Algebra Comprehensive Examination

2015

May 29, 2015

You can get maximum 100 marks and 180 minutes!

1. Let p be a prime integer and let G be a finite p-group. Let $Z(G)$ be the center of the group G and $C \unlhd Z(G)$ be the subgroup consisting of all elements x satisfying $x^{p}=1$. Let N be a normal subgroup of G such that $N \cap C=\{1\}$. Prove that $N=\{1\}$.
2. Let A be a ring and $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r}$ be prime ideals in A. Let $I=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be an ideal of A such that $I \nsubseteq \mathfrak{P}_{i}, 1 \leq i \leq r$. Prove that there exist $b_{2}, \ldots, b_{n} \in A$ such that the element

$$
c=a_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \notin \cup_{i=1}^{r} \mathfrak{P}_{i}
$$

[Hints:-Prove by induction on r.]
3. Prove or disprove the following statements:
(i) The tensor product of two field is always a field.
(ii) Let R be an integral domain. For any torsion R-module M, the annihilator of M is always non-zero.
4. Let $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ and $0 \rightarrow K^{\prime} \rightarrow P^{\prime} \rightarrow M \rightarrow 0$ are short exact sequences of R-modules with P and P^{\prime} are projective, then prove that $K \oplus P^{\prime}$ is isomorphic to $K^{\prime} \oplus P$.
[Hints:- Define the following submodule of $P \oplus P^{\prime}$, where $\Phi: P \rightarrow M$ and Φ^{\prime} : $P^{\prime} \rightarrow M$:

$$
\left.X=\left\{(p, q) \in P \oplus P^{\prime}: \Phi(p)=\Phi^{\prime}(q)\right\} .\right]
$$

5. Let L / K be an algebraic field extension. Let $\lambda \in L$ be nonzero and such that λ and λ^{2} have the same minimal polynomial over K. Prove that λ is a root of unity.
6. Consider the polynomial $f(x)=x^{3}-x^{2}-2 x+1$. Let K be the splitting field of f. Find the Galois group of K over \mathbb{Q}.
[Hints:-The discriminant of $g(y)=y^{3}+p y+q$ is $D=-4 p^{3}-27 q^{2}$.]
