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INTRODUCTION 

A basic tenet of neuroscience is that the ability of the brain to produce 
complex behaviors such as sensory perception or motor control arises 
from the interconnection of neurons into networks or circuits. Finding out 
how neural networks are organized and understanding what com
putational principles underlie their operation remain challenges to modern 
neuroscience. Advances in anatomical, biochemical, e1ectrophysiological, 
and computational techniques have provided the tools to begin uncovering 
concepts underlying neural network function. This review is a summary 
of insights into the organization and operation of neural circuits acquired 
through application of these techniques to invertebrate and vertebrate 
systems. This review is not a survey of the vast variety of known neural 
networks but rather concentrates on emerging concepts applicable to net
works in general. The first section provides a brief historical perspective. 
The second and third sections summarize two emerging concepts about 
the operation and modulation of neural circuits. The first concept is that 
the operation of a neural network depends upon interactions among mul
tiple nonlinear processes at the cellular, synaptic, and network levels. The 
second concept is that modulation of these underlying processes can alter 
network operation. The final section suggests potentially profitable 
research directions for the future. 

HISTORICAL PERSPECTIVE 

By the late 1960s, the basic principles of excitability and synaptic trans
mission were fairly well understood. Ideas about how central neurons and 

185 
014 7-006X/89 /0301-0185$02.00 

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
89

.1
2:

18
5-

20
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
- 

Pu
ne

 o
n 

04
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



186 GETTING 

synapses might operate were based upon a rather simple picture provided 
by the squid axon (Hodgkin & Huxley 1952), the neuromuscular junction 
(Katz 1966), and the spinal motor neuron (Eccles 1964). Based upon these 
views, the abilities of a network arose from the interconnection of simple 
elements into complex networks, thus, from connectivity emerged 
function. Neural networks were viewed largely as "hard wired" (Bentley 
& Konishi 1978) and could therefore be defined by their anatomical or 
monosynaptic connectivity. Activity coming into a network would be 
operated upon by that network in accordance with the pattern of synaptic 
connectivity, much like data fed to a digital computer is processed by a 
preset program. Over the time span it took for a network to process 
incoming signals and generate an output, circuitry was considered fixed, 
thus, the operation of a network did not involve the making or breaking 
of synaptic connections or altering cellular and synaptic properties. 

The challenge of uncovering the secrets to brain function lay in the 
unravelling of neural connectivity. Toward this end, major experimental 
effort has been expended to identify relevant neurons involved in various 
behaviors and to characterize their interconnection. Early success with 
invertebrate systems (Zucker et al 1971) signaled the onslaught of neural 
network "cracking." These studies were approached with several expec
tations in mind: First, a knowledge of the connectivity would explain how 
neural networks operated. Second, it was hoped that for each function 
(e.g. visual processing or generation of rhythmic motor patterns) we would 
find only a limited number of ways to implement that function in neural 
circuitry. Third, it was hoped that circuitry would be conserved, thus, 
similar functions might be sub served by similar neural networks. After 
nearly two decades of neural circuit analysis, it is reasonable to ask how 
well these expectations have fared. 

What we found should not have been unexpected but was nonetheless 
surprising. First, neural networks turned out to be extremely complex and 
diverse. Even networks underlying simple behaviors in the small neural 
systems of invertebrates are remarkably complicated (Selverston 1985). 
Networks that initially appeared relatively straightforward and simple 
(e.g. crayfish tailflip, Zucker ct a11971; rritonia swimming, Willows 1973) 
turn out to involve multiple levels of feed forward and feedback pathways 
imbedded in complicated arrays of connections and cells (Krasne & Wine 
1984, Getting 1983c). Second, networks subserving similar functions do 
not appear to be conserved. This point has become particularly clear in 
the study of rhythmic motor systems (Getting 1988). In general, these 
systems produce an alternating pattern of activity between antagonistic 
motor elements, yet the underlying networks for generating these patterns 
appear to be unique for each system. Networks with similar connectivity 
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PRINCIPLES OF NEURAL NETWORK OPERATION 187 

can produce dramatically different motor patterns and, conversely, similar 
motor patterns can be produced by dramatically different networks (Get
ting 1988). These observations illustrate a third general finding. Knowledge 
of connectivity alone is not sufficient to account for the operation and 
capabilities of neural networks. For example, detailed knowledge of cer
ebellar circuitry has not provided a clear understanding of its operation 
(Llinas 1981). 

If a knowledge of connectivity is not enough, what does it take to 
understand how a neural network operates? A debate often arises about 
what is meant by the term "to understand" how a neural network 
operates, for understanding can occur at many levels. For example, one 
can understand how an internal combustion engine works from the prin
ciples of thermodynamics without a detailed knowledge of pistons, crank
shafts, and fuel injectors. If one's car engine should stall, however, such 
an understanding will be of little value because the failure was probably 
not caused by a breakdown in the laws of thermodynamics but a failure 
in thc implementation of thcse principles. To understand how nervous 
systems operate, and therefore how they might fail due to disease or injury, 
requires (a) a knowledge of the overriding principles of neural network 
organization and function (equivalent to the rules of thermodynamics), 
and (b) how those principles are implemented by cells and synapses (the 
"nuts and bolts" of network operation). Tn an effort to acquire these two 
levels of understanding, much of the experimental work on neural net
works has been guided by a reductionist approach in which a system is 
successively pared down to its constituent pieces or "building blocks" with 
the hope of uncovering general principles and how they are implemented. 

THE BUILDING BLOCK BASIS FOR NETWORK 

OPERATION 

A major contribution of the reductionist approach has been the delineation 
of properties crucial to the operation of neural networks. Although knowl
edge of connectivity is essential, network operation depends upon the 
"cooperative interaction" (Selverston et al 1983) among multiple network, 
synaptic, and cellular properties, many of which are inherently nonlinear. 
No longer can neural networks be viewed as the interconnection of many 
like elements by simple excitatory or inhibitory synapses. Neurons not 
only sum synaptic inputs but are endowed with a diverse set of intrinsic 
properties that allow them to generate complex activity patterns. Likewise 
synapses are not just excitatory or inhibitory but possess an equally diverse 
set of properties. The operation of a neural network must be considered 
as the parallel action of neurons or classes of neurons, each with potentially 
different input/output relationships and intrinsic capabilities inter-
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188 GETTING 

connected by synapses with a host of complex properties. What are the 
cellular, synaptic, and network properties that constitute the building 
blocks of network operation, and how do they contribute to network 
operation? Table I summarizes a partial list of cellular, synaptic, and 
network properties important to neural network operation. 

