
1

Introduction to Computation
IDC 101

Course Credit: 3

Source: Google

WELCOME!

Course Instructors:

Umakant Rapol
(Physics)

Bijay Agarwalla
(Physics)

Course Coordinator

M S Santhanam
(Physics)

Sarvesh Dube
(Earth Science)

Lectures and Labs:

Office Hours: Friday (5pm - 6pm)
 Office No: A 385

Labs :
 Monday Tuesday, Thursday, Friday

(2 pm-4 pm)

Lectures (11-13):
Friday (11:30 am - 12:30 am)

Source: Google

Class will be divided into 4 batches
Friday: Batch 1 (20181001-20181050)
Monday: Batch 2 (20181051-20181100)
Tuesday: Batch 3 (20181101-20181150)
Thursday: Batch 4- all others,

 1. Quiz- 20% – (Beginning of September)

 2. Mid-sem- 30% -2 hrs (24th Sept-1st October)

 3. Quiz -20% -(Beginning of November)

 4. End-sem- 30% -2 hrs (22nd Nov-30th Nov)

Evaluation

Assignments: After every lecture (no weightage)

Course Material: Website
http://www.iiserpune.ac.in/~santh/idc101_2018.html

will be updated every week

http://www.iiserpune.ac.in/~santh/idc101_2018.html

What this course is about?

To acquire basic computational skills to solve simple
problems in science

For computation we will use the language
 known as Python

https://www.python.org/downloads/

Suggested Books for this course

Online sources:
Lectures on Youtube

Some famous quotes

What is Computing?

• Computation is a kind of question answering
• You compute even when you don’t seem to be doing so,
• We compute all the time
• Computer meant humans dates back in 1600

On 18 June 1980, Shakuntala Devi demonstrated the
multiplication of two 13-digit numbers—

7,686,369,774,870 × 2,465,099,745,779—picked at
random by the Computer Department of Imperial College

London. She correctly answered
18,947,668,177,995,426,462,773,730 in 28 seconds. This

event was recorded in the 1982 Guinness Book of
Records.

source: wiki

Astronomical computations using observational data

Johannes Kepler (1571-1630)

Kepler's laws of planetary motion

Great Trigonometrical Survey (1802)

 Aimed to measure the entire Indian subcontinent
 with scientific precision

 Measurement of the height of the Himalayan giants
 begun in 1802

Source: Google

Source: Google

Modern Quantum Age

Source: Google

First Fully functional digital computer: ENIAC
(Electronic Numerical Integrator and Calculator)

• Invented by J. Presper Eckert and John Mauchly at the University of
Pennsylvania

• Began construction in 1943 and completed in 1946.
• It occupied about 1,800 square feet and used about 18,000 vacuum

tubes, weighing almost 50 tons.

History

Source: Google

Quantum Computing
—> Exponential speed up

ENIAC to mobile
—> Quick Speed up

Source: Google

Source: Google

New to Programming! Practice, Practice….

Problem
Solving

Knowledge of
Concept

Programming
skills

What is Computing?

Don’t be afraid: anything happens to computer —-restart :p

What does a computer do?

• Performs Calculations (a billion calculation per second)
• Remembers results (100s of gigabytes of storage)
• What kind of computation?
 built-in to the language
 one that you define as the programmer
• Computers only know what you tell them

Why Python?

• Programming language for beginners
• Simple coding style
• Extremely user friendly
• high-level
• interactive (immediate feedback)
• Scripting language
• Top 5 most popular and fast growing programming language
• 3rd highest earning programming language

Python Releases:

• Created in 1989 by Guido Van Rossum
(Dutch programmer),

• Python 1.0 released in 1994
• Python 2.0 released in 2000
• Python 3.0 released in 2008
• …..

Van Rossum
(sournce: Wiki)

• Guido Van Rossum wrote Python as a hobby programming project back in 1980s.
Since then it has grown to become one of the most polished languages of the
computing world.

• He was fond of watching the famous comedy series [The Monty Python’s Flying
Circus]. Thus, the name Python struck his mind as not only has it appealed to his
taste but also to his target users.

• Fundamentals of Python programming language
• Mathematical Operations
• Python variables and types, control structures, iterations
• Solving simple mathematical/physical problems using python

Course Structure

THANK YOU!

Introduction to Computation
IDC 101

Source: Google

Programming in Python

Program:
A sequence of instructions that specifies how to perform a computation

Examples:
1. Solving a set of linear equations
2. Roots of a polynomial
3. Searching or replacing text in a document

Math: perform some basic mathematical operations

Repetition

Input

Few basic instructions:

input(‘Give me a number:’)

Output print(‘the value is:’, a)

Values and types:

Basic things a program works with : letter or numbers

One can always check the type a value is

Syntax: type(value)

Examples:

>>> type(2)

<class ‘int’>

>>> type(4.0)

<class ‘float’>

>>> type(’12.0')

<class ‘str’>

Numbers: integer, floating-point numbers

String: letters

Arithmetic Operators:

+ - * / addition, subtraction, multiplication, division

% modulus (remainder)

** exponentiation

Order of operation

PEMDAS:

P: Parentheses
E: Exponentiation
M: Multiplication
D: Division
A: Addition
S: Subtraction

1+3*4 =?

