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Abstract

Nonlinear dynamics forms the core of classical complex systems. The varied degrees of inter-

actions among multiple parameters characterizing a system give rise to a plethora of phenomena

from cosmic dynamics, chemical kinetics, circadian rhythms, atmospheric dynamics to markets

and social networks. In the domain of physics, nonlinear dynamics has been exhaustively inves-

tigated in classical systems. However, its extension to quantum mechanics is yet to completely

understood. Research into the bridge connecting nonlinear dynamical behaviour in classical and

quantum regimes started decades ago, and it continues to remain significant today, especially with

the development of quantum technology. Quantum computing and information processing proto-

cols that harness innate quantum properties, such as superpositions and entanglement, have gone

beyond theoretical constructs to become experimentally realizable reality that have also demon-

strated extremely important and useful applications in security, metrology, communication, etc.

Quantum technology currently is still very much in its infancy, and it is hence of timely inter-

est to explore implications of nonlinearity in quantum systems and their possible applications.

To this end, in this thesis, we have experimentally studied some facets of nonlinear effects in nu-

clear spin systems using Nuclear Magnetic Resonance (NMR) architecture. NMR is an extremely

versatile test bed with precise control and manipulation of spins, and long coherence times that

allows emulation of a wide range of desired Hamiltonians. We simulate dynamics under nonlin-

ear Hamiltonian evolution via interactions between spins to study phenomena such as quantum

chaos, quantum dynamical tunneling, interaction-induced Rydberg blockade and freezing, and

quantum phase-synchronization. Aside from fundamental interest, these phenomena also have

practical applications in quantum technology including but not limited to quantum control, devel-

oping efficient quantum computers with multiple interacting qubits, quantum networks, entangled

state creation, selective control of qubits in a multi-qubit system, spectroscopy, etc.
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Synopsis

In this thesis, we report the study of nonlinear phenomena using nuclear spins in NMR architec-

ture. The thesis is divided into six chapters, each of which are briefly reviewed below.

Chapter 1 − Introduction

In this chapter, we set up the basics of quantum information processing by introducing necessary

terms and concepts starting from qubits, quantum gates, density matrices to quantum correlations

and measurements. We then give an overview of the NMR experimental test bed and how it can

be used for quantum information processing tasks. We conclude this chapter with a discussion

on nonlinear phenomena in classical and quantum domains, and some select topics which can be

experimentally simulated using NMR spin registers.

Chapter 2 − Quantum chaos in a two-qubit kicked top

Chaos is one of the signatures of classical nonlinear dynamics. However, its extension to the

quantum regime still remains poorly understood. Owing to the uncertainty principle and linear-

ity of quantum evolution under the Schrodinger equation, classical definitions of chaos built on

sensitivity to initial conditions and exponential separation of trajectories become inoperative in

the quantum domain. Quantum chaos has been shown to be characterized by inherent quantum

properties such as entanglement and other quantum correlations. In this chapter, we experimen-

tally simulate the kicked top model in a two-qubit NMR spin system to study quantum chaos. We

demonstrate correspondences and deviations between the classical phase space and entanglement

entropy patterns. Further, we also study Husimi distributions to emphasize the effect of chaos in

the deep-quantum regime.

Chapter 3 − Quantum chaos in large spin registers

In this chapter, we extend the study of quantum chaos to large spin registers with star-topology.

These systems have been shown to have significant advantages for sensing, creating highly entan-
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gled NOON states and for many other applications. Moreover, being much larger spin systems,

they are closer to the classical limit. Here, we numerically study the kicked top model with dis-

order, i.e., the absence of all-to-all couplings, in star-topology systems of varying sizes, and use

entanglement entropy to characterize quantum chaos. This study helps us get closer to under-

standing the bridge between quantum and classical regimes.

Chapter 4 − Dynamical tunneling in nuclear spin systems

Tunneling through a potential barrier is a quintessential feature of quantum mechanics, which has

been widely investigated and applied. A less well-known aspect of quantum tunneling is the cou-

pling between isolated symmetry related regular regions in a mixed phase space. Here, potential

barriers are replaced by dynamical barriers, wherein a classical system initialized in one regular

region cannot move to a symmetric regular region across the chaotic sea diving them. A quantum

system however can periodically tunnel between the regions. In this chapter, we experimentally

study dynamical tunneling in two- and three-qubit spin systems using the kicked top model, using

expectation values of angular momentum operators as probes. They show periodic revivals as the

system moves from one regular region to another. In addition, we also study the importance of

coherences in sustaining tunneling behaviour by introducing dephasing noise in the system.

Chapter 5 − Quantum phase-synchronization in a nuclear spin system

Synchronization, like chaos, is a hallmark of classical nonlinear systems. Quantum synchroniza-

tion is currently gaining immense interest owing to its applications in many fields such as quan-

tum thermodynamics, quantum networks, time crystals, etc. In this chapter, we experimentally

demonstrate phase-synchronization of a four level nuclear spin system with a weak external drive.

We develop the theoretical formulation using Husimi distribution to study phase-synchronization,

and explain an efficient interferometric technique to bypass quantum state tomography to extract

the characteristics of synchronization. We also study the robustness of synchronization against

detuning and drive strengths via Arnold tongue behaviour.

Chapter 6 − Simulation of interaction induced Rydberg phenomena in spin systems

Rydberg blockade is an interaction induced phenomenon between two or more atoms which pro-
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hibits the simultaneous excitation of all atoms, and has been shown to have important implications

in quantum information processing protocols such as creation of entangled states. Rydberg-biased

freezing is another phenomenon where selective weak driving of some atoms in an interacting

many-atom system freezes their dynamics, allowing control of desired subsystems. In this work,

we experimentally emulate Rydberg blockade and freezing in two- and three-qubit NMR spin

registers. We also study the evolution of quantum discord between the qubits to gain deeper

understanding of correlations as the systems evolve under blockade and freezing dynamics.
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CHAPTER 1

Introduction

The invention of transistors revolutionized technology and ushered in the digital era, with monu-

mental developments in electronics ranging from computers, communication technology, to cur-

rent day smartphones. However, even the most powerful supercomputers of today cannot simu-

late many of nature’s most fundamental quantum mechanical phenomena owing to the enormous

complexity of quantum systems [1]. The possible potential of inherently ’quantum‘ simulators

was foreseen by Yuri Manin and Richard Feynman [1] in the 1980s, which quickly caught on

in the 90s with multiple works demonstrating the advantages of quantum simulators - Bennett

and Brassard’s development of BB84 quantum cryptography protocol [2], the Deutsch-Jozsa al-

gorithm to determine if an n-bit function is constant or balanced [3], Shor’s algorithm for prime

factorization of large numbers which have applications in cryptography [4], and Grover’s search

algorithm to identify a marked state in an unstructured database [5], to name a few. The first

experimental realization of quantum computing was demonstrated in nuclear magnetic resonance

(NMR) architecture independently by Cory, et. al., [6] and Gershenfeld, et. al., [7] in 1997. To-

day, the field has progressed tremendously with multiple architectures [8–10] apart from NMR

such as superconducting qubits [11, 12], trapped ions [13, 14], ultracold atoms [15–17], quan-

tum dots [18–20], and photonic systems [21–24] at the forefront. Even tech leaders such as IBM

[25], Google [26], and many independent ventures [27–30] are investing heavily in quantum tech-

nologies. The second quantum revolution is well underway, and it holds much promise for far

reaching developments across science starting from superconductivity and material research in

physics, reaction mechanisms in chemistry, to photosynthesis, protein folding and drug discovery

in biology and medicine.