Cellular Properties 

The application of voltage clamp and pharmacological techniques to CNS 
neurons has uncovered a lengthy and diverse catalog of ionic conductances 
(Adams et al 1980, Llinas 1984, Jahnsen 1986). These individual con
ductances can be found mixed and matched in nearly any combination, 
but more importantly, each combination endows the host neuron with a 
different set of response properties. For the purposes of this review the 
natures of the individual conductances are not as important as the prop
erties that they impart, for these response properties will have a direct 
impact on network operation. 

Most CNS neurons firc spikes repetitively when depolarized. The 
relationship between firing frequency (F) and input (I), generally injected 
current, is expressed as an F-J plot. Two properties of the F-I plot are 
important. First is the threshold below which the cell does not fire. Second, 
above threshold, firing frequency is a monotonically increasing, but not 
necessarily linear, function of input. On theoretical grounds, nonlinear 
input/output relationships have been implicated as computationally 
important characteristics of neurons (McCulloch & Pitts 1943, Hopfield 
& Tank 1986). A seminal observation is that the F-I plots for different cell 
types are distinct. For example, the repetitive firing properties of tectal 
neurons (Lopez-Barnes & Llinas 1988), cerebellar Purkinje neurons (Llinas 
& Sugimori 1980a,b), hippocampal neurons (Kandel & Spencer 1961), 

Table 1 Building blocks 

Cellular 

Threshold 
F-I relationship 
Spike frequency adapt. 
Post-burst hyperpol. 
Delayed excitation 
Post-inhibitory rebound 
Plateau potentials 
Bursting 

Endogenous 
Conditional 

Synaptic 

Sign 
Strength 
Time course 
Transmission 

Electrical 
Chemical 

Release mechanism 
Graded 
Spike 

Multicomponent PSP 

Connectivity 

Mutual 
or recurrent inhibition 

Reciprocal 
or lateral inhibition 

Recurrent inhibition 
Recurrent cyclic inhibition 
Parallel excit./inhib. 
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PRINCIPLES OF NEURAL NETWORK OPERATION 189 

thalamic neurons (Deschenes et al 1984), neocortical neurons (Connors & 
Gutnick 1984), brain stem bulbospinal neurons (Dekin & Getting 1987a), 
olivary neurons (Llinas & Yarom 1981, 1986), and spinal motoneurons 
(Schwindt & Crill 1984) all differ. Even within a restricted network sub
serving a single behavior, each interneuron type may display a different 
F-I relationship (Getting 1983a). 

Input/output relationships are not fixed but may undergo a variety of 
modifications depending upon the recent firing history of the cell. Spike 
frequency adaptation is a decrease in firingrate during a maintained input. 
Its effect is to decrease the slope of the F-I plot in time. The mechanism 
of adaptation appears to be the activation of slow outward potassium 
currents (Brown & Adams 1979, Meech 1978, Partridge & Stevens 1976, 
Dekin & Getting 1987b). The degree and time course of adaptation can 
vary dramatically from one cell type to another and give rise to differcnt 
temporal firing patterns to the same input (Rume & Getting 1982a). 
Following a period of activity, many neurons display a transient hyper
polarization and cessation of firing that may last from milliseconds to 
seconds. This post-burst hyperpolarization appears to be a manifestation 
of mechanisms similar to those responsible for spike frequency adaptation. 

Upon depolarization, many neurons begin firing almost immediately in 
accord with the charging of their membrane capacitance. Other neurons 
show a prolonged delay between the onset of depolarization and the 
beginning of firing. This delay in firing has been termed delayed excitation 
and may range from hundreds of milliseconds in vertebrate neurons (Dekin 
& Getting 1984, 1987a) to several seconds in molluscan neurons (Byrne 
1980a, Getting 1983b) . The delay is caused by the activation ofa transient 
potassium current called A-current (Connor & Stevens 197 1). This current 
is ubiquitous (Rogawski 1985) but appears to be expressed as delayed 
excitation only in cells that are maintained within the proper voltage range 
for its activation (De kin & Getting 1987a,b). Delayed excitation provides 
an intrinsic mechanism for producing long delays and has been implicated 
in the neural networks controlling inking behavior in Aplysia (Byrne 
1980b) and swimming in Tritonia (Getting 1983b). 

Following a hyperpolarization, membrane potentialmay rebound above 
resting level to produce a transient depolarization called post-inhibitory 
rebound (PTR). If sufficiently strong, PIR can lead to a burst of spikes. 
The mechanism for PIR is not well understood, but it has becn implicated 
in the production of several rhythmic motor patterns (Mulloney & Sel
verston 1974, Satterlie 1985) and is found in numerous cell types such as 
tectal neurons (Lopez-Barneo & Uinas 1988), thalamic neurons (Desch
enes et al 1984), and brain stem neurons (Johnson & Getting 1987). 

Plateau potentials are expressed as two membrane potential states: a 
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190 GETTING 

resting state and a depolarized state (Russell & Hartline 1978). Small or 
transient depolarizations can cause transition from the resting state to the 
depolarized state, where the potential may remain for considerable lengths 
of time (tens to hundreds of milliseconds) before it either spontaneously 
reverts or is actively converted by a short hyperpolarizing input back to 
the resting state. The ability to produce plateau potentials provides a 
mechanism for translating a transient input into sustained firing, or a 
prolonged burst. Such mechanisms have been implicated in the generation 
of rhythmic motor patterns (Dickinson & Nagy 1983, Arshavsky et al 
1985), and are seen in the responses of olivary neurons (Llinas & Yarom 
1981, 1986), cerebellar Purkinje neurons (Llinas & Sugimori 1980a,b), and 
spinal motoneurons (Hounsgaard et al 1986). 

Many neurons are autoactive and fire continuously in the absence of 
synaptic input. Pacemaker neurons produce a continuous train of spikes 
at regular intervals. Other auto active neurons produce patterned bursts. 
Endogenous bursting neurons fire bursts of spikes independent of synaptic 
activation (Alving 1968), while conditional bursters express bursting only 
upon appropriate synaptic or neurohumoral activation (Anderson & 
Barker 1981, Miller & Selverston 1982a). The ability to burst arises from 
particular combinations of intrinsic membrane currents (Adams 1985, 
Adams & Levitan 1985) and may be expressed in many different forms 
(Alving 1968, Marder & Eisen 1984, Flamm & Harris-Warrick 1986, 
Hatton. 1984, Dekin et al 1985). 

Synaptic Properties 
Synaptic properties also impact directly on network operation. Two prop
erties of obvious importance are the sign (excitation or inhibition) and the 
strength of synaptic connections. Although determination of the sign of 
a connection may be relatively straightforward, assessment of synaptic 
strength is not always clear. Two measures of strength are (a) the amplitude 
of the post-synaptic potential (PSP), and (b) the degree to which activation 
of a particular synapse influences the activity of the post-synaptic cell. 
These two measures may not always covary. For example, an inhibitory 
synapse with a reversal potential close to rest potential may produce only 
a small IPSP, but the associated conductance change can have a powerful 
inhibitory effect by shunting excitatory currents. The relative placement 
of excitatory and inhibitory synapses on the dendritic structure, therefore, 
plays an important role in regulating integration (RaIl 1981). 