10+4/2 =?

String Operations
In general, one can’t perform mathematical operations on strings

‘10’-‘2’ Not allowed

‘char1’/‘char2’ Not allowed

However + and * operations work for strings

output: ‘IISER-Pune’

>>> (first+second)*3

output: ‘IISER-PuneIISER-PuneIISER-Pune’

To know the length of the string:

>>>first= ‘IISER’

>>>second=‘-Pune’

>>> first+second

Examples:

>>>len(variable)

Variables and Statements

Variable: A name that refers to a value

Assignment Statement: Stores a value into a variable

Examples: n=11
IISER_Students=1200

A variable that has been given a value can be used in expressions

n+5=16

Examples:

>>> print(5)
 5

>>>print(‘Hello, World!’)
Hello, World!

>>> print(12.0)
12.0

Print Function:
print: produces text output on the console

Syntax: print ()

>>>lecture_no=2

Examples:

>>>print(‘This is our’, lecture_no, ‘nd lecture in Python’)

Output:
This is our 2 nd lecture in Python

print('Single Quotes')

print("double quotes")

print('Can't do this')

More about Print Function:

print(“can’t do this”)

Math Functions
Python has a math module that provides most of the familiar math functions

To use these commands, one must write the following at the top of the python program
from math import *

exp(value) Exponential

Command name Description

log(value) logarithm base e

log10(value) logarithm base 10

cos(value) cosine in radians

sqrt(value) square root
sin(value) sine in radians

abs(value) absolute value
max(value1,value2) larger of two values
min(value1,value2) minimum of two values

Vocabulary

bug: an error in a program

debugging: The process of finding and correcting bugs

syntax: The rules that govern the structure of a program

execute: to run a statement

Type of errors:

syntax error:
An error in a program that makes it impossible to parse— and therefore
impossible to interpret.

>>> 17 = n
File "<interactive input>", line 1

SyntaxError: can't assign to literal

semantic error:
An error in a program that makes it do something other than what the
programmer intended.

Type of errors:

runtime error
An error that does not occur until the program has started to execute but that
prevents the program from continuing.

THANK YOU!

New to Programming! Practice, Practice….

Source: Google

Input input(‘Give me a number:’)

Output print(‘the value is:’, a)

Story so-far

Operations on Strings

Math Functions from math import *

Arithmetic Operations with numbers + - * / % **

import math (call using math.)

Formatting in Python

Selection (if/else) and Repetition
Decision making

Want to execute a code only if a certain condition is satisfied.

if statement:

Executes a group of statements only if a certain condition is true.
Otherwise, the statements are skipped

Syntax:

if condition :
 statements

if

if den != 0.0 :
 y=num/den
 print(y)

Program to divide two numbers

num = float (input('Give numerator : '))
den = float (input('Give denominator : '))

print (' ')
print('Numerator : ', num)
print('Denominator : ', den)
print (' ')

Incorrect indentation will result into IndentationError.

if/else

if/else statement:

Executes one block of statements if a certain condition is True,
and a second block of statements if it is False.

 if condition:
 statements
 else:
 statements

Syntax:

if den == 0.0 :
 print ('WARNING : Division by zero')
else :
 y=num/den
 print(y)

Ex: Program to divide two real numbers (version 2)

num = float (input('Give numerator : '))
den = float (input('Give denominator : '))

print (' ')
print('Numerator : ', num)
print('Denominator : ', den)
print (' ')

 if condition:
 statements
 elif condition:
 statements
 else:
 statements

Multiple conditions can be chained with elif ("else if"):

Syntax:

elif

if (time>0) and (time <=12):
 print('Morning hours’)

elif (time>12) and (time<=18):
 print('Afternoon hours’)

else:
 print('Evening hours')

time = float(input('Give present time: '))

Ex: Takes time as input and writes if it is
morning, afternoon or evening hours.

time = float(input('Give present time: '))

Ex: Takes time as input and writes if it is
morning, afternoon or evening hours.

if (time > 0) and (time <= 12) :
 print('Morning hours')
else:
 if (time > 12) and (time <= 18) :
 print ('Afternoon hours')
 else:
 if (time > 18) :
 print('Evening hours')

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

Logical expressions can be combined with logical operators:

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

Logic

Many logical expressions use relational operators:

>>> print('x == y is',x==y) Output: x == y is False

Output: x > y is False

>>> x = 10
>>> y = 12

>>> print('x > y is',x>y)

Output: x < y is True>>> print('x < y is’,x<y)

Source: Google

Repetition

while

while loop: Executes a group of statements as long as a condition is True.

