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Course Contents

1. Nature of light (waves and particles)
2. Maxwells equations and wave equation
3. Poynting vector
4. Polarization of light
5. Law of reflection and snell's law
6. Total Internal Reflection and Evanescent waves 
7. Concept of coherence and interference
8. Young's double slit experiment
9. Single slit, N-slit Diffraction
10. Grating, Birefringence, Retardation plates
11. Fermat's Principle
12. Optical instruments
13. Human Eye
14. Spontaneous and stimulated emission
15. Concept of Laser
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Course Coordinator: Dr. Umakant Rapol

End-Sem Examination-30% 
Mid-Sem Examination-30%

 Quiz 1 - 20%
Quiz 2 - 20%



Contents

1. Waves: The wave equation
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Introduction
Optics is all about light, its properties, the phenomena associated to it and the 
instruments to study those!

And God said, Let there be light: and there was light.

What is light?
Two perspectives in the 17th century:
• Corpuscular theory by Newton 
• Wave theory by Huygens

The principle of interference came later
    (Thomas Young, and Augustin Fresnel).

Then comes the polarisation of light
    (Malu’s law experiment).

Light as transverse waves has been brought up.

Studies on speed of light, and seen it as an electro magnetic wave.
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Wave nature of light

Light is an electro magnetic wave.
Electro-magnetic spectrum

Maxwell’s theory of light propagation and quantum theory of light (QED) can 
explain most of the phenomena associated with the light.

Quantum electro-dynamics (QED) deals with how light interacts with matter.
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Waves
Longitudinal Waves:

Transversal Waves:

vibration of the medium is along the direction of propagation.
e.g. Sound waves

vibration of the medium is perpendicular to the direction of propagation.
e.g. waves on a string, electro magnetic waves.

Crucially note that it is not the medium that propagates, but the disturbance 
advances.In the case of light it is the magnitude of electric and magnetic fields, 
identical to the vertical displacement in a string.

Since the disturbance is moving, 
it is a function of both space and time.

f(x, t)
gives the profile of the wave at any
instant of time (wave function).
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Waves

f(x, t) We are talking about the travelling (or moving) waves. Let its velocity be “v” and 
assume that the shape of the wave is not changing.

x

Rest frame 

x0

v Moving frame

f(x0) = f(x, 0)
(independent of time)

The distance covered in time t is vt.
f(x, t) = f(x� vt)
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Waves

Once you choose a wave shape:             , the time propagation is just                    . f(x, 0) f(x� vt)

Example:  A Gaussian

f(x, t = 0) = e�ax2

f(x, t) = e�a(x�vt)2 A gaussian disturbance or pulse 
propagating with a speed v.

Exercise: Verify by  plotting the above function at different instant of times, 
                that it is propagating!

What would                      do?f(x+ vt)
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The wave (differential) equation

Aim: Can we get the wave function as a solution of a differential equation. Then 
we can say the differential equation describes the system at any instant of time.

Step 1.

@f

@t
=

@f

@(x± vt)
⇥ @(x± vt)

@t
= ±v

@f

@x

Step 2.
@2f

@t2
= v2

@2f

@x2

@2f

@x2
=

1

v2
@2f

@t2

Wave equation
A homogeneous second order 
differential equation.
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Harmonic waves
The shape of the waves is of sine or cosine forms called

     the sinusoidal or simple harmonic waves.

Any other wave shape can be constructed by mixing harmonic waves.

f(x, 0) = A sin(kx)
Since the argument is dimensionless, we are forced 
to multiply by a constant k, which has a unit 
of inverse length

amplitude of the sine wave.

f(x, t) = A sin [k(x� vt)]

Propagating wave:

periodic in both space and time.

The spatial period is called the wavelength “𝜆”.

f(x, t) = f(x± �, t) k� = 2⇡

The time period or temporal period “𝜏”

f(x, t) = f(x, t± ⌧) kv⌧ = 2⇡
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Harmonic waves
k� = 2⇡ kv⌧ = 2⇡

v⌧ = �
Introducing the temporal frequency ⌫ = 1/⌧

v = �⌫

Angular temporal frequency: ! = 2⇡/⌧

Harmonic waves are infinitely extended.
Single frequency waves are called mono-chromatic or mono-energetic.

Practically we have only quasi-monochromatic sources, where there is a 
    small band width of frequencies. (related to quantum mechanics)

f(x, t) = A sin(kx� !t)

! = 2⇡⌫
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Phase of the Harmonic wave

f(x, t) = A sin (kx� !t)

Lets take a harmonic wave:

The argument, 

is called the phase of the wave.

