨Lx⟩ = ⟨Ly⟩ = 0
b) Show that 〈

L2
x

〉
=

〈
L2
y

〉
=

ℏ2l(l + 1)−m2ℏ2

2

Solution:

a) The raising and lowering operators are defined as:
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L̂+ = L̂x + iL̂y, L̂− = L̂x − iL̂y.

Action on Eigenstates: For an eigenstate |l,m⟩ of L̂2 and L̂z:

L̂+|l,m⟩ = ℏ
√
l(l + 1)−m(m+ 1)|l,m+ 1⟩,

L̂−|l,m⟩ = ℏ
√
l(l + 1)−m(m− 1)|l,m− 1⟩.

The expectation values ⟨Lx⟩ and ⟨Ly⟩ in the state |l,m⟩using the operators L̂+ and L̂−:

⟨Lx⟩ =
1

2
⟨l,m|L̂+ + L̂−|l,m⟩

⟨Ly⟩ =
1

2i
⟨l,m|L̂+ − L̂−|l,m⟩.

The expectation value of L̂x in the state |l,m⟩ is:

⟨Lx⟩ = ⟨l,m|L̂x|l,m⟩ = 1

2

(
⟨l,m|L̂+|l,m⟩+ ⟨l,m|L̂−|l,m⟩

)
.

Taking the inner product for the first term:

⟨l,m|L̂+|l,m⟩ = ℏ
√

(l −m)(l +m+ 1) ⟨l,m|l,m+ 1⟩ .

Since |l,m⟩ and |l,m+ 1⟩ are orthogonal for different m, we have:

⟨l,m|l,m+ 1⟩ = 0.

Similarly, for the second term:

⟨l,m|L̂−|l,m⟩ = ℏ
√

(l +m)(l −m+ 1) ⟨l,m|l,m− 1⟩ .

Again, due to orthogonality:
⟨l,m|l,m− 1⟩ = 0,

Substituting these results back into the expectation value of L̂x:

⟨Lx⟩ =
1

2

(
⟨l,m|L̂+|l,m⟩+ ⟨l,m|L̂−|l,m⟩

)
=

1

2
(0 + 0) = 0.

Similarly, the expectation value of L̂y is:

⟨Ly⟩ = ⟨l,m|L̂y|l,m⟩ = 1

2i

(
⟨l,m|L̂+|l,m⟩ − ⟨l,m|L̂−|l,m⟩

)
= 0.

This is because L̂+ |l,m⟩ results in the orthogonal state |l,m+ 1⟩, and L̂− |l,m⟩ results in the orthogonal
state |l,m− 1⟩, which are both orthogonal to |l,m⟩.

⟨Lx⟩ = 0, ⟨Ly⟩ = 0.

b) We begin with the total angular momentum operator:

L̂2 = L̂2
x + L̂2

y + L̂2
z.

7



Taking the expectation value in the state |l,m⟩, we have:

⟨l,m|L̂2|l,m⟩ = ℏ2l(l + 1),

and
⟨l,m|L̂2

z|l,m⟩ = ℏ2m2.

From the identity for L̂2, we can write:

ℏ2l(l + 1) = ⟨L̂2
x⟩+ ⟨L̂2

y⟩+ ⟨L̂2
z⟩.

Substituting ⟨L̂2
z⟩ = ℏ2m2 into the equation:

ℏ2l(l + 1) = ⟨L̂2
x⟩+ ⟨L̂2

y⟩+ ℏ2m2.

Rearranging this gives:
⟨L̂2

x⟩+ ⟨L̂2
y⟩ = ℏ2(l(l + 1)−m2).

To proceed, we compute ⟨L̂2
x⟩ and ⟨L̂2

y⟩ separately. The operator L̂x can be written in terms of the ladder
operators as:

L̂x =
1

2
(L+ + L−).

L̂2
x =

1

4
(L+ + L−)

2 =
1

4
(L2

+ + L2
− + L+L− + L−L+).