• good for indefinite loops (repeat an unknown number of times)

 while condition:
 statements

Syntax:

number = 1
 while number < 100:
 print(number)
 number = number * 3

Example:

Output:
 1 3 9 27 81

range

The range function specifies a range of integers

range (start, stop) The integers between start (inclusive)
 and stop(exclusive)

It can also accept a third value specifying the change between the values

range (start, stop, step) The integers between start (inclusive) and
stop(exclusive) by steps

for x in range(1,6,2):
 print(x)

Example:

Output:
 1 3 5

x=range(6)

Output:
 0 1 2 3 4 5

List

my_list = [] # it creates an empty list

list: a sequence of values, a collection which is ordered and changeable

The values can be of any type.

The values in a list are called elements or items

Python lists are written with square brackets.

creates list of integersmy_list = [1, 2, 3]

list with mixed datatypesmy_list = [1, "Hello", 3.4]

zs = ["hello", 2.0, 5, [10, 20]]

Nested List: A list within another list

Access items from list

>>> my_list=[1,"Hello",3.4]

>>> my_list[1]

>>> my_list[2]

>>> my_list[3]
IndexError: list index out of range

>>> len(my_list)

>>> my_list.append('World')

>>> my_list
[1, 'Hello', 3.4, 'World']

We can add one item to a list using append() method or add several items
using extend() method.

>>> my_list[0]

'Hello'

3.4

1

3

List

>>> my_list.insert(1,'Bye')
>>> my_list

Insert ‘Bye’ at pos 1, shift other items up

>>> my_list.remove('Bye')

Method Description
append() Adds an element at the end of the list
clear() Removes all the elements from the list
copy() Returns a copy of the list
count() Returns the number of elements with the specified value
extend() Add the elements of a list (or any iterable), to the end of the current list
index() Returns the index of the first element with the specified value
insert() Adds an element at the specified position
pop() Removes the element at the specified position
remove() Removes the item with the specified value
reverse() Reverses the order of the list
sort() Sorts the list

>>> my_list.extend(['earth','water'])

[1, 'Bye', 'Hello', 3.4, 'World', 'earth', 'water']

Remove ‘Bye’ at pos 1

>>> my_list
[1, 'Hello', 3.4, 'World', 'earth', 'water']

>>> my_list
[1, 'Hello', 3.4, 'World', 'earth', 'water']

List Slices

>>> a_list = ["a", "b", "c", "d", "e", "f"]

['a', 'b', 'c', 'd', 'e', 'f']

>>> a_list[1:3]

['b', 'c']

>>> a_list[:4]

['a', 'b', 'c', 'd']

>>> a_list[3:]

['d', 'e', 'f']

>>> a_list[:]

List Operations

+ operation
>>> a=[1,2,3]
>>> b=[4,5,6]

* operation

>>> [1]*4

>>> [1,2,3]*3

[1, 2, 3, 4, 5, 6]

>>> list(range(0,10,2))

[0, 2, 4, 6, 8]

>>> a+b

[1, 1, 1, 1]

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The for loop

 for variable name in values:
 statements

Syntax:

for x in range(1,6):
 print(x)

Example:

Output:
 1 2 3 4 5

for x in range(1,-6, -2):
 print(x)

Output:
 1 -1 -3 -5

for loop: A for loop is used for iterating over a sequence (for example: a list).

With the for loop we can execute a set of statements,
once for each item in a list.

fruits = ["apple", "banana", “cherry"]
for x in fruits:
 print(x)

The for loop: example

Output:

apple
banana
cherry

fruits = ["apple", "banana", “cherry"]
for x in fruits:
 print(x)
 if x == "banana":
 break

Output:

apple
banana

The for loop with break statement

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 if x == "banana":
 break
 print(x)

Output:

apple

Even strings are iterable objects, they contain a sequence of characters:

for x in "banana":
 print(x)

Output:
b
a
n
a
n
a

adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:
 for y in fruits:
 print(x, y)

More examples

output:

red apple
red banana
red cherry
big apple
big banana
big cherry
tasty apple
tasty banana
tasty cherry

THANK YOU!

Batch-3: 11:30 to 12:30 pm
Batch-1: 1:45 to 2:45 pm
Batch-2: 3:15 to 4:15 pm
Batch-4: 4:45 to 5:45 pm

Important instructions related to the quiz.

1. Note that this test will not be repeated or rescheduled under any circumstances if you
are absent for the test.
2. This test will cover everything upto assignment number 4 (31st August).
3. During this test, you will not have access to internet, notes, books, previously written
programs or any other help.
4. Test will be in the form of 2-3 questions. You are expected to write a program and show the
program and the output by executing it. Time allowed is 60 minutes
5. If you need additional practice sessions in the computer, feel free to use the computer lab.
Also, you can consult any of the instructors or the TAs for doubts.

