

Optics, IDC202

Lecture 3. Rejish Nath

Contents

- 1. Coherence and interference
- 2. Youngs double slit experiment
- 3. Alternative setups
- 4. Theory of coherence
- 5. Coherence time and length
- 6. A finite wave train
- 7. Spatial coherence

Literature:

- 1. Optics, (Eugene Hecht and A. R. Ganesan)
- 2. Optical Physics, (A. Lipson, S. G. Lipson and H. Lipson)
- 3. The Optics of Life, (Sönke Johnsen)
- 4. Modern Optics, (Grant R. Fowles)

Course Contents

- **1. Nature of light (waves and particles)**
- 2. Maxwells equations and wave equation
- **3. Poynting vector**
- 4. Polarization of light
- 5. Law of reflection and snell's law
- **6. Total Internal Reflection and Evanescent waves**
- 7. Concept of coherence and interference
- 8. Young's double slit experiment
- 9. Single slit, N-slit Diffraction
- 10. Grating, Birefringence, Retardation plates
- 11. Fermat's Principle
- 12. Optical instruments
- 13. Human Eye
- 14. Spontaneous and stimulated emission
- 15. Concept of Laser

Coherence and interference

Optical interference is based on the superposition principle. (This is because the Maxwell's equations are linear differential equations.)

The electric field at a point in vacuum:

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3 + \mathbf{E}_4 + \dots$$

is the vector sum of that from the different sources.

The same is true for magnetic fields.

Remark: This may not be generally true, deviations from linear superposition is the study of *nonlinear optical phenomena or simply non-linear optics.*

Coherence and interference

Consider two harmonic, monochromatic, linearly polarised waves

$$\mathcal{E}_1 = \mathbf{E}_1 \exp\left[i(\mathbf{k}_1 \cdot \mathbf{r} - \omega t + \phi_1)\right]$$
$$\mathcal{E}_2 = \mathbf{E}_2 \exp\left[i(\mathbf{k}_2 \cdot \mathbf{r} - \omega t + \phi_2)\right]$$

If the phase difference $\phi_1 - \phi_2$ is constant, the two sources are said to be *mutually coherent*.

The irradiance or the intensity at a point is provided by

$$I = |\mathcal{E}_1 + \mathcal{E}_2|^2$$

= $|\mathbf{E}_1|^2 + |\mathbf{E}_2|^2 + (2\mathbf{E}_1 \cdot \mathbf{E}_2 \cos \theta)$
 $\theta = \mathbf{k}_1 \cdot \mathbf{r} - \mathbf{k}_2 \cdot \mathbf{r} + \phi_1 - \phi_2$ interference term

(all the fun is due to this!)

Coherence and interference

$$I = |\mathbf{E}_1|^2 + |\mathbf{E}_2|^2 + (2\mathbf{E}_1 \cdot \mathbf{E}_2 \cos \theta)$$

$$\theta = \mathbf{k}_1 \cdot \mathbf{r} - \mathbf{k}_2 \cdot \mathbf{r} + \phi_1 - \phi_2$$

interference term
(all the fun is due to this!)

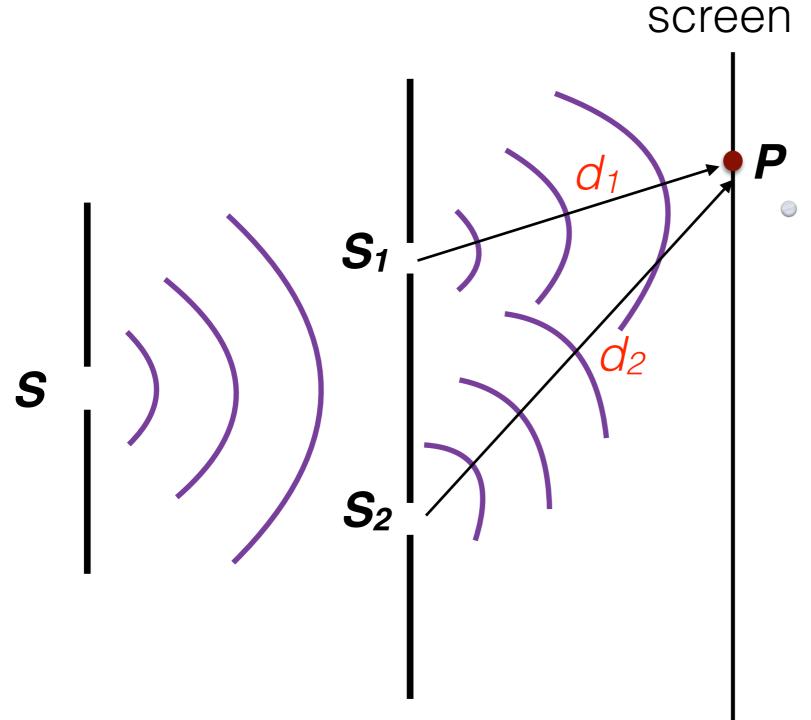
This indicates that *I* can greater than or less than I_1+I_2 .