Temporal properties of synapses also play an important role in network 
operation. Individual PSPs may have dramatically different time courses, 
and thus operate over different time scales. For example, within the net
work of interneurons that generates the escape swimming motor program 
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PRINCIPLES OF NEURAL NETWORK OPERATION 191 

of Tritonia, the fastest and slowest PSPs differ by a factor of 30 (Getting 
1981). Also included under temporal properties are characteristics such as 
facilitation, depression, and potentiation that modulate the strength of 
connections in a history dependent manner. 

A single synaptic connection may mediate several actions, each with 
different time courses. For multicomponent synapses, an initial action 
(either excitation or inhibition) is followed by a second action of either the 
same or opposite sign (Kehoe 1972). Multicomponent synapses can have a 
number of interesting integrative properties, including maximal expression 
after the end of a presynaptic burst (Getting 1983a). Complex connections 
having three and even four different components have been observed 
(Rume & Getting 1982b). 

Mechanisms of synaptic transmission fall into two broad categories
electrical and chemical. Within each category, however, a wide diversity 
of mechanisms have been described, including both rectifying and non
rectifying electronic synapses, as well as conductance-increase and con
ductance-decrease chemical connections. The mechanism of transmission 
influences not only the character of the individual synaptic event but also 
how the PSPs from various sources will interact. For example, non
rectifying electrotonic synapses can have profound effects upon integrative 
properties, making a network selectively responsive to distributed afferent 
input (Getting 1974). Conductance-increase chemical PSPs may shunt 
whereas conductance-decrease PSPs may potentiate other inputs (Rall 
1981). The action of each connection, therefore, cannot be considered 
in isolation but must be integrated with the actions of all other active 
synapses. 

Mechanisms of transmitter release also influence the nature of the infor
mation transmitted at a synapse. Although transmitter release is a con
tinuous function of presynaptic voltage (Graubard 1978), the threshold 
for detectable release may vary. Some terminals release transmitter only 
when invaded by a spike, while others release transmitter to graded pre
synaptic voltages. Graded release transmits information about absolute 
voltage of the presynaptic cell, whereas spike-mediated release transmits 
information only after the presynaptic signal has been processed into 
spike-frequency. Different release mechanisms, therefore, have a profound 
influence upon the nature of the information being conveyed at a particular 
connection. 

Network Connectivity Patterns 
Network connectivity includes patterns of interconnection between 
neurons within a network. The number of possible pathways between N 
neurons grows rapidly as N!j(N-2)!. Therefore, it is not reasonable to 
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summarize all possible combinations even for relatively small networks. 
A few patterns, however, are commonly encountered (Figure 1). Mutual 
or recurrent excitation (Figure lA) promotes synchrony in firing and is 
usually found among synergists. Reciprocal inhibition and its cousin lateral 
inhibition are two forms of mutual inhibition (Figure IB). Recurrent 
inhibition occurs when one cell excites a second neuron, which then inhibits 
the first cell or its synergists (Figure 1 C). This pattern of connectivity can 
serve to regulate excitability (e.g. Renshaw cells) or, under appropriate 
conditions, can produce patterned output (Friesen & Stent 1978). Recur
rent cyclic inhibition is characterized by a ring of neurons interconnected 
by inhibition (Figure ID) and can, in theory, produce an oscillatory burst 
pattern with as many phases as number of cells in the ring (Szekely 1965, 
Friesen & Stent 1978). In many circuits a single cell may mediate more 
than one action on its targets. Parallel excitation and inhibition can be 
mediated by separate pathways (Figure IE, left) or by a single multi
component synapse (Figure IE, right). If the time course of either 
the excitation or inhibition is longer, then this connectivity scheme 
can lead to a delayed reversal in the sign of synaptic action (Getting 
1983a). 

Calling these patterns of connectivity building blocks is not meant to 
imply that all neural networks can be either constructed from, or reduced 
to, these few connection schemes. For some small systems, relatively com-

A B 

�.-O �.-O 

c D� 

�.-O 
0--0 

E 

C(c;9 or ()---O 
Figure J Simple patterns of connectivity. A. Mutual or recurrent excitation. B. Reciprocal 
or lateral inhibition. C. Recurrent inhibition. D. Recurrent cyclic inhibition. E. Parallel 
excitation/inhibition. Symbols: triangles, excitation; dots, inhibition. 
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plex networks can be simplified in terms of these more restricted connection 
schemes (Getting & Dekin 1985, Miller & Selverston 1982b), but for larger 
networks, additional pathways may preclude such reduction. Nor should 
it be construed that network function, particularly in large networks, can 
be considered as the simple summation of the action of these components. 
The properties of these simple schemes may become modified when embed
ded in larger networks. In addition, large networks may give rise to prop
erties not found in these restricted smaller sets. These simple patterns of 
connectivity are, however, commonly encountered and appear to form a 
basis for network function in many diverse systems. 

This list of cellular, synaptic, and network properties includes only the 
more commonly encountered features. It serves, however, to illustrate the 
vast diversity in properties employed within neural networks. No doubt 
additional properties will be added as more networks are analyzed. Despite 
the possible incompleteness of the list, several generalities can be drawn 
about the use of these properties in neural circuits. First, many of these 
building blocks are inherently nonlinear, thus the capabilities of neural 
networks emerge from a complex spatial and temporal interaction of 
multiple, nonlinear processes at the cellular, synaptic, and network levels. 
Second similar building block mechanisms have been identified throughout 
a wide variety of animals, thus suggesting that these constituent building 
blocks may be conserved. Third, if neural networks acquire their abilities 
by combining a set of conserved building blocks, then the ability of nervous 
systems to perform or control diverse behaviors reflects the multitude of 
ways that these building blocks can be combined. Finally, because of the 
large number of possible building block mechanisms and ways in which 
they could be combined, there may be many ways of implementing the 
same or similar function. For example, many rhythmic motor patterns 
share features in common, yet the central pattern generator networks 
underlying the production of these rhythms are disparate (Getting 1988). 
This disparity suggests that there are numerous ways of combining the 
building blocks to produce oscillatory, antiphasic patterns, each suited to 
the particular constraints of the behavior being controlled. 