In the following sections, we explain the fundamentals of quantum information processing

and how they can be implemented in the NMR architecture.
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Chapter 1

1.1 Quantum information and computing

In this section, we briefly look into the building blocks of quantum information and computation.

1.1.1 Qubits

1.1.1.1 Single-qubit system

The basic unit of classical information is a binary digit, or bit, which can only take one of two

possible values - conventionally labelled 0 and 1. Classical computation proceeds by performing

logical operations on such bits giving a string of bit values as the final output. Bits can physically

be realized, for instance, by voltage off and on values respectively, while logical operations can

be implemented by switching operations of a circuit. The quantum mechanical equivalent of bits,

qubits, are two-level quantum systems. These can be realized in multiple ways - polarization

states of a photon, spin states of an electron or nucleus, non-degenerate energy levels of neutral

atoms, etc. However, unlike classical bits which can only take one value at a time, qubits can

exist in both values simultaneously due to the fundamental principle of quantum superposition.

The general state of a qubit in the two-dimensional Hilbert space can hence be described in terms

of superposition of orthogonal basis states |0⟩ and |1⟩ as [31]

|ψ⟩ = α|0⟩+ β|1⟩, (1.1)

where the complex coefficients {α, β} satisfy the normalization condition |α|2 + |β|2 = 1. The

states |0⟩ and |1⟩ are usually represented in the matrix form |0⟩ =

1

0

 and |1⟩ =

0

1

,

commonly referred to as the computational basis states, rendering a general state in the form

|ψ⟩ =

α
β

. From the definition in Eq. 1.1, we can see that the qubit is exactly in state |0⟩ for

α = 1, state |1⟩ for β = 1, and in a superposition for α ̸= 0 ̸= β (subject to the normalization

condition). Hence upon measuring this state, the probability of getting outcome |0⟩ is |α|2, and

that of |1⟩ is |β|2, which again is in contrast with classical measurements where outcomes are

deterministic. A general single-qubit state can be visualized by equivalently expressing Eq. 1.1

2



1.1 Quantum information and computing

in the form

|ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩, (1.2)

which geometrically represents a point on a sphere of unit radius, called the Bloch sphere, and is

shown in Fig. 1.1. Here, θ ∈ [0, π] and ϕ ∈ [0, 2π] can be identified as the polar and azimuthal

angles respectively which span all points on the sphere and hence can describe any general state

of a qubit. It is evident that the state in Eq. 1.2 is normalized with α = cos(θ/2) and β =

eiϕ sin(θ/2).

z

x

y

Figure 1.1: Bloch sphere representation of a qubit in a state |ψ⟩.

1.1.1.2 Multi-qubit system

As we increase the number of qubits N , the corresponding Hilbert space dimension increases

exponentially as 2N , where a multi-qubit system state can be constructed from a tensor product of

single-qubit basis states. For instance the two-qubit composite state |00⟩ is obtained by |0⟩ ⊗ |0⟩.

Thus, a general two-qubit pure state is described by

|ψ⟩ = a1|00⟩+ a2|01⟩+ a3|10⟩+ a4|11⟩, (1.3)

where {|00⟩, |01⟩, |10⟩, |11⟩} forms the basis set with coefficients satisfying the normalization

condition |a1|2 + |a2|2 + |a3|2 + |a4|2 = 1. The definition of an arbitrary pure state can be

3
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generalized to a multi-qubit system as

|Ψ⟩ = a1|00...0⟩+ a2|00...1⟩+ a3|00..1..0⟩+ ...+ aN |10...0⟩+ ...+ a2N |11...1⟩, (1.4)

where the states |ϕ⟩ =
∏

N ⊗|i⟩ for i = 0, 1 span the basis and coefficients fulfil the condi-

tion
∑2N

i=1 |ai|2 = 1. Such pure states of multi-qubit systems exist on the hypersphere of their

corresponding Hilbert space dimension and hence cannot be visualized easily.

Multi-qubit states come with inherent advantages over single-qubit systems in that they can

carry quantum correlations such as entanglement, discord, etc. which have been shown to be

extremely useful resources in various quantum information processing tasks [32, 33]. Further-

more, a distinguishing aspect of information processing using qubits is the potential of quantum

superposition which can be harnessed to evolve the system under different basis states simulta-

neously, thereby providing a quantum parallelism. Quantum computation with d-level systems

called qudits have also been studied [34, 35].

1.1.1.3 Pure and mixed states

Quantum states can be classified into two categories - pure and mixed. A system is said to be in

a pure state if it can be described by a single state vector |Ψ⟩ = a1|00...0⟩ + a2|00...1⟩ + ... +

a2N |11...1⟩. An ensemble is said to be in a pure state if each system is identically prepared in

the same state |Ψ⟩. For a single qubit, such a state lies on the surface of the Bloch sphere, as

indicated by the red arrow in Fig. 1.1. On the other hand, if the ensemble is a statistical mixture

of different pure states, then the state of the whole system cannot be described by a single state

vector |Ψ⟩. In such a mixture, the outcome of any measurement is dependent on the sub-ensemble

being sampled, and is hence not identical over the entire ensemble. To describe such a system,

we need to invoke the density operator formalism and is given by

ρ =
∑
i

pi|ϕi⟩⟨ϕi|, (1.5)

where {|ϕi⟩} are pure states, and the probabilities pi add to 1. For example, a general mixture of a

single-qubit system in the computational basis states can be given by ρ = p|0⟩⟨0|+(1−p)|1⟩⟨1|+

α|0⟩⟨1| + α∗|1⟩⟨0|. Here, the probability of a measurement yielding outcome corresponding

4



1.1 Quantum information and computing

to |0⟩ is p and that of |1⟩ is (1 − p). It is important to note that the probabilistic distribution

of measurements resulting from a mixed state is fundamentally different from that of a (pure)

superposition state. For a single qubit, mixed states can lie at any radius from the centre to the

surface of the Bloch sphere, based on the degree of mixedness in the system. The maximally

mixed state of N qubits is given by the identity operator 1/2N , which lies at the centre of the

Bloch sphere (for single qubit)/higher-dimensional hypersphere (for multi-qubit systems).