Since θ depends on position, periodic spatial variations occur (fringes).

- What happens if two waves are mutually incoherent?
- What happens if the polarisations are mutually orthogonal?

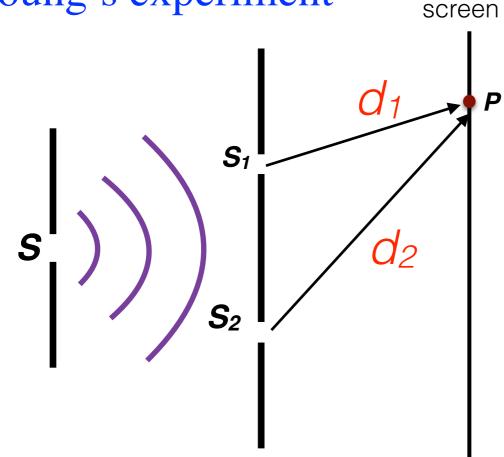
Young's experiment

performed by Thomas young in 1802.



In this setup, what is so crucial to have the interference pattern?

Young's experiment



All you have to know is the phase difference of waves arriving at P from the two point sources (spherical waves).

$$\Delta \phi = k(d_2 - d_1)$$

Constructive interference

$$k(d_2 - d_1) = \pm 2n\pi$$

$$|d_2 - d_1| = n\lambda$$

path difference is equal to the integer number of wave lengths.

Young's experiment screen d_1 \mathbf{k}_1 r S_1 d_2 h ${\mathcal X}$ \mathbf{k}_2 **S**₂

$$|d_2 - d_1| = n\lambda$$

$$x^{2} + \left(y + \frac{h}{2}\right)^{2} \Big]^{1/2} - \left[x^{2} + \left(y - \frac{h}{2}\right)^{2}\right]^{1/2} = n\lambda$$