Now, to compute the expectation value ⟨L̂2
x⟩, we use the action of the ladder operators on the states

|l,m⟩. The ladder operators L+ and L− act as:

L+|l,m⟩ = ℏ
√

(l −m)(l +m+ 1)|l,m+ 1⟩,

L−|l,m⟩ = ℏ
√

(l +m)(l −m+ 1)|l,m− 1⟩.

Substituting these matrix elements into the expression for L̂2
x, we get:

⟨L̂2
x⟩ =

1

4

(
⟨l,m|L2

+|l,m⟩+ ⟨l,m|L2
−|l,m⟩+ ⟨l,m|L+L−|l,m⟩+ ⟨l,m|L−L+|l,m⟩

)
.

After simplifying, we obtain:

⟨L̂2
x⟩ =

ℏ2

2

(
l(l + 1)−m2

)
Similarly, we compute ⟨L̂2

y⟩ using the corresponding expression for L̂y:

L̂y =
1

2i
(L+ − L−).

Following the same procedure, we find:

⟨L̂2
y⟩ =

ℏ2

2

(
l(l + 1)−m2

)
Finally, adding the results for ⟨L̂2

x⟩ and ⟨L̂2
y⟩, we obtain:

⟨L̂2
x⟩+ ⟨L̂2

y⟩ = ℏ2(l(l + 1)−m2).

Therefore, the final result is:
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⟨L̂2
x⟩ = ⟨L̂2

y⟩ =
ℏ2

2

(
l(l + 1)−m2

)
.

6) What is the expectation of the operator 1
2

(
L̂xL̂y + L̂yL̂x

)
in the Y m

l state?

Solution:
The operator

1

2

(
L̂xL̂y + L̂yL̂x

)
can be expressed in terms of the ladder operators L̂+ and L̂−. First, recall that:

L̂x =
1

2

(
L̂+ + L̂−

)
, L̂y =

1

2i

(
L̂+ − L̂−

)
.

Substituting these into the operator:

L̂xL̂y + L̂yL̂x =
1

4i

(
(L̂+ + L̂−)(L̂+ − L̂−) + (L̂+ − L̂−)(L̂+ + L̂−)

)
.

Expanding the products:

=
1

4i

(
L̂2
+ − L̂2

− + L̂+L̂− − L̂−L̂+ + L̂2
+ − L̂2

− − L̂+L̂− + L̂−L̂+

)
.

Simplifying:

=
1

4i

(
2(L̂2

+ − L̂2
−)
)
.

Thus, the operator reduces to:

1

2

(
L̂xL̂y + L̂yL̂x

)
=

1

2i

(
L̂2
+ − L̂2

−

)
.

Expectation Value in Y m
l

The action of L̂+ and L̂− on the state |l,m⟩ is given by:

L̂+|l,m⟩ = ℏ
√

(l −m)(l +m+ 1)|l,m+ 1⟩,

L̂−|l,m⟩ = ℏ
√

(l +m)(l −m+ 1)|l,m− 1⟩.
Applying L̂2

+ and L̂2
− to |l,m⟩, we get:

L̂2
+|l,m⟩ ∝ |l,m+ 2⟩, L̂2

−|l,m⟩ ∝ |l,m− 2⟩.

Since the states |l,m+ 2⟩ and |l,m− 2⟩ are orthogonal to |l,m⟩, their expectation values vanish:

⟨l,m|L̂2
+|l,m⟩ = 0, ⟨l,m|L̂2

−|l,m⟩ = 0.

Thus, the expectation value of the operator is:〈
1

2

(
L̂xL̂y + L̂yL̂x

)〉
=

1

2i

(
⟨l,m|L̂2

+|l,m⟩ − ⟨l,m|L̂2
−|l,m⟩

)
= 0.
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7) A D2 molecule at 30 K, at t = 0, is known to be in the state

ψ(θ, ϕ, 0) =
3Y 1

1 + 4Y 3
7 + Y 1

7√
26

.

a) What values of L and Lz will measurement find, and with what probabilities will these values occur?

b) What is ψ(θ, ϕ, t)?

c) What is ⟨E⟩ for the molecule at t > 0?