1.1.2 Density matrices

The density matrix formalism is a widely used description to characterize and study the evolution

of quantum systems. By definition, a density operator or matrix is given by

ρ = |ψ⟩⟨ψ|, (1.6)

for a pure state |ψ⟩. However, most natural systems are not pure state ensembles, but rather

occur as mixed states which are statistical mixtures of many pure states {|ϕi⟩}. The state of such

ensembles can only be described using density matrices and are of the form

ρ =
∑
i

pi|ϕi⟩⟨ϕi|, with
∑
i

pi = 1. (1.7)

Properties of density matrices:

(i) tr(ρ) = 1 which ensures normalization and that all probabilities add to 1

(ii) ρ is a positive operator with non-negative eigenvalues. This in-turn implies that the density

matrix is Hermitian.

Although tr(ρ) = 1 for both pure and mixed states, tr(ρ2) = 1 only for pure states, while tr(ρ2) <

1 for mixed states. The density matrix representation is basis dependent, and even in a given

basis, it is not unique since any density matrix can be expressed as a convex sum of other density

matrices. Hence, given a density matrix, it is not possible to uniquely determine the ensemble

distribution. However, any general density matrix of a single-qubit system can be expressed as

ρ =
1+

∑
i=x,y,z riσi

2
, (1.8)
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where 1 is the two-dimensional identity matrix, ri are components of the three-dimensional Bloch

vector, and σi = {σx, σy, σz} are the Pauli spin operators. The magnitude of the Bloch vector

|r| = 1 for pure states and |r| < 1 for mixed states.

1.1.2.1 Populations and coherences

The significance of density operator formalism can be appreciated by expanding Eq. 1.6 for a

general pure state in an orthonormal basis. This gives matrix elements

ρmn = ⟨m|ρ|n⟩ = ⟨m|ψ⟩⟨ψ|n⟩ =
∑
i,j

aia
∗
j⟨m|i⟩⟨j|n⟩, (1.9)

and Eq. 1.7 for a mixed state

ρmn =
∑
k

pk⟨m|ψk⟩⟨ψk|n⟩ =
∑
k

pk
∑
i,j

aki a
k∗
j ⟨m|i⟩⟨j|n⟩ =

∑
i,j

aia∗j⟨m|i⟩⟨j|n⟩, (1.10)

where aia∗j denotes the ensemble average. From the above expressions, we can see that cases

where i = j give a diagonal element ρmm with the corresponding probability |am|2, which is

interpreted as the population of state |m⟩. All other cases with i ̸= j represent off-diagonal

elements ρmn = ama∗n, which are interpreted as coherences, indicating superposition between the

states |m⟩ and |n⟩.

The evolution of a density matrix under a time-independent Hamiltonian H for time t can be

obtained by solving the von Neumann equation to get

ρ(t) = e−iHtρ(0)eiHt. (1.11)

Hence, at any time t, the populations and coherences can be extracted and studied as a function

of the system evolution by performing quantum state tomography (explained in Sec. 1.3.3).

The density matrix representation allows for easy handling of pure and mixed states of large

ensembles, like those present in many experimental architectures such as NMR and Nitrogen-

vacancy (NV) centres.
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1.1 Quantum information and computing

1.1.2.2 Reduced density matrices

Many quantum systems of interest comprise of two or more subsystems, say A,B,...N. Such sys-

tems are described in the composite Hilbert space HA ⊗ HB ⊗ ...HN , where Hi is a subsystem

Hilbert space of dimension di. In such cases, it might sometimes be more interesting to study

the properties of a subsystem than the whole. This is especially true in situations where quantum

correlations (discussed in Sec. 1.1.5) are present in the system. A subsystem (ρA) can be obtained

from the parent composite system (ρAB) by the partial trace operation, which is defined as

ρA = trB (ρAB) = trB

(∑
i,j,k,l

cijkl|iA⟩⟨jA| ⊗ |kB⟩⟨lB|

)
, (1.12)

where the composite density matrix (ρAB) has been expressed in the eigenbases of subsystems A

and B. Performing the trace over subsystem B, we get

ρA =
∑
i,j,k,l

cijkl|iA⟩⟨jA| tr (|kB⟩⟨lB|) =
∑
i,j,k,l

cijkl|iA⟩⟨jA| ⟨lB|kB⟩ =
∑
i,j,k

cijkk|iA⟩⟨jA|. (1.13)

Similarly we can obtain reduced density matrix ρB = trA (ρAB) =
∑

i,k,l ciikl|kB⟩⟨lB|. The above

definition of reduced density matrices can be verified to hold true since it correctly explains the

outcomes of measurement observables on a subsystem of the composite system [31]. The reduced

states of a pure state composite system can reveal information about quantum correlations - like

entanglement present in the system. As discussed in Sec. 1.1.5, a separable pure state will give

rise to a reduced state that is also pure, thereby satisfying the condition tr(ρ2A) = 1 = tr(ρ2B).

An entangled state on the other hand is not separable, and results in a mixed reduced state with

tr(ρ2i ) < 1.

1.1.3 Measurement

To extract information about observables such as position, spin, momentum, etc., from a quan-

tum system, we need to perform measurements on it. However, the very act of measurement - for

example, by shining photons - inherently disturbs the system and causes it to collapse (probabilis-

tically) to an eigenstate of the observable. Also, such protocols require coupling the system with

an appropriate measuring device, which causes the (system) dynamics to become non-unitary,
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even though the evolution of the combined system and measuring device might be unitary. Mea-

surement phenomena on quantum systems are described by a collection of operators {Mm} [31]

which act on a state |ψ⟩ to give an outcome m described by the post-measurement state

|m⟩ = Mm|ψ⟩√
pm

, with the probability pm = ⟨ψ|M †
mMm|ψ⟩. (1.14)

Since the sum of probabilities of all possible outcomes must add to one, i.e.,
∑

m pm = 1,

it automatically imposes the completeness condition on the measurement operators such that∑
mM

†
mMm = 1.