NETWORKS CAN BE MULTIFUNCTIONAL 

If the ability of a neural circuit to perform a function derives from the 
collective action of the constituent network, synaptic, and cellular building 
blocks, then altering the properties of building blocks can change the 
operation of that network. Thus, a single network could sub serve several 
different functions. An important finding in the past decade is that all three 
classes of building block mechanisms can be controlled by a host of 
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modulatory mechanisms. The implications of these observations for the 
operation of neural networks are profound. By changing the properties of 
selected synapses, cells, or pathways, the operation of a network can be 
dramatically altered. A single network could be multifunctional, par
ticipating in or generating more than one behavior. This is not to say that 
an auditory system can be made into a visual system, but, within the 
confines of the anatomical substrate, the functional organization of many 
neural networks appears to be under dynamic control, changing in accord
ance with the conditions at the moment. 

Definitions of Network Organization and Operation 
The idea that the functional organization within a network may be under 
dynamic control is not new (Sherrington 1906). What is new is an appreci
ation for the pervasiveness of this principle for neural networks in general 
(Baldissera et al 1981, Edgerton et al 1976, Getting & Dekin 1985). To 
provide a framework for discussing the concept of modulation in network 
operation, the following definitions may prove helpful. One level of net
work organization is the anatomical organization, which is defined by the 
monosynaptic or anatomical connectivity between neurons. Anatomical 
organization is specified by the distribution of afferent fibers, the synaptic 
connectivity within the network, and the projection of efferents. In essence, 
anatomical organization defines the limits of the network and who talks 
to whom within the network, but does not give rise to function. The 
ability of a network to perform a task depends upon what building block 
mechanisms (network, synaptic, and cellular) are being expressed at a 
given moment. If these network, synaptic, and cellular mechanisms are 
under modulatory control, then an anatomical network may be configured 
into any one of several modes, depending upon the particular combination 
of currently active mechanisms. A mode is defined by the distribution and 
properties of the network, synaptic, and cellular building blocks within 
the anatomical network. The term mode is intended to imply a manner in 
which a network processes information or generates an output pattern, 
thus each mode represents the functional organization of the network that 
gives rise to a function or task. Transitions between modes may occur 
when afferent or modulatory inputs alter the properties of the constituent 
building blocks. 

To understand how a network operates, the flow of activity within the 
network must be described quantitatively. One method for quantification 
is to define states of activity within the network. A state is defined as the 
spatial distribution of activity at a given moment in time. If a neuron is 
considered to either fire an action potential (state 1) or not (state 0), then 
a network of two neurons has four possible states: both cells firing ( 1, 1), 
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one or the other cell firing (1,0 or 0,1), or neither cell firing (0,0). In this 
two-cell network, transition between states occurs when either cell starts 
or terminates an action potential. The temporal sequence of states yields 
the output pattern of the network. Using the occurrence of individual 
spikes in every neuron can result in a large number of possible states (2N 
where N is the number of neurons in the network), and thus may not be 
the best criterion to distinguish states. Other criteria such as membrane 
potential, firing frequency, the onset and termination of bursts, or even 
the integrated activity across a population may provide better insight into 
the operation of a particular system. For example, Lennard et al (1980) 
used a combination of membrane potential and burst times to quantify 
the temporal sequence of network states underlying swimming in Tritonia. 
This analysis provided important insight into mechanisms for pattern 
generation in this system (Getting 1983c). When a network is configured 
into a mode of operation, it expresses a subset of all possible states. The 
mode, by setting the network, synaptic, and cellular properties, provides 
an algorithm to produce a temporal sequence of states. 

Modulation of Building Blocks Can Alter Network 
Operation 
Modulation of the network, synaptic, and cellular building blocks can 
serve to adapt the output pattern to ongoing needs or may dramatically 
reorganize a network into an entirely new mode mediating a different 
behavior. The next section deals with mechanisms for modulating each of 
the three classes of building blocks. 

In order to understand how connectivity within a network can be modu
lated it is necessary to make a distinction between anatomical and func
tional connectivity. Anatomical connectivity refers to the pattern of mono
synaptic connections among a group of neurons. Functional connectivity 

refers to the effect of one cell upon another by whatever pathways, mono
synaptic or polysynaptic, interconnect the two cells. Anatomical con
nectivity defines the constraints of a network but functional connectivity 
determines the activity pattern. 

The difference between anatomical and functional connectivity can be 
illustrated by the network controlling escape swimming in Tritonia. Swim
ming consists of a series of alternating dorsal and ventral flexion move
ments and is generated by a group of interneurons interconnected by a 
complex pattern of monosynaptic connections that define the anatomical 
network (Figure 2A). Within this network, the three dorsal swim inter
neurons (DSI) excite each other via monosynaptic connections, but this 
monosynaptic excitation is paralleled by polysynaptic inhibition mediated 
by the I-cell. From the anatomical connectivity alone, one can not predict 
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A 
ANATOMICAL NETWORK 

B REFLEXIVE 
WITHDRAWAL 

MODE 
c PATTERN 

GENERATOR 
MODE 

Figure 2 A. Network diagram showing the monosynaptic connectivity between interneurons 
of the TrilOnia escape swim system. B. Network configuration reflecting the functional 
connectivity when C2 is silent. In this configuration (mode), the network contributes to 
reflexive withdrawals. C. Network configuration when C2 is active. In this mode the network 
generates an alternating burst pattern between DSI and VSI which in turn activates moto
neurons for each flexion movement. Pathways with more than one symbol indicate multi
component synapses. 

what the effect of driving one DSI would be on anothcr DSI. If the 
monosynaptic excitation was stronger than the polysynaptic inhibition, 
then the nct cffcct would be excitatory. In fact, driving one DSI leads to 
inhibition of another DSI (Getting & Dekin 1985). The polysynaptic 
inhibitory pathway dominates, thus the functional connectivity between 
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DSI is inhibitory even though the DSI connect monosynaptically by excit
atory synapses. 

Functional connectivity reflects the relative strengths of the synaptic 
connections and the excitability of each neuron along all pathways from 
one cell to another. Functional connectivity can, therefore, be modulated 
by alteration in synaptic strengths or in the excitability of neurons along 
the pathways. The circuit of Figure 2 provides an example of modulation 
in functional connectivity. When Tritonia is not swimming, the C2 neuron 
is silent and the three DSI functionally inhibit each other via the poly
synaptic pathway through the I-cell. During swimming, however, C2 fires 
in bursts coactive with DSI. Under these conditions, the I-cell is inhibited 
by C2 and the functional connection among DSI becomes excitatory, 
mediated by the monosynaptic connections. The functional connection 
among the DSI can be switched from mutual inhibition to mutual exci
tation depending upon whether C2 is active. 