$$x \gg y, h$$

Ρ

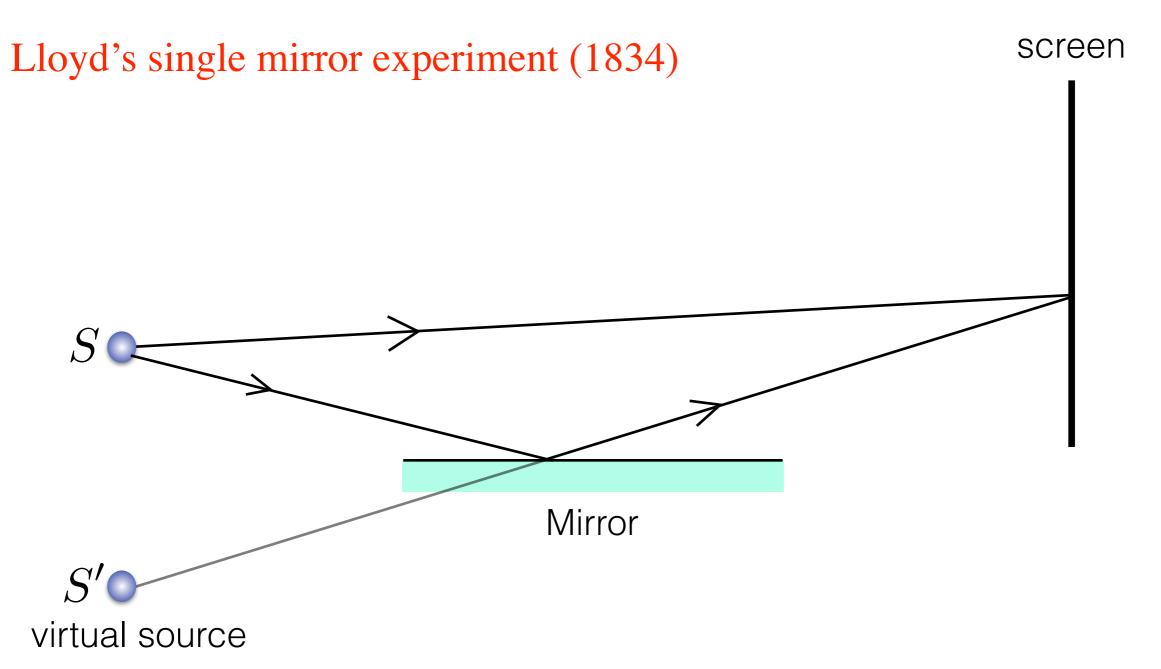
$$\frac{yh}{x} = n\lambda$$

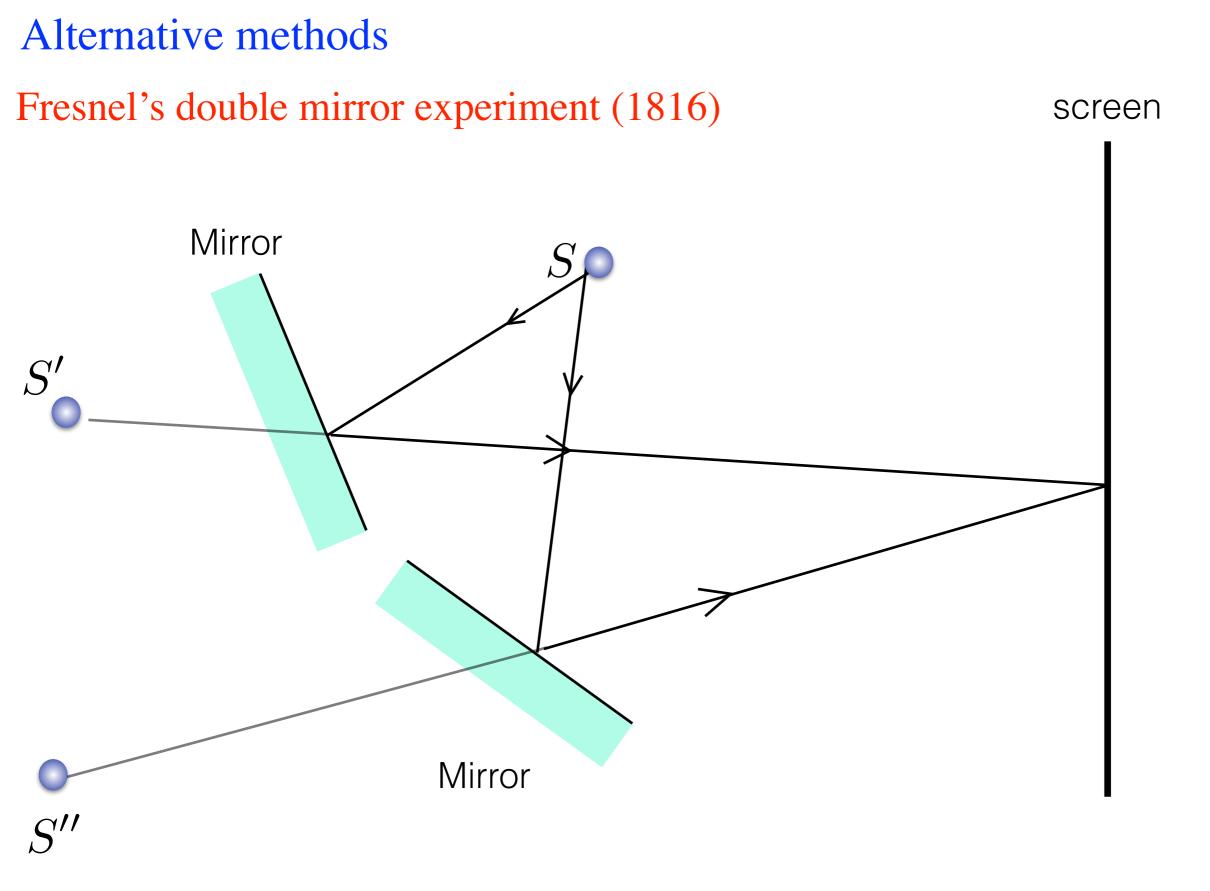
This tells you where the bright fringes are on the screen.