1.1.3.1 Projective measurements

There exist special set of measurement observables called projective measurements, which are

described by Hermitian operators M . The spectral decomposition of this Hermitian operator

gives the eigenstates {|m⟩} with eigenvalues {λm}, and the projective measurement operator is

defined as the projector (Pm) of these eigenstates [31]. Hence,

M =
∑
m

λm|m⟩⟨m| =
∑
m

λmPm. (1.15)

Since the eigenbasis is orthonormal and complete, the projectors are orthogonal to one another,

i.e., PmPn = δmnPm, and
∑

m Pm = 1. The action of the projector corresponding to an outcome

|m⟩ on a general state |ψ⟩ is given by

|ψm⟩ =
Pm|ψ⟩√
pm

, with probability pm = ⟨ψ|Pm|ψ⟩. (1.16)
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1.1 Quantum information and computing

Projective measurements are useful since the average value of a measurement classically is [31]

M =
∑
m

pmλm

=
∑
m

λm⟨ψ|Pm|ψ⟩

= ⟨ψ|

(∑
m

λmPm

)
|ψ⟩

= ⟨ψ|M |ψ⟩ = ⟨M⟩. (1.17)

The average value can equivalently be calculated for a mixed state as M =
∑

i ci⟨ψi|M |ψi⟩ =

Tr(ρM). Hence, in any experimental ensemble, the average value of an observable gives the

required measurement action. On a different note, projective measurements destroy the system

state since they cause them to collapse to an eigenstate. Any further computation would require

re-preparation of the state before measurement, and hence this may not be a preferred protocol

across all experimental settings.

1.1.3.2 POVM

A more general measurement scheme makes use of Positive Operator-valued Measurement (POVM),

in which the requirement that measurement operators be orthogonal to one another is relaxed [31].

They are described using measurement operators as Em = M †
mMm, which follow the criteria (a)

operators Em are positive, and (b) satisfy completeness condition via
∑

mEm = 1. Hence, given

a POVM operator Em, the corresponding probability of outcome m for a system in state |ψ⟩ is

p(m) = ⟨ψ|EM |ψ⟩.

1.1.4 Quantum gates

Classical computing and information processing is accomplished by performing logical opera-

tions, or gates, on bits, which modify their state. Hence, with careful choice and sequence of

such gates, any desired operations on an array of bits can be incorporated. Some of the most

commonly used gates are the NOT, OR, AND, NOR, NAND, etc. The analogous operations on

qubits are quantum gates, which bring about (unitary) rotations of qubits. With the help of such
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single and multi-qubit rotations, the required Hamiltonian evolution can be implemented. Some

basic single and multi-qubit gates are discussed below.

1.1.4.1 Single qubit gates

Single qubit gates are transformations of a qubit from a state |ψ⟩ = α|0⟩+β|1⟩ to |ψ′⟩ = α′|0⟩+

β′|1⟩ (note that this definition can be readily extended to mixed states). Any such transformation

can be imagined as a rotation of the qubit on the Bloch sphere about a direction n⃗ = nxx̂+nyŷ+

nz ẑ by an angle θ. A general rotation operator can be defined in terms of the Pauli spin matrix

vector σ⃗ = σxx̂+ σyŷ + σz ẑ with σx =

0 1

1 0

, σy =

0 −i

i 0

, and σz =

1 0

0 −1

 as

Rn⃗(θ) = exp

(
−iθn⃗ · σ⃗

2

)
= cos

(
θ

2

)
1− i sin

(
θ

2

)
(n⃗ · σ⃗). (1.18)

We can see that the rotation operator for θ = 180◦ about the x-axis has the matrix representation

(upto a phase factor) of Rx(π) =

0 1

1 0

. Under the action of this operator, we get the trans-

formation |0⟩ → |1⟩ and vice-versa, which is the quantum analogue of a NOT gate. Similarly, π

rotations about y and z axes generate different transformations.

An important gate for quantum operations is the Hadamard gate which generates superposi-

tion of states as |0⟩ → |0⟩+|1⟩√
2

and |1⟩ → |0⟩−|1⟩√
2

. The matrix representation of this gate is given

by

H =
1√
2

1 1

1 −1

 . (1.19)

Another single qubit gate is the phase gate. This operation selectively gives a phase to the

state |1⟩ → eiϕ|1⟩ while leaving |0⟩ undisturbed. The matrix form of this gate is

Rϕ =

1 0

0 eiϕ

 . (1.20)
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1.1.4.2 Multi-qubit gates

Multi-qubit gates are operations performed simultaneously on more than one qubit. One of the

most important two-qubit gates is the controlled-not gate, or CNOT. This gate changes the state

of the target qubit (T) conditional to the state of the control qubit (C). The operation proceeds the

following way (i) if the control qubit is in state |0⟩, then the target qubit is unperturbed (ii) if the

control qubit is in state |1⟩, then a NOT gate is applied on the target qubit. Hence under the action

of this gate (in the computational basis), the states {|0C0T ⟩, |0C1T ⟩} remain unchanged, while

|1C0T ⟩ → |1C1T ⟩ and |1C1T ⟩ → |1C0T ⟩. The matrix form of this gate, where the first qubit is

the control qubit and second qubit is the target, is given by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.21)

In a multi-qubit system, CNOT gates can be applied on any pair with one as control and the other

as target. Being a non-local gate, it is essential for generating entangled states. Single qubit

gates and the two-qubit CNOT gate form a universal set, i.e., any Hamiltonian evolution can be

expressed as a combination of gates in this set [31]. Other commonly used multi-qubit gates

include SWAP gate and TOFFOLI gate [31].

1.1.5 Quantum correlations

Quantum correlations are a quintessential and defining feature of quantum mechanics. In naive

terms, they are connections between subsystems which make it impossible to describe measure-

ment results of each subsystem as independent, non-overlapping quantities [36]. Such quantum

correlations, especially entanglement, have been shown to be vital resources in many quantum

computing and information processing tasks [32, 33]. We briefly describe some types of quantum

correlations and their quantifiers.
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1.1.5.1 Entanglement

To understand entanglement, we first define a related concept of separability. A pure quantum

state is said to be separable if, in the constituent orthonormal bases {|ϕA
i ⟩} and {|χB

j ⟩} of sub-

systems A and B respectively, |ψAB⟩ =
∑

i ai|ϕA
i ⟩ ⊗

∑
j bj|χB

j ⟩ [37]. In such a case, the reduced

states are also pure, and are given simply by |ψA⟩ =
∑

i ai|ϕA
i ⟩ and |ψB⟩ =

∑
j bj|χB

j ⟩. The

definition of separability can be extended to mixed states as

ρAB =
∑
i

ciρ
A
i ⊗ ρBi , with

∑
i

ci = 1, (1.22)

which is essentially a convex sum of tensor product states of constituent subsystems. If a bipartite

quantum state cannot be expressed as a separable (or product) state, it is said to be entangled [37].