The consequences of modulation in the functional connectivity within 
the network of Figure 2A are profound. The anatomical network of Figure 
2A can be redrawn to reflect functional connectivity when C2 is silent 
(Figure 2B) and when C2 is active (Figure 2C). When C2 is silent (Figure 
2B), the network is dominated by inhibitory interactions. In this con
figuration, or mode, each interneuron can be activated independently by 
afferent input and can contribute to the routing of activity to motor 
neurons mediating directed reflexive withdrawals (Getting & Dekin 1985). 
When the animal is stimulated to swim, C2 becomes active, the functional 
connectivity among DSI becomes excitatory, and the network is reor
ganized to form the pattern generator circuit shown in Figure 2C. The 
threc DSI have been lumped together because in this configuration they 
excite eaeh other and act as a single population. In the pattern generator 
mode, the network produces a sequence of alternating bursts between the 
DSI and VSI that in turn drives the dorsal and ventral flexion moto
neurons. The circuit remains in this mode until the excitation to C2 wanes, 
the I -cell is disinhibited, and the network reverts to the reflexive withdrawal 
mode of Figure 2B. 

The concept of reordering functional connectivity has been applied to 
spinal circuitry for some time (Baldissera et al 1981). Many descending 
pathways to the spinal cord share the same interneurons as peripheral 
inputs, but the association of these interneurons into functional groups 
apparently depends upon the task being performed (H. lankowska, per
sonnal communication). Task-dependent modulation of reflexes has also 
been observed during different modes of locomotion (Capaday & Stein 
1986) and during different phases of the step cycle (Forssberg et al 1975). 
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Descending influences presumably reorganize the functional connectivity 
within the spinal cord to fit the task at hand. Reordering of functional 
connectivity has also been observed in the auditory cortex in response to 
different sounds (G. L. Gerstein, personal communication). Tn these cases 
input may not only activate a network but may also configure it into an 
appropriate mode to process that input. Descending commands and affer
ent inputs should be considered as both instructive and permissive in that 
they may organize the functional interactions within a network to be 
appropriate for the task at hand as well as activate the network to perform 
the task. 

Alterations in synaptic properties fall into two general categories: homo
synaptic and heterosynaptic. Homosynaptic influences depend upon the 
recent activity of a single synapse, and include such phenomena as facili
tation, depression, or potentiation. For heterosynaptic modulation, the 
synaptic efficacy in one pathway can be altered (either increased or 
decreased) by activity in a second pathway. Heterosynaptic influences can 
be mediated by direct contact between the two pathways as in presynaptic 
inhibition or can be mediated by more distant neurohumoral interactions 
(Shain & Carpenter 1981). The lobster stomatogastric system provides a 
clear example of application of dopamine selectively altering one IPSP, 
thus resulting in a phase change in the motor pattern (Eisen & Marder 
1 984). 

Modulation of intrinsic cellular properties also takes many forms 
(Kaczmarek & Levitan 1987). Since repetitive firing properties reflect the 
expression of the underlying ionic conductances, modulation of the ionic 
conductances will alter the input/output relationship of a cell. Many ionic 
conductances are voltage dependent in the region of resting potential; 
thus, biasing a neuron more depolarized or hyperpolarized than rest can 
modulate the expression of these conductances. For example, delayed 
excitation mediated by A-current can be potentiated by hyperpolarization 
or nearly abolished by subthreshold depolarization (Getting 1983b, Dekin 
& Getting 1984). A second mechanism for modulation of intrinsic prop
erties is through receptor-mediated action of neuromodulators. Modu
latory substances bind to surface receptors and alter the kinetics of ion 
channels either directly or by the production of a second messenger 
(Kaczmarek & Levitan 1987). The effects of modulatory substances can 
be so profound that cells acquire entirely new properties not seen in the 
absence of the modulator. The effects of modulators covers the range 
of intrinsic properties, including increased or decreased excitability, the 
modulation of spike frequency adaptation, the enhancement of post-inhibi
tory rebound, the induction of plateau potentials, and the expression of 
intrinsic bursting. 
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PROSPECTS FOR THE FUTURE 

The comparative study of neural networks has led to a picture of neural 
networks as dynamic entities, constrained by their anatomical connectivity 
but, within these constraints, able to be organized and configured into 
several operational modes each depending upon the expression and modu
lation of the constituent cellular, synaptic, and network building blocks. 
This view has two components: (a) neural networks are assembled from a 
set of cellular, synaptic, and network building blocks, and (b) these building 
blocks can be modulated, thereby altering the operation of the network. 
These concepts are attractive from several perspectives. First, these organ
izational principles indicate that a separate neural network is not needed 
for each behavior or for each modification thereof. A single anatomical 
set of neurons may perform multiple tasks. Second, these concepts help to 
reconcile the apparent diversity in neural networks, even those subserving 
similar functions, since the constituent building block mechanisms appear 

to be conserved, but not the particular combination. Finally, these concepts 
provide a framework for approaching neural networks experimentally. In 
order to understand how a function is implemented one must identify the 
underlying cellular, synaptic, and network building blocks and how they 
interact. 

These concepts present some formidable problems, however, To under
stand how a network operates, it will be necessary to analyze the appro
priate building blocks while the network is performing the task of interest, 
otherwise the requisite combination of building block mechanisms may not 
be operative. This is less of a problem for some invertebrate preparations in 
which large portions ofthe nervous system can be isolated while preserving 
function (Selverston 1985). For vertebrate systems, the situation may be 
more difficult. Isolation by cell culture or brain slice techniques, although 
allowing access to and experimental manipulation of individual cells, com
monly disrupts the networks sufficiently so that network operation is lost. 
These preparations can serve an important role, however, in characterizing 
possible cellular and synaptic mechanisms, but it will be necessary to 
show how these properties are used within operational networks. For this 
purpose new methods for gaining access to the relevant building block 
mechanisms in operational networks will be required. In this regard the 
advent of a number of in vitro methods for maintaining large portions of 
the vertebrate CNS hold particular promise (McClellan 1987, O'Donovan 
1987, Fulton & Walton 1986, Smith & Feldman 1987, Llinas et al 1981, 
Richerson & Getting 1987). 

Now that some of the building blocks of network operation have been 
identified, rules for their assembly into neural networks need to be sought. 
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Further reductionism to the single channel or molecular levels will be 
important in providing information about mechanisms underlying the 
building block properties, but these approaches are unlikely to provide 
insight into principles of network operation. For this purpose we need 
synthesis, not further reductionism. Do particular combinations of build
ing blocks underlie certain tasks? Are all combinations of building blocks 
possible or only restricted subsets? What are the processing capabilities 
of the various building blocks and what do they contribute to network 
operation? Are there rules governing the assembly of the building blocks 
into networks? 

Answering these questions will require a multidisciplinary approach. In 
particular, comparative studies will be important to delineate "successful" 
or useful combinations and may provide insights into rules for network 
assembly. In this regard, comparative analysis of rhythmic motor pattern 
generator networks has begun to yield general hypotheses about the 
assembly and modulation of pattern generator networks (Getting 1988, 
Harris-Warrick 1988). Ways of manipulating the various building blocks 
need to be found so that the ways they contribute to network operation 
can be investigated. In small systems, single cells or small groups of cells 
can be controlled or deleted (Lennard et a11980, Miller & Selverston 1979) 
to allow assessment of their role. Tn larger systems other methods for 
altering the constituent building blocks, including possible genetic (Herrup 
& Sunter 1986, Thomas & Wyman 1984), pharmacologic (Harris-Warrick 
1988), and developmental (O'Donovan 1987) manipulations, will be 
required. 