What is the central fringe, bright or dark?

Can you displace the fringes on the screen?

Alternative methods





Home work: Fresnel's bi-prism experiment.

The irradiance or the intensity at a point is provided by

$$I = |\mathcal{E}_1 + \mathcal{E}_2|^2$$

 $= |\mathbf{E}_1|^2 + |\mathbf{E}_2|^2 + 2\mathbf{E}_1 \cdot \mathbf{E}_2 \cos \theta$

This equation is based on the following assumptions about the two fields:

- 1. completely coherent
- 2. monochromatic
- 3. constant in amplitude

In reality the phase and the amplitude vary with time in a random manner.

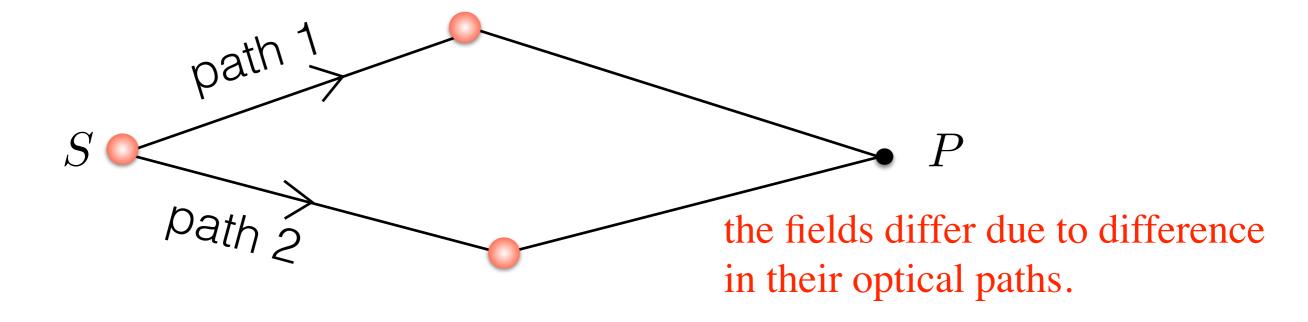
$$I = \langle \mathbf{E} \cdot \mathbf{E}^* \rangle$$
$$= \langle |\mathbf{E}_1|^2 + |\mathbf{E}_2|^2 + 2\operatorname{Re}(\mathbf{E}_1 \cdot \mathbf{E}_2^*) \rangle$$

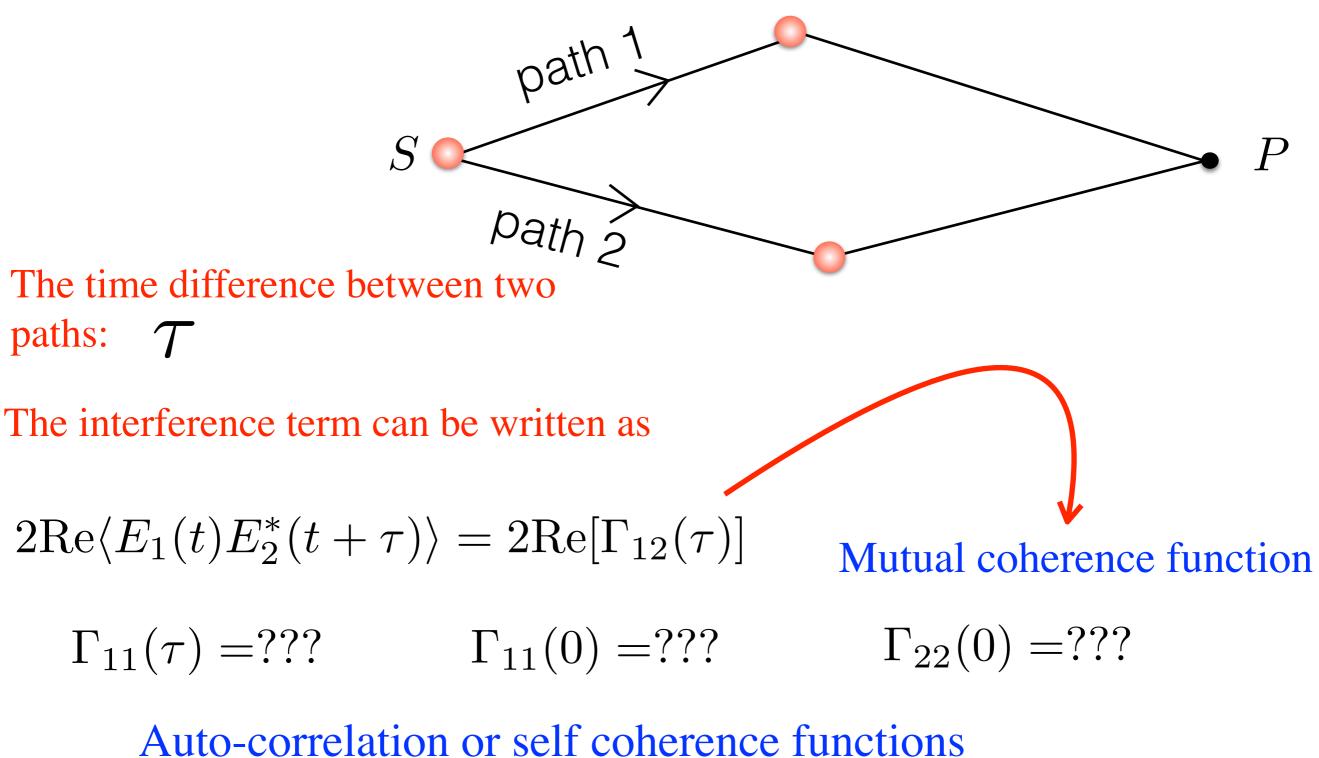
Assuming the average quantities are stationary and for the same polarization for two fields: In reality the phase and the amplitude vary with time in a random manner.