There are multiple quantifiers of entanglement in bipartite systems designed based on whether

the composite state of the system is pure or mixed to start with. For a pure state ρAB =

|ψAB⟩⟨ψAB|, if the reduced states ρA, ρB are mixed, then the composite state is necessarily en-

tangled. Hence, purity of reduced states acts as an quantifier for entanglement in pure composite

states, and is also referred to as linear entropy. A related measure of entanglement in pure states

is the entanglement entropy (which is used in this thesis and is explained in further detail below).

For mixed states, measures of entanglement include concurrence, negativity and logarithmic neg-

ativity, and positive partial transpose (PPT) criterion [38].

Entanglement entropy

This entanglement measure uses information content as a quantifier of entropy. Classically, en-

tropy of a random variable X measures the information gain on learning its value, or the amount

of uncertainty in X before learning this information [31]. It is quantified by the Shannon entropy

given by H(X) = −
∑

i pi log pi, where {pi} is the probability distribution of the possible out-

comes of X . The quantum mechanical extension of this definition for a system described by ρ is

given by the von Neumann entropy

S(ρ) = −tr(ρ log ρ) ≡ −
∑
i

λi log λi, (1.23)
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where {λi} are the eigenvalues of ρ. The von Neumann entropy of a pure state is always zero.

It serves as a convenient measure of entanglement of a composite system AB when we study

the entropy of its reduced subsystems. As mentioned previously, if the reduced state of a system

ρA = trB[ρAB] after partial trace is pure, then the composite state is not entangled. For such a

state, S(ρA) = 0 = S(ρB). However, if the reduced state is mixed, then it implies that the parent

composite state is entangled. Consequently, S(ρi) ̸= 0 for i = {A,B}. A state of dimension d

in a maximally mixed state, 1/d has an entanglement entropy of S(1/d) = log2(d). Hence the

entanglement entropy quantified using von Neumann entropy of the reduced system in a bipartite

system AB is a useful quantifier of entanglement.

1.1.5.2 Quantum discord

Another non-classical correlation that is widely studied is quantum discord [39–43]. First pro-

posed and quantified in Ref. [44], this correlation is defined in terms of the mutual information

in a bipartite system. A quantum system can have both classical and quantum correlations [45].

The correlation measure of discord filters out all classical correlations present in the system, and

faithfully quantifies only quantum correlations (if any), as described below.

Classical information content in a system, as explained in the previous section, is character-

ized by Shannon entropy, H(X). Mutual information between two subsystems A and B is then

defined as the common information shared between them. It can be visualized as the region of

intersection indicated in green in Fig. 1.2(a). Mathematically, it can be quantified by

I(A : B) = H(A) +H(B)−H(A,B).

Alternatively, one can use conditional entropyH(A|B) = H(A,B)−H(B) = H(A)−H(A : B),

which quantifies the information content unique to A and not shared with B. Hence, mutual

information can also be given by

J(A : B) = H(A)−H(A|B).
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I(𝑨:𝑩) -max(J 𝑨:𝑩 )

+ −+𝑺(𝑨) 𝑺(𝑩)=

I(𝑨:𝑩)

−𝑺(𝑨) 𝑺(𝑨|𝑩)=

J(𝑨:𝑩)

−𝑺(𝑩) 𝑺(𝑩|𝑨)≠

𝑯(𝑨) 𝑯(𝑩)

𝑯(𝑩|𝑨)
𝑰(𝑨:𝑩)

𝑯(𝑨|𝑩)
J(𝑨:𝑩)
=

𝑺(𝑨,𝑩)

(a)

(a1)

(a2)

Figure 1.2: Mutual information calculated in two different ways for (a) classical scenario, where Shannon
entropies of subsystems give I(A : B) = H(A) +H(B)−H(A,B), and conditional measurements give
J(A : B) = H(A) −H(A|B). In this case, I(A : B) = J(A : B). The quantum mechanical definition
in terms of von Neumann entropy giving (a1) I(A : B) = S(A) + S(B)− S(A,B), which contains both
classical and quantum correlations (a2) conditional measurement resulting in J(A : B) = S(A)−S(A|B),
which when maximised over all measurement bases

∏B
i of subsystemB give the total classical correlations

in the system. The difference between the two quantum mechanical definitions gives quantum discord.

Note that this definition requires measurement of the subsystem B [46] since

H(A|B) =
∑
j

p(bj)H(A|B = bj) ,with

H(A|B = bj) = −
∑
i

p(A = ai|B = bj) log2 p(A = ai|B = bj).

Definitions I(A : B) and J(A : B) are classically equivalent, and give identical values of mutual

information, as shown in Fi.g 1.2(a). However, this is not the case for quantum systems.

In the quantum scenario, information content in a density matrix ρ is quantified by the von

Neumann entropy S(ρ) = −Tr(ρ log ρ). For a bipartite quantum system AB, the mutual infor-

mation between A and B can be defined analogous to I(A : B) as

I(A : B) = S(A) + S(B)− S(AB), (1.24)
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1.1 Quantum information and computing

where S(A), S(B) and S(AB) are von Neumann entropies of subsystems A, B, and the com-

posite system AB respectively. This definition is depicted in the top panel in Fig 1.2(a1). The

alternative definition of mutual information is given by

J(A : B) = S(A)− S(A|B), (1.25)

where the conditional entropy S(A|B) =
∑

j p
B
j S(A|B = bj) is the entropy of subsystem A

conditional to a measurement on subsystem B giving a result bi from the possible outcomes of B,

with probability pBj [44]. This is displayed in Fig. 1.2(a2).

Definitions Eq. 1.24 and Eq. 1.25 are not equivalent since the second definition (J(A : B))

involves measurement. Measurement is a very intriguing process in quantum physics which is

basis dependent and changes the state of the system [31, 46]. Hence, estimates of J(A : B) can

vary depending on the choice of measurement bases, while I(A : B) is independent of measure-

ment basis. It is also important to note that J(A : B) is an estimate of classical correlations in

the system since measurements trigger the collapse of B. Following this, the system is in a state

ρAB =
∑

i piρA ⊗ |bi⟩⟨bi| from which we can extract the classical correlations [45]. Hence, by

maximising J(A : B) over all possible orthonormal measurement bases of B, one can determine

the total classical correlations in the system. Consequently, the (minimum) difference between

the two ways of evaluating mutual information in Eq. 1.24 and Eq. 1.25 gives the quantum cor-

relations present in the system, and is called quantum discord. For orthonormal bases {ΠB
i } on

subsystem B, discord is given by [44]

D(B|A) = I(A : B)−max
{ΠB

i }
J(A : B), (1.26)

Note that discord is not necessarily symmetric under system partitions since it involves measure-

ments. It varies from 0 for states without quantum correlations to 1 for maximally entangled

states.
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1.2 NMR experimental test bed

In this thesis, we have used the NMR test bed to study nonlinear phenomena. Originating from the

discovery of Rabi oscillations around the 1940s, NMR has undergone tremendous development

both theoretically and experimentally [47]. It has pioneered vast areas of research in the fields of

physics, chemistry, biology and medicine, in studies of magnetic properties of materials, structure

of chemicals and proteins, tissue imaging via MRI, etc. [48–50]. NMR is also an excellent

platform for implementation of quantum information processing tasks [51–53]. Here, we briefly

overview the experimental setup and how it can be utilised to study phenomena pertaining to

quantum information and computing.