Finally, methods for assessing rules for network assembly and operation 
must be developed. Biologically realistic computer models should be useful 
for this purpose. Crude network models based upon the interaction of 
nonlinear elements are revealing the underpinnings of cognitive function, 
including content addressable memory and simple pattern recognition 
(Rumelhart & McClelland 1986, Hopfield & Tank 1986). In terms of the 
properties of the elements and the complexity of the networks, these models 
are still barren in comparison with biological systems. What will happen 
to the emergent properties of these networks when biological reality is 
incorporated is as yet unclear. The hope is that the capabilities of the 
networks will increase to approximate that of the CNS, but this remains 
to be seen. Recent successes such as computer simulation of the estab
lishment and modification of cortical somatosensory maps hold particular 
promise (Pearson et al 1987). Biologically realistic simulations offer an 
additional advantage in that individual building blocks or rules governing 
their assembly must be explicitly stated and therefore can be tested by 
systematic variation. The ability to manipulate all aspects of model net-
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works should provide a powerful window into the importance of various 
building blocks and the ways they contribute to overall network function. 
Computer simulations, however, will be no more useful than the degree 
of their biological reality. Close interplay between experimentation and 
simulation must be maintained to ensure the validity of any model of the 
nervous system. 

ACKNOWLEDGMENTS 

I am indebted to many colleagues for helpful discussions in the devel
opment of the ideas and insights presented. I particularly thank Drs. 
Michael O'Donovan, Corey Cleland, William Frost, and Andrew 
McClellan for reading and criticizing the manuscript. I am supported by 
National Institutes of Health grants NS 17328, NS 15350, and HL32336. 

Literature Cited 

Adams, W. B. 1985. Slow depolarizing and 
hyperpolarizing currents which mediate 
bursting in Aplysia neurone R 1 5 .  J. 
Physiol. London 360: 5 1 68 

Adams, W. 8., Levitan, I. 8. 1985. Voltage 
and ion dependences of slow currents 
which mediate bursting in Aplysia neurone 
R 1 5 .  J. Physiol. London 360: 69-93 

Adams, D. J., Smith, S. J., Thompson, S. H. 
1980. Ionic currents in molluscan soma. 
Ann. Rev. Neurosci. 3: 1 4 1 -67 

Alving, B. O. 1968. Spontaneous activity in 
isolated somata of Aplysia pacemaker 
neurons. J. Gen. Physiol. 51: 29-45 

Anderson, W. W., Barker, D. L. 198 1 .  Syn
aptic mechanisms that generate network 
oscillations in the absence of discrete post
synaptic potentials. J. Exp. Zool. 216: 
187-91 

Arshavsky, Y. I., Beloozesova, I .  N., Orlov
sky, G. N., Panchin, Y. V., Pavlova, G. A.  
1985. Control oflocomotion in the marine 
mollusc, Clione limacina. IV. Role of type 
12 interneurons. J. Exp. Brain Res. 58: 
285-93 

Baldissera, F., Hultborn, R., Illert, M. 1 98 1 .  
Integration i n  spinal neuronal systems. In 
Handbook o[ Physiology: The Nervous 
System, ed. J. M .  Brookhart, V. B. 
Mountcastle, V. B. Brooks, pp. 509-96. 
Baltimore: William & Wilkins 

Bentlcy, D., Konishi, M .  1 978. Neural con
trol of behavior. Ann. Rev. Neurosci. 1 :  
35-59 

Brown, D. A., Adams, P. R. 1979. Musca
rinic suppression of a novel voltage sen
sitive K + current in vertebrate neuron. 
Nature 315: 501-3 

Byrne, J. H .  1980a. Analysis of ionic con
ductance mechanisms in motor cells medi
ating inking bchavior in Aplysia cali/or
nica. J. Neurophysiol. 43: 1036--50 

Byrne, J. H. 1 980b. Quantitative aspects of 
ionic conductance mechanisms contrib
uting to firing patterns of motor cells 
mediating inking behavior in Aplysia cali
[ornica. J. Neurophysiol. 43: 651-68 

Capaday, C., Stein, R. B. 1 986. Am'plitude 
modulation of the soleus H-reflex in the 
human during walking and standing. J. 
Neurosci.6: 1308-13 

Connor, B. W., Gutnick, M .  J. 1984. Neo
cortex: Cellular properties and intrinsic 
circuitry. In Brain Slices, ed. R. Dingle
dine, pp. 3 13-42. New York: Plenum 

Connor, J. A., Stevens, C. F. 1971. Voltage 
clamp analysis of a transient outward 
membrane current in gastropod neural 
somata. J. Physiol. London 213:  21-30 

Dekin, M. S., Getting, P. A. 1984. Firing 
pattern of neurons in the nucleus tractus 
solitarius: Modulation by membrane 
hyperpolarization. Brain Res. 324: 1 80--
84 

Dekin, M. S., Getting, P. A. 1987a. In vitro 
characterization of neurons in the ventral 
part of the nucleus tractus solitarius. I.  
Identification of neuronal types and 
repetitive firing properties. J. Neuro
physiol. 58: 195-2 1 4  

Dekin, M .  S., Getting, P. A. 1 987b. I n  vitro 
characterization of neurons in the ventral 
part of the nucleus tractus solitarius. II. 
Ionic mechanisms responsible for repeti
tive firing activity. J. Neurophysiol. 58: 
2 15-29 

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
89

.1
2:

18
5-

20
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
- 

Pu
ne

 o
n 

04
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



202 GETTING 

Dekin, M. S., Richerson, G. B.,  Getting, 
P. A. 1985. Thyrotropin-releasing hor
mone induces rhythmic bursting in neu
rons of the nucleus tractus solitarius. Sci
ence 229: 67--69 

Deschenes, M., Paradis, M., Roy, 1. P., Stcr
iade, M .  1 984. Electrophysiology of neur
ons of lateral thalamic nuclei in cat: 
Resting properties and burst discharges. 
J. Neurophysiol. 51: II96-1219 

Dickinson, P. S., Nagy, F. 1983. Control of 
a central pattern generator by an identified 
modulatory interneuron in crustacea. II. 
Induction and modulation of plateau 
potentials in pyloric neurons. J. Exp. Bioi. 
105: 59-82 