Energy levels El of the molecule is given by:

El = ℏ2
l(l + 1)

2I
,

where I is the moment of inertia of the molecule.
(Note: For the purely rotational states of D2, assume that ℏ/4πIc = 30.4 cm−1.)

Solution:
a) Given a superposition of spherical harmonic states, we must determine the possible values of L and

Lz and their corresponding probabilities.
The given state is:

ψ(θ, ϕ, 0) =
3Y 1

1 + 4Y 3
7 + Y 1

7√
26

.

This is a linear combination of the spherical harmonics Y 1
1 , Y

3
7 , and Y

1
7 .

Eigenvalues of L̂z: The eigenvalue of L̂z for the state Y m
l is mℏ. The corresponding m values are:

• For Y 1
1 , m = 1,

• For Y 3
7 , m = 3,

• For Y 1
7 , m = 1.

The probability of measuring a particularm is the square of the coefficient of the corresponding spherical
harmonic. Therefore, the probabilities for each m are:

• For Y 1
1 , the probability is

∣∣∣ 3√
26

∣∣∣2 = 9
26
.

• For Y 3
7 , the probability is

∣∣∣ 4√
26

∣∣∣2 = 16
26
.

• For Y 1
7 , the probability is

∣∣∣ 1√
26

∣∣∣2 = 1
26
.

Thus, the possible values of Lz are:

Lz = mℏ with probabilities:

Lz = 1ℏ (probability:
9

26
+

1

26
=

10

26
),

Lz = 3ℏ (probability:
16

26
).

Possible Values of L:
The quantum number l determines the total angular momentum L. From the given spherical harmonics:

• For Y 1
1 , l = 1,
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• For Y 3
7 and Y 1

7 , l = 7.

Thus, the possible values of L are:

L = ℏ
√
l(l + 1) with l = 1, 7.

The probabilities for each l are:

• l = 1 occurs with probability 9
26
,

• l = 7 occurs with probability 16+1
26

= 17
26
.

b) To find ψ(θ, ϕ, t), we need to express the time evolution of the state. The time-dependent wavefunc-
tion is given by:

ψ(θ, ϕ, t) =
∑
l,m

clmY
m
l (θ, ϕ)e−iElmt/ℏ,

where clm are the coefficients in the expansion of the initial wavefunction.

For the given initial state, the time-dependent wavefunction is:

ψ(θ, ϕ, t) =
3√
26
Y 1
1 e

−iE1
1 t/ℏ +

4√
26
Y 3
7 e

−iE3
7 t/ℏ +

1√
26
Y 1
7 e

−iE1
7 t/ℏ.

El = ℏ2
l(l + 1)

2I
,

c)The expectation value of the energy is given by:

⟨E⟩ =
∑
l,m

|clm|2Elm.

For the state ψ(θ, ϕ, 0), we already have the coefficients clm and the corresponding energy eigenvalues.
The energy expectation value is:

⟨E⟩ = 9

26
E1 +

16

26
E7 +

1

26
E7,

where E1 and E7 are the energies for l = 1 and l = 7, respectively.
The energies are:

E1 = ℏ2
1(1 + 1)

2I
, E7 = ℏ2

7(7 + 1)

2I
.

Using the given constant ℏ/4πIc = 30.4 cm−1, we can calculate ⟨E⟩.

8) Consider a particle in a state described by

ψ = N(x+ y + 2z)e−ar

where N is a normalization factor.
(a) Show, by rewriting the Y ±1.0

1 functions in terms of x, y, z, and r, that

Y ±1
1 = ∓

(
3

4π

)1/2
x± iy

21/2r

Y 0
1 =

(
3

4π

)1/2
z

r
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(b) Using this result, show that for a particle described by ψ above, P (lz = 0) = 2/3 , P (lz = +ℏ) =
1/6 = P (lz = −ℏ).