1.2.1 NMR qubits

NMR makes use of the intrinsic spin degree of freedom of nuclei. Depending upon the con-

figuration of nucleons in the system, it can have spin I = 1/2, 1, 3/2, ..., each of which has an

associated spin angular momentum Î and the eigenvalues of the operator Î2 are given by I(I+1)ℏ2

[49]. A non-zero spin has a magnetic moment given by µ̂ = γℏÎ where γ is the gyromagnetic

ratio. A spin-I system when placed in an external magnetic field B̂ = B0ẑ interacts with it via

Zeeman Hamiltonian which is given by

H0 = −µ̂ · B̂ = −γℏB0Iz = ℏω0Iz, (1.27)

where Iz = σz/2 is the z-component of the spin angular momentum, and ω0 = −γB0 is the

Larmor frequency. Since a non-zero spin is like a tiny magnet, when placed in an external field,

it experiences a torque, which causes its magnetic moment to precess about the field at ω0/2π

frequency. For fields of a few Tesla (typical of commercial NMR spectrometers), the Larmor

frequency is of the order of hundreds of MHz. For a spin-I system, energy eigenvalues of the

Hamiltonian are E = −msℏγB0, where ms = {−I,−I + 1, .., I} are the magnetic quantum

numbers, which forms a 2I + 1 level system with equal energy gaps ∆E = ℏγB0 = ℏω0. A

spin-1/2 system consequently has two energy levels corresponding to ms = ±1/2, which forms

a qubit with |ms = 1/2⟩ ≡ |0⟩ and |ms = −1/2⟩ ≡ |1⟩. Hence, we have established the initial
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1.2 NMR experimental test bed

connection between NMR and quantum information processing.

1.2.1.1 Chemical shift

The above description is for a free spin-I system. However, most of the nuclear spin systems used

in experiments are not free elements, but molecules dissolved in some solvent. In this case, the

local field experienced by a nucleus is different from a free spin due to the chemical environment

around the nucleus in the molecule. The electronic cloud distribution from the surrounding ele-

ments alter the effective field around the nucleus, giving a modified Zeeman Hamiltonian [48, 49]

H = H0 + ℏγδj · B̂, (1.28)

where δj is the chemical shift tensor at the site of the j-th spin. At a strong external field B̂ =

B0ẑ, due to rapid tumbling motion of the molecules in liquid samples, this tensor reduces to an

averaged isotropic scalar value δ. Hence, the above equation becomes H = −ℏγ(1 − δ)B0Iz,

where we can identify the shifted Larmor frequency ω = −γ(1 − δ)B0. The chemical shift is

characteristic of the molecule and helps with addressability of qubits.

1.2.1.2 Interacting qubits

Many quantum information processing tasks require at least two interacting qubits. In NMR, in-

teractions naturally present in the system help in this regard. These interactions are of two types

[49] -

(i) electron mediated indirect spin-spin J -coupling

(ii) direct spin-spin coupling through space mediated by dipolar interactions

which are explained below. Spins with I ≥ 1, called quadrupolar spins, have asymmetric electric

charge distribution in the nuclei which gives rise to quadrupolar couplings [49]. In this thesis,

we only consider spin-1/2 systems, and hence quadrupolar spins and their properties are not dis-

cussed here.

J -coupling

The indirect spin-spin coupling is an electron mediated effect via bonds between spins, and is
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hence an intramolecular effect. In isotropic liquids, the rapid tumbling motion of the molecules

does not average out the J -coupling. This interaction is given by the Hamiltonian [48, 49]

HJ =
∑
i

ωiIzi +
∑
i,j>i

2πJij Îi · Îj . (1.29)

where ℏ = 1, Jij is the coupling between i-th and j-th spins whose spin operators are given

by Îi = {Iαi} with Iαi = σαi/2 for α = {x, y, z}. Depending on the relative strength of the

coupling term with respect to the Zeeman term, the Hamiltonian can be further simplified. In the

weak coupling limit at high fields, i.e., |Jij| << |ωi −ωj|, under secular approximation [49], Eq.

1.29 becomes

HJ =
∑
i

ωiIzi +
∑
i,j>i

2πJijIziIzj. (1.30)

This condition is always satisfied for heteronuclear systems in which the interacting qubits are of

different species (for example 1H and 13C), whose Larmor frequencies are separated in the range

of hundreds of MHz, while their typical J coupling values are of the order of few Hz. In the case

of homonuclear systems, the interacting qubits are of the same species and hence this simplifi-

cation does not hold. Since this interaction is a through bond effect, the strength of J -coupling

generally reduces with increasing intramolecular distance between spins.

Dipolar coupling

Each nuclear spin has a dipole moment by which different spins can directly interact with one

another through space. The dipolar coupling Hamiltonian (ℏ = 1) can be given by [49]

HD = aij

(
3(Îi · eij)(Îj · eij)− Îi · Îj

)
, with aij =

−µ0γiγj
4πr3ij

, (1.31)

where µ0 = 4π× 10−7 H/m is the magnetic constant, γi is the gyromagnetic ratio of the i-th spin,

rij is the spin-spin distance, and eij is a unit vector along the line joining the centres of spins i

and j. Dipolar coupling interaction can be both intramolecular and intermolecular, and is strongly

dependent on the state of the sample. In liquid samples, due to rapid tumbling motion, the dipolar

coupling effectively averages to zero. However, it survives in anisotropic liquid crystal samples

and solid state samples, which have high degree of order in them [49]. In this thesis, we have
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1.2 NMR experimental test bed

only worked with liquid samples, and hence HD = 0.