Time average

$$\langle f \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) dt$$

$$I = I_1 + I_2 + 2\operatorname{Re}\langle E_1 E_2^* \rangle$$





We define the normalised coherence function:

$$\gamma_{12}(\tau) = \frac{\Gamma_{12}(\tau)}{\sqrt{\Gamma_{11}(0)\Gamma_{22}(0)}} = \frac{\Gamma_{12}(\tau)}{\sqrt{I_1 I_2}}$$

in general a complex periodic function.

complex degree of partial coherence

The intensity at a particular point in space now reads as

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} Re[\gamma_{12}(\tau)] \qquad 0 \le |\gamma_{12}(\tau)| \le 1$$

 $|\gamma_{12}(\tau)| = 0$ (completely incoherent) $0 < |\gamma_{12}(\tau)| < 1$ (partially coherent) $|\gamma_{12}(\tau)| = 1$ (completely coherent)

For an interference pattern (fix the source characterised by γ_{12}), the intensity varies between I_{max} and I_{min} .

$$I_{max} = I_1 + I_2 + 2\sqrt{I_1 I_2} |\gamma_{12}|$$
$$I_{min} = I_1 + I_2 - 2\sqrt{I_1 I_2} |\gamma_{12}|$$

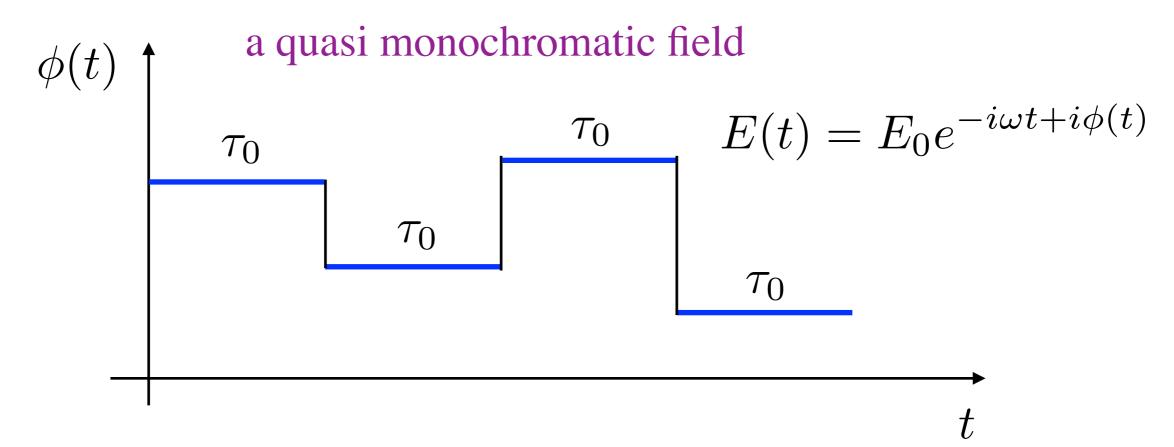
We define the fringe visibility or contrast:

 $\mathcal{V} = |\gamma_{12}|$

$$\mathcal{V} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2\sqrt{I_1 I_2} |\gamma_{12}|}{I_1 + I_2}$$

If $I_1 = I_{2,}$

Coherence time and coherence length How the degree of partial coherence is related to the source characteristics?