Eccles, 1. C. 1 964. The Physiology of 
Synapses. Berlin: Springer-Verlag 

Edgerton, V. R., Frillner, S., Sjostrom, A., 
Zangger, P. 1 976. Central generation of 
locomotion in vertebrates. In Neural Con
trol of Locomotion, ed. R. M .  Herman, S. 
Grillner, P. S. G. Stein, D. G. Stuart, pp. 
439-46. New York: Plenum 

Eisen, J. S., Marder, E. 1984. A mechanism 
for production of phase shifts in a pattern 
generator. J. Neurophysiol. 5 1 :  1375-93 

Flamm, R. E., Harris-Warrick, R. M. 1986. 
Aminergic modulation in lobster sto
matogastric ganglion. II. Target neurons 
of dopamine, octopamine and serotonin 
within the pyloric circuit. J. Neurophysiol. 
55: 866-81 

Forssberg, S., Grillner, S., Rossignol, S. 
1975. Phase dependent reflex reversal dur
ing walking in chronic spinal cats. Brain 
Res. 85: 103-7 

Friesen, W. O., Stent, G. S. 1 978. Neural 
circuits for generating rhythmic move
ments. Ann. Rev. Biophys. Bioeng. 7: 37-
61 

Fulton, B. P., Walton, K. 1986. Elee
trophysiological properties of neonatal rat 
motoneurons studied in vitro. J. Physiol. 
London 370: 65 1 -78 

Getting, P. A. 1974. Modification of neuron 
properties by electronic synapses. I. Input 
resistance, time constant and integration. 
J. Neurophysiol. 37: 846-57 

Getting, P. A. 1 98 1 .  Mechanisms of pattern 
generation underlying swimming in Tri
tonia. I. Neuronal network formed by 
monosynaptic connections. J. Neuro
physiol. 46: 65-79 

Getting, P. A. 1 983a. M echanisms of pat
tern generation underlying swimming in 
Tritonia. II: Network reconstruction. J. 
Neurophysiol. 49: 1 0 1 7-34 

Getting, P. A. 1 983b. Mechanisms of pattern 
generation underlying swimming in Tri
tonia. III. Intrinsic and synaptic mech
anisms for delayed excitation. J. Neuro
physiol. 49: 1036-50 

Getting, P. A. 1 9 83c. Neural control of 
swimming in Tritonia. In Neural Origin of 
Rhythmic Movements, ed. A. Roberts, B. 
L. Roberts, pp. 89-128. London: Cam
bridge Univ. Press 

Getting, P. A. 1988. Comparative analysis of 
invertebrate central pattern generators. In 
Neural Control of Rhythmic Movements, 
ed. A. H. Cohen, S. Rogsignol, S. Grillner, 
pp. 101-28. New York: John Wiley 

Getting, P. A., Dekin, M. S. 1985. Mech
anisms of pattern generation underlying 
swimming in Tritonia. IV. Gating of a cen
tral pattern generator. 53: 466-80 

Graubard, K. 1 978. Synaptic transmission 
without action potentials: Input-output 
properties of a nonspiking presynaptic 
neuron. J. Neurophysiol. 4 1 :  101 4-25 

Harris-Warrick, R. M. 1988. Chemical 
modulation of central pattern generators. 
See Getting 1988, pp. 285-332 

Hatton, G. I. 1 984. Hypothalamic neuro
biology. In Brain Slices, ed. R. Dingledine, 
pp. 341-74. New York: Plenum 

Herrup, K., Sunter, K. 1986. Cell lineage 
dependent and independent control of 
Purkinje cell number in the mammalian 
eNS: Further quantitative studies of lur
cher chimeric mice. Dev. Bioi. II7: 417-
27 

Hodgkin, A. L., Huxley, A. F. 1952. A quan
titative description of membrane current 
and its application to conduction and exci
tation in nerve. J. Physiol. London 1 17: 
500-44 

Hopfield, J. J., Tank, D. W. 1986. Neural 
circuits and collective computation. Sci
ence 233: 625-33 

Hounsgard, J., Hultborn, H., Kiehn, o. 
1986. Transmitter-controlled properties of 
alpha-motoneurones causing long-lasting 
motor discharge to brief excitatory inputs. 
Prog. Brain Res. 64: 39-49 

Hume, R. I., Getting, P. A. 1982a. Motor 
organization of Tritonia swimming. III. 
Contribution of intrinsic membrane prop
erties to flexion neuron burst formation. 
J. Neurophysiol. 47: 91-102 

Hume, R. I., Getting, P. A. 1 982b. Motor 
organization of Tritonia swimming. IV. 
Synaptic drive to flexion neurons from 
premotor interneurons. J. Neurophysiol. 
47: 75-90 

Jahnsen, H. 1 986. Responses of neurons in 
isolated preparations of the mammalian 
central nervous system. Prog. Neurobiol. 
27: 351 -72 

Johnson, S. M . ,  Getting, P. A. 1987. Repeti
tive firing properties of neurons within the 
nucleus amhiguous of adnlt guinea pigs 
using the in vitro slice technique. Neurosci. 
Abstr. 1 3: 825 

Kaczmarek, L. K., Levitan, I. B. 1987. 

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
89

.1
2:

18
5-

20
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
- 

Pu
ne

 o
n 

04
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PRINCIPLES OF NEURAL NETWORK OPERATION 203 

Neuromodulation. New York: Oxford 
Univ. Press 

Kandel, E. R., Spencer, W. A. 1 96 1 .  Elec
trophysiology of hippocampal neurons. 
II. After-potentials and repetitive firing. J. 
Neurophysiof. 24: 243-59 

Katz, 8. 1966. Nerve, Muscle, and Synapse, 
pp. 97-14 1 .  New York: McGraw-Hill 

Kehoe, J. 1972. Three acetylcholine recep
tors in Aplysia neurons. J. Physiol. London 
225: 1 15-46 

Krasne, F. B., Wine, 1. 1. 1 984. The pro
duction of crayfish tailflip escape re
sponses. In Neural Mechanisms of Startle 
Behavior, ed. R. C. Eaton, pp. 1 79-2 1 1 .  
New York: Plenum 

Lennard, P. R., Getting, P. A., Hume, R. 1.  
1980. Central pattern generator mediating 
swimming in Trironia. II. Initiation, main
tenance and termination. J. Neurophysiol. 
44: 1 65-73 

Llinas, R. 1 98 1 .  Electrophysiology of cer
ebellar networks. See Baldissera et al 198 1 ,  
pp. 83 1-76 

Llinas, R. 1984. Comparative electrobiology 
of mammalian central neurons. See Hat
ten 1 984, pp. 7-24 

Llinas, R., Sugimori, M. 1980a. Electro
physiological properties of in vitro Pur
kinje cell somata in mammalian cerebellar 
slices. J. Physiol. London 305: 1 7 1-95 

Llinas, R., Sugimori, M. 1980b. Electro
physiological properties of in vitro Pur
kinje cell dendrites in mammalian cere
bellar slices. J. Physiol. London 305: 197-
2 1 3  