1.2.1.3 Spin manipulation

As explained in Sec. 1.2.1, the energy gaps between spin levels is in the range of hundreds

of MHz, which fall under the radio frequency (RF) range. Hence, RF fields can be used to

manipulate spins. A linearly polarized RF field applied transverse to the external field can be

described by the following time-dependent Hamiltonian [48, 49]

HRF(t) = −γBrf (t)Ix = −γB1 cos(ωrf t+ ϕ)Ix, (1.32)

where B1 is the RF amplitude, ωrf is its angular frequency, and ϕ is its phase. The linearly polar-

ized field can be decomposed into two counter-propagating circularly polarized fields described

by

BR(t) =
1

2
B1 [cos(ωrf t+ ϕ)x̂+ sin(ωrf t+ ϕ)ŷ] ,

BNR(t) =
1

2
B1 [cos(ωrf t+ ϕ)x̂− sin(ωrf t+ ϕ)ŷ] .

Here, only the component rotating in the same direction (BR(t)) as the Larmor precession can

effectively couple to it. The counter-rotating component (BNR(t)) will be precessing with twice

the frequency with respect to the Larmor precession, and hence is non-resonant with the spin

precession, and is generally ignored. Thus, the effective RF Hamiltonian is just the contribution

of the co-rotating component

HRF(t) = −γB1

2
[cos(ωrf t+ ϕ)Ix + sin(ωrf t+ ϕ)Iy] .

The time dependence in the Hamiltonian can be removed by going to a rotating frame of ωrf ,

which simplifies the above Hamiltonian to

Heff = ΩIz + ω1 [cos(ϕ)Ix + sin(ϕ)Iy] , (1.33)
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where Ω = ω0 − ωrf is the difference between Larmor frequency of the spin and RF (same as ro-

tating frame) frequency and is referred to as offset, ω1 = −γB1/2 is called the nutation frequency,

which serves as a measure of RF amplitude [49]. Note that the offset term is independent of the

RF amplitude. When the RF frequency is exactly equal to the Larmor frequency (ωrf = ω0), it

is said to be on-resonant. This is equivalent to the spin not seeing any field along the ẑ direction

in the rotating frame. A non-zero offset value on the other hand retains a residual field in the ẑ

direction, and the spins see an effective field oriented between the transverse plane and ẑ.

Effect of RF pulse: application of an RF pulse in the on-resonant scenario induces rotation of the

spin about the field direction and the corresponding flip angle is given βp = ω1τp, where τp is

the pulse duration and ω1 is the nutation frequency. Hence, by changing the RF amplitude and

duration, one can implement different flip angles and realize the required spin evolution.

1.2.1.4 Thermal equilibrium

𝐵0

𝑧̂

𝑀

𝑧̂

Figure 1.3: Schematic of a NMR sample in an external magnetic field. A typical sample contains about
1018 molecules, which at thermal equilibrium settle to Boltzmann distribution at a temperature T . The
fractional excess population in the ground state gives rise to a net magnetization M parallel to the external
field.

A typical NMR sample contains about 1018 molecules of the solute dissolved in an appropriate

solvent. It then becomes impractical to consider the individual spins of each molecule, but rather

work with bulk properties of the system. Consider an ensemble of spin-1/2 systems. In the

absence of an external field, the spin levels |ms = −1/2⟩ and |ms = 1/2⟩ are degenerate, and

each spin is oriented randomly. Hence, the net magnetic moment is zero. When an external field
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1.2 NMR experimental test bed

B̂ = B0ẑ is introduced, the degeneracy between different spin levels is lifted, and they try to

align along the z-direction. At ambient temperatures, the thermal energy of the system is much

larger than the Zeeman energy splitting. Hence even the higher energy level is populated, and the

system at thermal equilibrium at a temperature T is in a highly mixed state. The corresponding

density matrix is diagonal with populations in different energy levels distributed according to the

Boltzmann function [49]. The diagonal elements of the density matrix are given by

ρieq =
e−Ei/kBT∑
i e

−Ei/kBT
, (1.34)

where Ei is the energy of the i-th spin level and kB is the Boltzmann constant. At thermal

equilibrium, the ground state (|ms = 1/2⟩) has slightly higher population than the higher energy

level (|ms = −1/2⟩), and hence the there is a net magnetic moment or magnetization parallel

to the external applied field, as shown in Fig. 1.3. This is a macroscopic quantity on which

cumulative effects from the collection of spins is reflected.

At room temperatures and higher, thermal energy kBT >> ℏω0 the Zeeman energy, and

hence the density matrix elements can be approximated as

e−msℏω0/kBT = 1− msℏω0

kBT
+

1

2!

(
msℏω0

kBT

)2

+ ... ≈ 1− msℏω0

kBT
= 1 +

msℏγB0

kBT
.

For a spin-1/2 ensemble, ms = ±1/2. Hence the partition function can be approximated as∑
i e

−Ei/kBT = e−ℏω0/2kBT + eℏω0/2kBT ≈ 2. The thermal equilibrium density operator is then

given by

ρeq =

 eℏγB0/2kBT∑
i e

−Ei/kBT 0

0 e−ℏγB0/2kBT∑
i e

−Ei/kBT

 ≈

1
2
+ ℏγB0

4kBT
0

0 1
2
− ℏγB0

4kBT

 =
1

2
+ ϵ

σz
2
, (1.35)

where ϵ = ℏγB0/2kBT ≈ 10−5 is called the purity factor, and σz is the Pauli-z matrix. As

the number of qubits N increses, the purity decreases exponentially as ϵ = ℏγB0/2
NkBT . The

uniform background population given by 1/2 does not give rise to any observable signal. All

interesting dynamics arises form the traceless deviation density matrix given in Eq. 1.35 by

ρdev = σz/2 = Iz.
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1.2.1.5 Pulsed field gradient

Pulsed field gradients (PFG) are spatially varying magnetic fields which are used to introduce

space-dependent phases in the sample, based on requirement. They are widely used in imaging

techniques, MRI, etc [49]. From an information processing point of view, PFGs are routinely

used to destroy coherences, and for coherence order selection and filtering [54–56]. For instance,

a gradient applied along the external field direction introduces spatially varying phase along z

in the sample, and hence the net transverse magnetization components average to zero. Further

details of PFG are provided in the Appendix A.1.

1.2.1.6 Relaxation

No system is truly isolated. All systems interact with an environment, which causes relaxation

in the system. In NMR, relaxation occurs due to fluctuations in the magnetic field around spins

brought about by thermal motion [49]. These cause transitions and loss of coherence in the sys-

tem. One of the dominant causes of relaxation in liquid state NMR is the influence of dipole

moments of surrounding spins as the molecules tumble, which give rise to fluctuations in the lo-

cal fields around spins. The inherent relaxation processes can be classified into two categories -

(i) Longitudinal relaxation (T1) - also known as spin-lattice relaxation, this mechanism induces

transitions in the system and exchange of energy with surrounding nuclei and spins, which re-

stores the equilibrium Boltzmann population distribution with no coherences. T1 timescale is

typically ranges from few ms to s.