Quiz1 on19th September

Type of errors:

Syntax error:
An error in a program that makes it impossible to parse— and therefore
impossible to interpret.

>>> 17 = n
File "<interactive input>", line 1

SyntaxError: can't assign to literal

Semantic error:
An error in a program that makes it do something other than what the
programmer intended.

Runtime error
An error that does not occur until the program has started to execute but that
prevents the program from continuing.
These errors are also called exceptions because they usually indicate that something exceptional
(and bad) has happened.

Error

 Which of the following is a semantic error?
(A) Attempting to divide by 0.

(B) Forgetting a colon at the end of a statement where one is required.
(C) Forgetting to divide by 100 when printing a percentage amount.

n=int(input('Give me a number:'))
i=1
while i<=n:
 i=i+1
 i=i-1
 print(i)
print(i)

What is the output?

Break statement

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 if x == "banana":
 break
 print(x)

Output:

apple

The break statement causes a program to break out of a loop.

number = 0

for number in range(10):
 number = number + 1

 if number == 5:
 break # break here

 print('Number is ‘ number)

print('Out of loop')

Number is 1
Number is 2
Number is 3
Number is 4
Out of loop

Output:

More examples: break

adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:
 for y in fruits:
 if y == ‘banana’:
 break
 print(x, y)

red apple
big apple
tasty apple

Output:

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 if x == "banana":
 continue
 print(x)

Output:

apple
cherry

Continue statement

Gives you the option to skip over the part of a loop where an external condition
is triggered but to go on to complete the rest of the loop.

number = 0

for number in range(10):
 number = number + 1

 if number == 5:
 continue # break here

 print('Number is’, number)

print('Out of loop')

More examples

Output
Number is 1
Number is 2
Number is 3
Number is 4
Number is 6
Number is 7
Number is 8
Number is 9
Number is 10
Out of loop

Functions

You can pass data, known as parameters, into a function.

A function can return data as a result.

Python gives you many built-in functions like print(), input(), abs() etc.

But you can also create your own functions.

These functions are called user-defined functions.

Function is a group of related statements that perform a specific task

function syntax

def my_function(parameters):
statements
return [expression]

Syntax:

1. The def keyword
2. Followed by the function’s name,
3. The arguments of the function are given between brackets followed by a colon.
4. The function body ;
5. and return object for optionally returning values.

Note the syntax to define a function:

Write a program to compute the average of three numbers

Examples

n1=float(input('Give me the first number:'))
n2=float(input('Give me the second number:'))
n3=float(input('Give me the third number:'))

#---------------Here is the the function ---------------
def average(x1,x2,x3):
 z=(x1+x2+x3)/3
 return z

#—————————Calling the function ———————

value=average(n1,n2,n3)
print('The average is:', value)

What is wrong with the following function definition:

def addEm(x, y, z):
 return x + y + z
 print('the answer is', x + y + z)

(A) You should never use a print statement in a function definition.
(B) You should not have any statements in a function after the return statement. Once
the function gets to the return statement it will immediately stop executing the function.
(C) You must calculate the value of x+y+z before you return it.
(D) A function cannot return a number

What will the following function return?

def addEm(x, y, z):
 print(x + y + z)

Introduction to planning

To design an algorithm/ program you can draw a flowchart or write pseudo-code.

An algorithm is like a recipe in a cook book. It is a step by step set of instructions that the
computer will have to follow to solve a problem or complete a task.

Even though you can code without a plan, it is not good practice to start coding without
a guide to follow.

It is important to be able to plan code with the use of flowcharts.

Input variables a, b, c

Start

Calculate discriminant, D= b**2-4*a*c

is D>=0

r1= (-b + sqrt(D))/2a
r2= (-b - sqrt(D))/2a

True

The roots are not real

False

Draw a flowchart to find the roots of a quadratic equation

Flowchart

Flowchart: Continue
Draw a flowchart to find the sum from 1 upto given integer number by the user

Start

Input variables n—upto which the summation should be performed

i=1
while i<=n

False
End

True

sum=sum+i

add 1 to i

x=float(input('Give me the value to compute the exp function:'))
sum1=1.0
nmax=10000

#This program computes the exponential series using a factorial function

#---------------Here is the the function ---------------
def fac(a):
 temp=1
 for i in range(1,a+1):
 temp=temp*i
 b=temp
 return b

#————————HERE is the main part of the program —————————-
for i in range(1,nmax):
 y=fac(i) # here i am calling the function
 nsum1=sum1
 sum1=sum1+((x**i)/y)
 if abs(nsum1-sum1)<1e-5:
 print('convergence achieved',i)
 break

print('exp(',x,')=', sum1)

THANK YOU!