Lets take another wave:

g(x, t) = A cos (kx� !t)

What is the difference between these two waves?

A phase difference of 𝜋/2.

�(x, t) = kx� !t �(x, t) 2 [0, 2⇡]
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� = kx� !t the phase is varying with time, and the rate of
change of phase with time at a fixed location.

����
@�

@t

����
x

= ! the angular frequency

Phase of the Harmonic wave

 the rate of change of phase with distance keeping
 the time constant. 

����
@�

@x

����
t

= k the wave number

Phase velocity: the velocity at which the point of constant phase propagates

vp =

✓
@x

@t

◆

�

=
!

k
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The superposition principle

If f1(x) and f2(x) are two different solutions of the wave equation:

@2f

@x2
=

1

v2
@2f

@t2

then f1(x)+ f2(x) is also a solution.

That means, the region of space in which the waves intersect,
the amplitudes are added up. 

f1(x)

f2(y)

f2(y)

f1(x)x = y = a

f1(a) + f2(a)
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The superposition principle

The amplitudes are added up in the intersecting region. 
At the intersecting region, if the result is maximum, then the waves are in 
phase (phase difference is zero) at that point. 
If the result is minimum and is zero, then the waves are out of phase by 

    180 degrees at that point. 
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Complex representation of waves

ei� = cos�+ i sin�
cos� = Real[ei�]

sin� = Imag[ei�]

f(x, t) = A cos (kx� !t)

Lets take the Harmonic wave:

= A⇥ Real
h
ei(kx�!t)

i

Typically we just avoid writing “Real […]”, and simply write as

f(x, t) = Aei(kx�!t)

The actual wave is only then the real part of it.
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Plane Waves (3D)

f(r, t = 0) = Aeik·r
k · r = xkx + yky + zkz

Let’s consider a three dimensional solution of the form:

The phase of the wave is � = k · r

This is not same as

Aeikr

To simplify let’s take
the wave-vector (propagation vector) as:

k = k ẑ k
The condition of constant phase provides as

k · r = k ⇥ z = constant

defines a plane.
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Plane Waves (3D)

z

Each of these planes represent a constant phase.
There are as many as infinity and

    infinitely extended in the x and y directions.

The surfaces of constant phase
 are called wave fronts.
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Plane Waves (3D)

k

The equation of  plane for an arbitrary wave vector:

k · r = constant

f(r, t = 0) = Aeik·r

Note that the wave function also has a 
constant value in this plane, if the amplitude
A is a constant.

The time dependent version of the plane wave is

f(r, t) = Aei(k·r±!t)

the direction of propagation is now given by the wave vector k.
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3D Wave Equation

@2f

@x2
=

1

v2
@2f

@t2

Wave equation
A homogeneous second order 
differential equation.

r2f =
1

v2
@2f

@t2

r2 =
@2

@x2
+

@2

@y2
+

@2

@z2

(Laplacian operator)

The general solution of this equation can be written as 

f(↵x+ �y + �z � vt) ↵2 + �2 + �2 = 1
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Spherical waves

Waves emitting from a 
    point source.

It is called an isotropic
    source.

Wave fronts are concentric
    spheres.
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Spherical waves

Spherical coordinates: r, 𝜃, 𝜙

x = r sin ✓ cos�

y = r sin ✓ sin�

z = r cos ✓

Spherical waves are radially symmetric

f(r, ✓,�) = f(r) independent of angular 
coordinates

r2 =
1

r2
@

@r

✓
r2

@

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

r2 sin2 ✓

@

@✓

✓
sin ✓

@2

@�2

◆
Laplacian in r, 𝜃, 𝜙

r2 =
1

r2
@

@r

✓
r2

@

@r

◆
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Spherical waves

r2f(r) =
1

r

@2

@r2
[rf(r)]

Finally, we can write the wave equation as:

@2

@r2
[rf(r)] =

1

v2
@2

@t2
[rf(r)]

We have now reduced to a
one dimensional wave equation.

rf(r, t) = g(r � vt)

f(r, t) =
g(r � vt)

r
Represents the spherical waves progressing
radially outward from the source.
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Spherical waves

Harmonic spherical waves

f(r, t) =
A

r
⇥ cos(kr ± !t)

f(r, t) =
A

r
⇥ ei(kr±!t)

OR

The key difference from the normal plane wave is that the amplitude is 
    position dependent for a spherical wave: A/r.

Plane 
waves
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