The phase of the field is making some random jumps. Suppose I divide the field into two equal fields and now the interference pattern will be governed by

$$\gamma(\tau) = \frac{\langle E(t)E^*(t+\tau)\rangle}{\langle |E|^2\rangle} \quad \text{self coherence function}$$

$$\begin{split} \gamma(\tau) &= \frac{\langle E(t)E^*(t+\tau)\rangle}{\langle |E|^2 \rangle} & \text{self coherence function} \\ F(t) &= E_0 e^{-i\omega t + i\phi(t)} \\ \gamma(\tau) &= \left\langle e^{i\omega\tau} e^{i[\phi(t) - \phi(t+\tau)]} \right\rangle \\ &= e^{i\omega\tau} \lim_{T \to \infty} \frac{1}{T} \int_0^T e^{i[\phi(t) - \phi(t+\tau)]} dt \end{split}$$

Take $\tau < \tau_0$ $\frac{1}{\tau_0} \int_0^{\tau_0} e^{i[\phi(t) - \phi(t + \tau)]} dt =???$ $|\phi(t) - \phi(t + \tau)|$ τ_0 τ_0

←--->

 ${\mathcal T}$

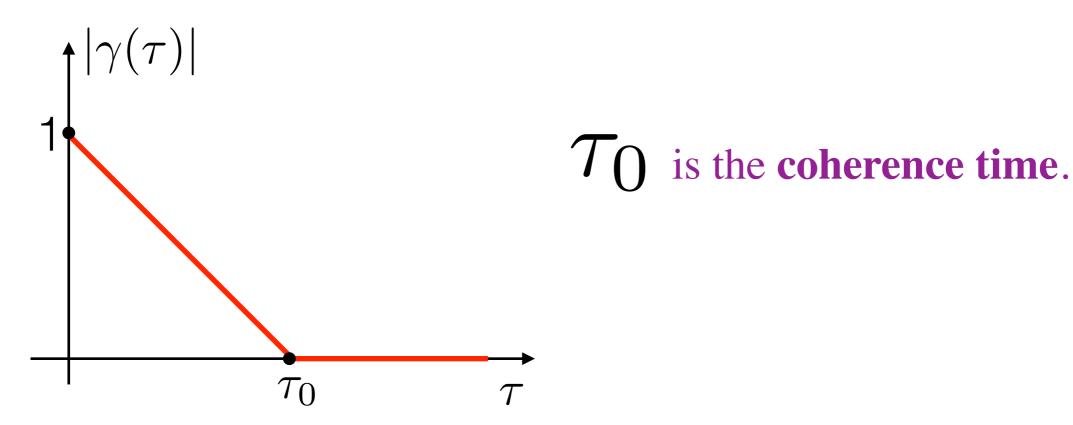
←···>

$$\frac{1}{\tau_0} \int_0^{\tau_0} e^{i[\phi(t) - \phi(t + \tau)]} dt = \frac{\tau_0 - \tau}{\tau_0} + \frac{\tau}{\tau_0} e^{i\Delta}$$

- First term is same for all intervals.
- The second term averages to zero over long time.

$$\gamma(\tau) = \left(1 - \frac{\tau}{\tau_0}\right) e^{i\omega\tau} \qquad (\tau < \tau_0)$$
$$= 0 \qquad (\tau \ge \tau_0)$$

Plot $|\gamma(\tau)|$ vs τ .