Llinas, R . ,  Yarom, Y. 198 1 .  Electro
physiology of mammalian inferior olivary 
neurons in vitro. Different types of vol
tage-dependent ionic conductances. J. 
Physiol. London 3 1 5: 549-67 

Llinas, R.,  Yarom, Y. 1986. Oscillatory 
properties of guinea pig olivary neurons 
and their pharmacological modulation: 
An in vitro study. J. Physiol. 376: 163-
82 

Llinas, R., Yarom, Y., Sugimori, M. 1 98 1 .  
Isolated mammalian brain i n  vitro: New 
techniques for analysis of electrical 
activity of neural circuit function. Fed. 
Proc. Fed. Am. Soc. Exp. BioI. 40: 2240-
45 

Lopez-Barneo, J., Liinas, R. 1988. Electro
physiology of mammalian tectal neurons 
in vitro: I. Transient ionic conductances. 
J. Neurophysiol. 60: 853-68 

Marder, E., Eisen, J. S. 1984. Electrically 
coupled pacemaker neurons respond diff
erently to the same physiological inputs 
and neurotransmitters. J. Neurophysiol. 
5 1 :  1 362-74 

McClellan, A. D. 1987. In vitro CNS prep
aratiuns: Unique approaches tu the study 

of command and pattern generation 
systems in motor control. J. Neurosci. 
Methods 21: 251-64 

McCulloch, W. S., Pitts, W. H. 1943. A logi
cal calculus of the ideas imminent in ner
vous activity. Bull. Math. Biophysics. 7: 
89-93 

Meech, R. W. 1 978. Calcium-dependent pot
assium activation in nervous tissues. Ann. 
Rev. Biophys. Bioeng. 7:  1-18 

Miller, 1. P.,  Selverston, A. I. 1982b. Mech
anisms underlying pattern generation in 
lobster stomatogastric ganglion as deter
mined by selective inactivation of identi
fied neurons. IV. Network properties of 
pyloric system. J. Neurophysiol. 48: 1 4 1 6-
32 

Miller, J. P., Selverston, A. 1. 1982a. Mech
anisms underlying pattern generation in 
lobster stomatogastric ganglion as deter
mined by selective inactivation of identi
fied neurons. II. Oscillatory properties 
of pyloric neurons. J. Neurophysiol. 48: 
1378-9 1 

Miller, 1. P.,  Se1verston, A. I. 1 979. Rapid 
killing of single neurons by irradiation of 
intracellularly injected dyes. Science 206: 
702-4 

M ulloney, 8., Selverston, A. I. 1 974. Organ
ization of the stoma to-gastric ganglion of 
spiney lobster. III. Coordination of the 
two subsets of the gastric system. J. Compo 
Physiol. 9 1 :  53-78 

O'Donovan, M. 1. 1 987. Developmental 
approaches to the analysis of vertebrate 
central pattern generators. J. Neurosci. 
Methods 2 1 :  275-86 

Partridge, L. D., Stevens, C. F. 1 976. A 
mechanism for spike frequency adapta
tion. J. Physiol. London 256: 3 1 5-32 

Pearson, J. c., Finkel, L. H . ,  Edelman, 
G. M. 1987. Plasticity in the organization 
of adult cerehral cortical maps: A compu
ter simulation based upon neuronal group 
selection. J. Neurosci. 7: 4209-23 

Rail, W. 1981. Functional aspects of 
neuronal geometry. In Neurones without 
Impulses, ed. A. Roberts, B. M. H. Bush, 
pp. 223-54. Cambridge, U.K.: Cambridge 
Univ. Press 

Richerson, G. 8., Getting, P. A. 1987. Main
tenance of complex neural function during 
perfusion of the mammalian brain. Brain 
Res. 409: 128-32 

Rogawski, M.  A. 1 985.  The A-current: How 
ubiquitous a feature of excitable cells is 
it. Trends Neurosci. 8: 214-19 

Rumelhart, D. E., McClelland, J. L. 1986. 
Parallel Distributed Processing, Vols. 1 , 2. 
Cambridge: MIT Press 

Russell, D. F., Hartline, D. K. 1978. Burst
ing neural networks: A reexamination. 
Science 200: 453-56 

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
89

.1
2:

18
5-

20
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
- 

Pu
ne

 o
n 

04
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



204 GETTING 

Satterlie, R. A. 1985. Reciprocal inhibition 
and post-inhibitory rebound produce 
reverberation in locomotor pattern gen
erator. Science 229: 402--4 

Schwindt, P. C., Crill, W. E. 1984. Mem
brane properties of cat spinal moto
neurons. In Handbook of the Spinal Cord, 
ed. R. A. Davidoff, pp. 1 99-242. New 
York: Marcel Dekker 

Selverston, A. I., ed. 1 985. Model Neural Net
works and Behavior. New York: Plenum 

Selverston, A. 1.,  Miller, J. P., Wadepuhl, 
M. 1 983. Cooperative mechanisms for the 
production of rhythmic movements. In 
Neural Origin of Rhythmic Movements, 
ed. A. Roberts, B. L. Roberts, pp. 55-88. 
London: Cambridge Univ. Press 

Shain, W.,  Carpenter, D. O. 1 98 1 .  Mech
anisms of synaptic modulation. Int. Rev. 
Neurobiol. 22: 205-50 

Sherrington, C. 1 906. The Integrative Action 
of the Nervous System. New Haven: Yale 

Univ. Press 
Smith, J. C., Feldman, J. L. 1 987. In vitro 

brain stem-spinal cord preparations for 
study of motor systems for mammalian 
respiration and locomotion. J. Neurosci. 
Methods 2 1 :  321  33 

Szekedy, G. 1965. Logical network con
trolling limb movements in urodcla. A cta 
Physiol. A cad. Sci. Hung. 27: 285-89 

Thomas, J. B., Wyman, R. J. 1 984. Mu
tations altering synaptic connectivity 
between identified neurons of Drosophila. 
J. Neurosci. 4: 530-38 

Willows, A. O. D. 1 973. Interactions be
tween brain cells controlling swimming 
in a mollusc. In Neurobiology of Invert
ebrates, ed. J. Salanki, pp. 233--47. New 
York: Plenum 

Zucker, R. S., Kennedy, D., Selverston, 
A. 1. 1 97 1 .  Neuronal circuit mediating 
escape responses in crayfish. Science 1 73: 
645--49 

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
89

.1
2:

18
5-

20
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
- 

Pu
ne

 o
n 

04
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Neuroscience Online
	Most Downloaded Neuroscience Reviews
	Most Cited Neuroscience Reviews
	Annual Review of Neuroscience Errata
	View Current Editorial Committee


	ar: 
	logo: 



