Topology Comprehensive
 June, 2016

In all the homology and cohomology computations below, the base ring is \mathbb{Z}, unless specified.
Question 1 (6 points)
(a) Which of the following 1-forms in \mathbb{R}^{2} is exact? If they are exact write them as the exterior derivative of some function.
i. $e^{y} d x+x\left(1+e^{y}\right) d y$,
ii. $\left(x^{2}+y^{2}\right) d x+2 x y d y$.
(b) Let S be a surface in \mathbb{R}^{3} such that S intersects the upper half space in a half sphere

$$
S \cap\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \geq 0\right\}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1 \text { and } z \geq 0\right\}
$$

as in Figure 1. Let $T=S \cap\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \leq 0\right\}$, and let $\iota: T \rightarrow \mathbb{R}^{3}$ be the inclusion. Consider the 2-form in \mathbb{R}^{3}

$$
\omega=y d x \wedge d z+z d x \wedge d y
$$

Compute

$$
\int_{T} \iota^{*} \omega
$$

Figure 1: S (problem 1(b))

Question 2 (6 points)
(a) A dunce cap is the topological space obtained by identifying the sides of a triangle as shown in Figure 2. Find the fundamental group of the dunce cap.

Figure 2: Dunce cap (problem 2(a))
(b) Calculate $\pi_{n}\left(S^{1}\right)$ for $n \geq 2$.

Question 3 (6 points)
(a) Define the chain complex and boundary maps of cellular homology.
(b) Calculate all the homology groups of the space X obtained from D^{2} by first deleting the interiors of two disjoint subdisks in the interior of D^{2} and then identifying all three resulting boundary circles together via homeomorphisms preserving clockwise orientations of these circles.

Question 4 (6 points)
(a) State the Mayer-Vietoris theorem.
(b) Calculate $H_{1}\left(S^{3} \backslash K, \mathbb{Z}\right)$ where $K \subset S^{3}$ is the trefoil knot shown below (Figure 3). (Hint: Use a regular neighbourhood of the knot in \mathbb{R}^{3}.)

Figure 3: Trefoil knot (problem 4(b))

Question 5 (6 points)
(a) Let M be a closed, connected, oriented 3-manifold. Let $H_{1}(M, \mathbb{Z})=\mathbb{Z}^{r} \oplus F$ where r is the rank of $H_{1}(M, \mathbb{Z})$ and F is a finite abelian group. Express all other homology and cohomology groups of M in terms of r and F.
(b) With M being as above, compute $H^{2}\left(M, \frac{\mathbb{Z}}{2 \mathbb{Z}}\right)$.

Question 6 (6 points)
(a) Let F_{g} be a closed, oriented surface of genus $g>1$. Show that any homeomorphism of F_{g} that is homotopic to the identity must have a fixed point.
(b) Calculate the cohomology ring of $\mathbb{R} P^{2} \times S^{1}$.