- provides the fringe visibility
 (or the coherence of a quasi-monochromatic source)
- the path difference between two beams must not exceed

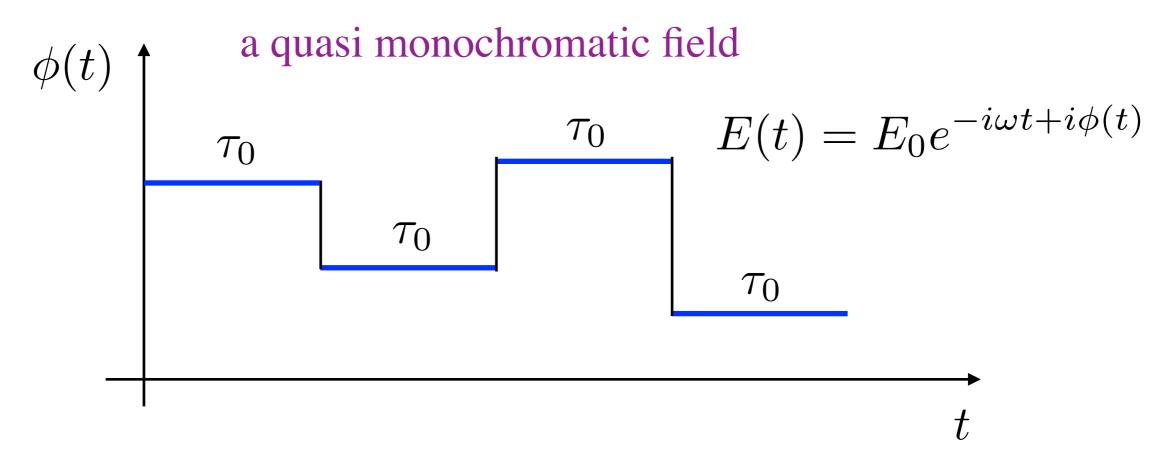
$$l_c = c\tau_0$$

to observe the interference fringes. This length is called the **coherence length** or **the length of an uninterrupted wave.**

• the path difference between two beams must not exceed

 $l_c = c\tau_0$

to observe the interference fringes. This length is called the **coherence length** or **the length of an uninterrupted wave.**



In reality there is a statistical distribution for coherence lengths (or time).

A finite wave train

$$f(t) = e^{-i\omega_0 t} \qquad \text{for} \quad -\frac{\tau_0}{2} < t < \frac{\tau_0}{2}$$
$$= 0 \qquad \text{otherwise}$$

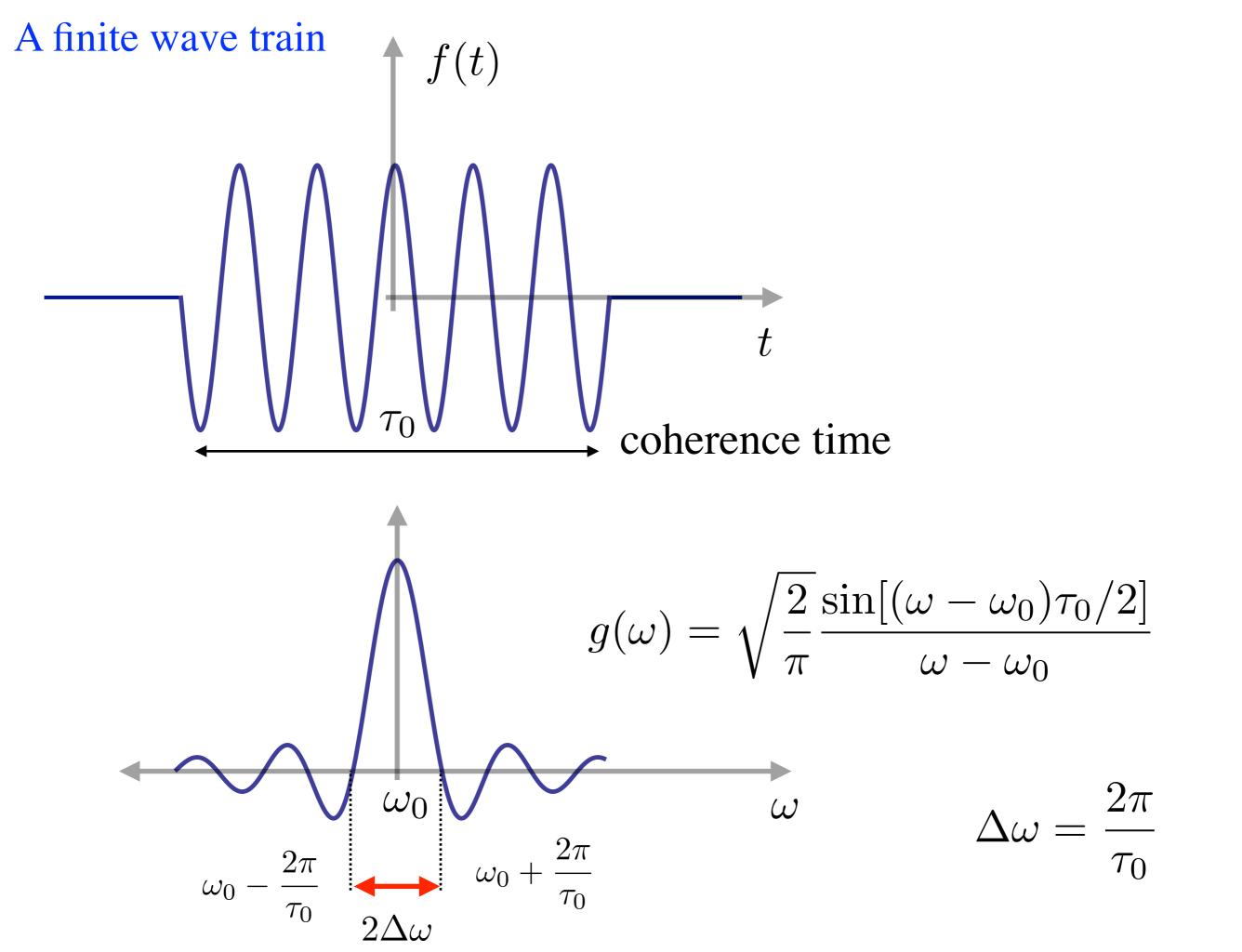
Obtain its Fourier transform:

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\omega) e^{-i\omega t} d\omega$$
$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$$

$$g(\omega) = \sqrt{\frac{2}{\pi}} \frac{\sin[(\omega - \omega_0)\tau_0/2]}{\omega - \omega_0}$$

$$G(\omega) = |g(\omega)|^2$$

Power spectrum



A finite wave train

$$\Delta \omega = \frac{2\pi}{\tau_0} \qquad \qquad \Delta \nu = \frac{1}{\tau_0}$$

In other words "the frequency width or line width" gives you the corresponding coherence time and also the coherence length.

Exercise: Show that the coherence length can be expressed as,

$$l_c = \frac{\lambda^2}{\Delta \lambda}$$

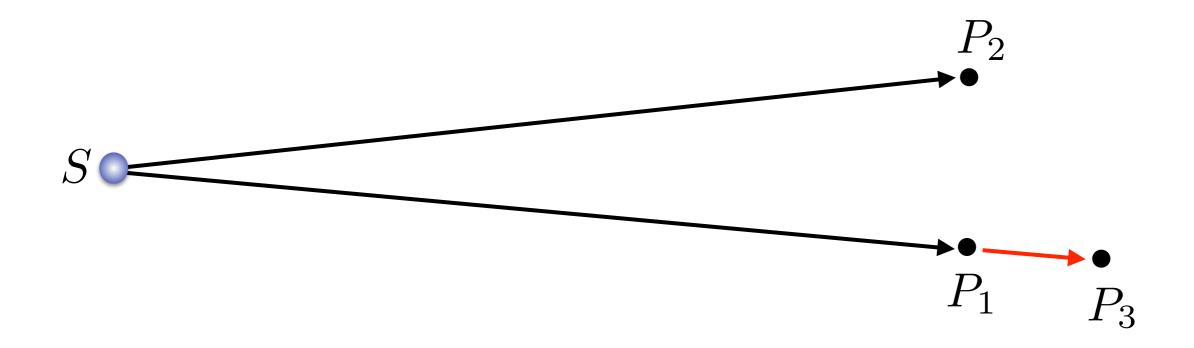
Ordinary light sources $\Delta \lambda \sim 5$

$$\Delta\lambda \sim 5000$$
 Å

 $l_c \sim 2mm$

What if we take a LASER fields?

Spatial coherence



The coherence between the fields at P₁ and P₃ measures the *longitudinal spatial coherence* of the field.

The coherence between the fields at P_1 and P_2 measures the *transversal spatial coherence* of the field.

Interference Methods: Classifications

Interference by

1. division of wave front.

A single point like source emitting waves in different directions. Theses waves are then brought together by means of mirrors, prisms and lenses.

2. division of amplitude.

A single beam (or a wave) of light is divided into two or more beams by partial reflection.

e.g. Michelson interferometer

Michelson Interferometer (1880)

