TOPOLOGY COMPREHENSIVE June, 2015

1. (a) Let $E = \mathbb{R}^2 \setminus \{(0,0)\}$ and let η be the 1-form

$$\eta = \frac{x \,\mathrm{d}y - y \,\mathrm{d}x}{x^2 + y^2}.$$

- i. Prove that η is closed in E.
- ii. Let r > 0 and consider the curve $\gamma : [0, 2\pi]$ defined by

$$\gamma(t) = (r\cos t, r\sin t).$$

Prove that $\int_{\gamma} \eta = 2\pi$, and also show that η is not exact in E.

- (b) Let I be the unit interval $[0,1] \subset \mathbb{R}$ and suppose $\gamma : I \to I \times I$ be a continuous, surjective map.
 - i. Can γ be injective?
 - ii. Can γ be C^{∞} ? Recall that a C^{∞} map between I and $I \times I$ is a restriction of a C^{∞} map on some open set containing I.
- 2. (a) Let D^2 be the standard unit disc in the plane, and let

$$A = \{(1,0), (0,1), (-1,0)\}$$

be the set consisting of the designated points on the boundary circle S^1 . Let X be the quotient space D^2/A , and let B be the subspace S^1/A .

- i. Describe a CW structure on X in which B is a subcomplex. Your description should include a list of cells used, a clearly labelled diagram and a written description of the attaching maps.
- ii. Calculate the fundamental group of X.
- iii. Show that B is not a retract of X.
- (b) i. Give an example of a pair of path connected topological spaces $X \subset Y$ such that $\pi_1(X)$ is trivial but $\pi_1(Y)$ is not trivial. Justify your example.
 - ii. Give an exaple of a pair of path connected topological spaces $X \subset Y$ such that $\pi_1(Y)$ is trivial but $\pi_1(X)$ is not trivial. Justify your example.
- 3. (a) Compute the homology of a Möbius strip. Using the fact that $\mathbb{RP}^2 = M \cup \mathbb{D}^2$, where the boundary circle of the Möbius strip is identified with the boundary circle of the disk via the identity map. Compute the homology groups of \mathbb{RP}^2 .

- (b) Compute the cohomology groups $H^*(\mathbb{RP}^2, \mathbb{Z}/2\mathbb{Z})$ with $\mathbb{Z}/2\mathbb{Z}$ coefficients.
- (c) Compute the cohomology groups $H^*(\mathbb{RP}^2 \times \mathbb{RP}^2, \mathbb{Z}/2\mathbb{Z})$.
- (d) Consider the map $f : \mathbb{R}^{2k} \to \mathbb{R}^{2k}$ given by

$$f(x_1, x_2, \dots, x_{2k-1}, x_{2k}) = (x_2, -x_1, \dots, x_{2k}, -x_{2k-1}).$$

Let \bar{f} be the induced map on $\mathbb{RP}^{2k-1} \to \mathbb{RP}^{2k-1}$. What is $\tau(\bar{f})$?

- 4. Suppose M is a closed, connected, oriented, 3 manifold with $\pi_1(M) \cong F_2$, the free group generated by 2 symbols. Compute $H_*(M,\mathbb{Z})$ and $H^*(M,\mathbb{Z})$.
- 5. Suppose $p: X \to Y$ and $q: Y \to Z$ be covering maps. Suppose q is such that inverse image of any point in Z is a finite set. Prove that $q \circ p$ is a covering map. Write down a relationship between the deck transformation groups of p, q and $q \circ p$.
- 6. (a) For k, l positive integers, compute the integral cohomology ring of $S^k \times S^l$.
 - (b) For $n > 0 \in \mathbb{Z}$, compute the integral cohomology ring of S^n .
 - (c) Prove that any continuous map $f: S^{k+l} \to S^k \times S^l$ induces a zero homomorphism $H^{k+l}(S^k \times S^l, \mathbb{Z}) \to H^{k+l}(S^{k+l}, \mathbb{Z}).$