Solution:
a) Definitions of Spherical Harmonics
The spherical harmonics for l = 1 are:

Y 1
1 (θ, ϕ) = −

(
3

8π

)1/2

eiϕ sin θ,

Y −1
1 (θ, ϕ) =

(
3

8π

)1/2

e−iϕ sin θ,

Y 0
1 (θ, ϕ) =

(
3

4π

)1/2

cos θ.

Convert to Cartesian Coordinates
Using the relations:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

and r =
√
x2 + y2 + z2:

• For Y 1
1 :

Y 1
1 = −

(
3

8π

)1/2

sin θeiϕ.

Substituting sin θeiϕ = x+iy
r

:

Y 1
1 = −

(
3

8π

)1/2
x+ iy

r
.

Multiplying numerator and denominator by
√
2:

Y 1
1 = −

(
3

4π

)1/2
x+ iy√

2r
.

• For Y −1
1 :

Y −1
1 =

(
3

8π

)1/2

sin θe−iϕ.

Substituting sin θe−iϕ = x−iy
r

:

Y −1
1 =

(
3

8π

)1/2
x− iy

r
.

Multiplying numerator and denominator by
√
2:

Y −1
1 =

(
3

4π

)1/2
x− iy√

2r
.

• For Y 0
1 :

Y 0
1 =

(
3

4π

)1/2

cos θ.

Substituting cos θ = z
r
:

Y 0
1 =

(
3

4π

)1/2
z

r
.
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b) The wavefunction is given by:
ψ = N(x+ y + 2z)e−ar.

Using the spherical harmonic expansions:

x

r
=

√
2π

3
(−Y 1

1 + Y −1
1 ),

y

r
= i

√
2π

3
(Y 1

1 + Y −1
1 ),

z

r
=

√
4π

3
Y 0
1 ,

we rewrite:

x+ y + 2z = r

[√
2π

3
(−Y 1

1 + Y −1
1 ) + i

√
2π

3
(Y 1

1 + Y −1
1 ) + 2

√
4π

3
Y 0
1

]
.

Grouping terms:
x+ y + 2z = r

(
c1Y

1
1 + c2Y

−1
1 + c3Y

0
1

)
,

where the coefficients are:

c1 = −
√

2π

3
+ i

√
2π

3
=

√
2π

3
(−1 + i),

c2 = −
√

2π

3
− i

√
2π

3
=

√
2π

3
(−1− i),

c3 = 2

√
4π

3
.

Normalization and Probabilities
To find the probabilities, calculate the magnitudes:

|c1|2 =

∣∣∣∣∣
√

2π

3
(−1 + i)

∣∣∣∣∣
2

=
2π

3
× (12 + 12) =

4π

3
,

|c2|2 =

∣∣∣∣∣
√

2π

3
(−1− i)

∣∣∣∣∣
2

=
2π

3
× (12 + 12) =

4π

3
,

|c3|2 =

∣∣∣∣∣2
√

4π

3

∣∣∣∣∣
2

= 4× 4π

3
=

16π

3
.

The sum of squares is:∑
|cm|2 = |c1|2 + |c2|2 + |c3|2 =

4π

3
+

4π

3
+

16π

3
=

24π

3
= 8π.

The probabilities are:

P (lz = +ℏ) =
|c1|2∑
|cm|2

=
4π
3

8π
=

1

6
,

P (lz = −ℏ) =
|c2|2∑
|cm|2

=
4π
3

8π
=

1

6
,

P (lz = 0) =
|c3|2∑
|cm|2

=
16π
3

8π
=

2

3
.

Thus, the probabilities are:

P (lz = 0) =
2

3
, P (lz = ±ℏ) =

1

6
.
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