(ii) Transverse relaxation (T2) - also known as spin-spin relaxation, this phenomenon is the loss

of coherence between spins. It results from fluctuations in the average field around nuclei due

to inhomogeneities, which accumulate over time causing spins to start precessing out of phase

with respect to one another and hence lose coherence. Time scales of T2 are typically such that

T2 < T1.

1.3 NMR based quantum information processing

Here, we describe how properties of NMR systems can be used to study quantum information

processing tasks.
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1.3 NMR based quantum information processing

1.3.1 Quantum gates in NMR

Any quantum computing task can be broken down into single qubit and multi-qubit operations.

In this thesis, these are accomplished in NMR by the following -

(i) Single qubit manipulation ↔ RF pulses

(ii) Multi-qubit operations ↔J coupling

as explained below.

Single qubit operations

𝑧

𝑥

𝑦

(P,τ)

RF field

|↓ |↓

|↑ |↑

𝑧

𝑥

𝑦

−𝑧

𝑧

𝑥

𝑦

RF field
𝑧

𝑥

𝑦

|↓ |↓

|↑ |↑

(P,τ/2)

(a) (b)

Figure 1.4: Effect of (a) π pulse with amplitude P applied for duration τ about the x-axis which rotates
the net magnetization by 180◦ from z to −z. This results in a population inversion, and is the experimental
implementation of a NOT gate (b) π/2 pulse of amplitude P applied for duration τ/2 about the y-axis
rotates the net magnetization by 90◦ from z to x, which equalizes population in the energy levels. This is
the implementation of a pseudo Hadamard gate.

The effect of RF pulses, as explained in Sec. 1.2.1.3, is to bring about rotations of a qubit. This

can be used to apply various gates such as NOT, Hadamard, etc. Consider a single qubit system in

thermal equilibrium described by the deviation density matrix ρ = σz/2. The net magnetization

is parallel to the external field. An RF pulse of amplitude corresponding to ω1 = −γB1 for

duration τ such that the flip angle β = ω1τ = π and phase ϕ = 0 which translates to the x-axis

is given by the operator Rx(π) = exp(−iπIx) where Ix = σx/2. This pulse acts on each spin to

induce a rotation by angle π about the x-axis such that the net magnetization is rotated by 180◦

from +z to −z as shown in Fig. 1.4(a). In quantum computation terms, this transforms the state
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|0⟩ Rx(π)−−−→ |1⟩. The matrix form of the operator is

Rx(π) = exp(−iπIx) = −i

0 1

1 0

 .
The pre-factor i is a global phase and hence can be ignored.

The Hadamard gate H = 1√
2

1 1

1 −1

 can be experimentally realized by a sequence of two

pulses (i) π/2 rotation about y-axis (Ry(π/2)), followed by (ii) π rotation about x-axis (Rx(π))

whose matrix form is

Rx(π)Ry(π/2) = exp(−iπIx) exp(−iπ/2Iy) = −i

0 1

1 0

 1√
2

1 −1

1 1

 =
−i√
2

1 1

1 −1

 .
Again, the global phase −i can be ignored. In the above equation, the operators are time or-

dered from right to left. An experimentally easy way to achieve the Hadamard gate is a pseudo-

Hadamard, which is just a Ry(π/2) pulse that rotates |0⟩ Ry(π/2)−−−−→ |0⟩+|1⟩√
2

and |1⟩ Ry(π/2)−−−−→ |0⟩−|1⟩√
2

.

This is illustrated in Fig. 1.4(b). Likewise, any other single qubit gates can be realized by design-

ing a sequence of pulses with appropriate angles and phases to get the desired effect.

Multi-qubit operations

These operations rely on interactions between qubits. In liquid state NMR, the interaction is

provided by J coupling and the corresponding Hamiltonian of the system is given by H =∑
i,j>i 2πJijIziIzj . When a qubit is evolved under this Hamiltonian for time τ , the correspond-

ing unitary operator is given by

UJ = exp(−iHτ) = exp

(
−i
∑
i,j>i

πJijτ2IziIzj

)
. (1.36)

The action of any operator Â = ηÔ on a density matrix ρ can be computed using the product

operator formalism [49, 57]

ρ
ηÔ−→
τ

cos(ητ)ρ+ sin(ητ)[Ô, ρ],

24



1.3 NMR based quantum information processing

and the effective rotation achieved is θ = ητ . In Eq. 1.36, θ = πJ τ . Consider for instance the a

two qubit system in a state ρ = Ix1 evolving under J coupling for duration τ

Ix1
2πJ Iz1Iz2−−−−−−→

τ
cos(πJ τ)Ix1 + sin(πJ τ)[2Iz1Iz2, Ix1] = cos(πJ τ)Ix1 + sin(πJ τ)2Iy1Iz2.

Hence by choosing the duration τ , we can transform a single qubit state to a correlated state. A

multi-qubit gate can be decomposed into a combination of single qubit gates and evolution under

J . The two-qubit CNOT gate with control on the first qubit and target on second qubit can be

implemented in NMR by the pulse sequence (time ordered from right to left)

Ucnot =
(π
2

)2
y
(τ)
(π
2

)2
−y

(π
2

)2
−x

(π
2

)1
−z
,

where τ = 1/(2J12) is the duration of free evolution under the internal Hamiltonian of the system

H = 2πJ12Iz1Iz2.

1.3.2 Pseudo-pure states

One of the primary requirements in many quantum information processing tasks is the initializa-

tion of the system into a desired state, which is most often a pure state [59]. In NMR, due to

the extremely low purity factors, preparation of pure states requires unrealistically high magnetic

fields or extremely low temperatures. Instead, one can prepare pseudo-pure states (PPS) which

are of the form

ρpps =

(
1− ϵ

2

)
1+ ϵ|0⟩⟨0|. (1.37)

Such a state has uniform background population in all states (captured by identity term), and

slight excess population in the desired state (|0⟩ in the above case). The dynamics of a PPS is

isomorphic to that of the corresponding pure state [6]. This can be intuitively understood from

the form of Eq. 1.37 where identity term remains invariant under evolution and any interesting

dynamics is the result of evolution of the other term with ϵ purity. Moreover, the identity term

does not contribute to the measured NMR signal.

A single qubit system is always in a pseudo-pure state. For two and more qubits, there are

various techniques to prepare PPS including spatial averaging [6], temporal averaging [60], and
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Figure 1.5: NMR pulse sequences (as reported in our publication [58]) for preparing PPS (a) |00⟩⟨00| of
two qubit system 19F and 31P spins of sodium fluorphosphate molecule with τPF = 1/(2JPF ) and (b)
|000⟩⟨000| of three-qubit system 13C, 1H, and 19F spins of dibromofluoromethane molecule with τHC =
1/(2JHC), τFC = 2/|JFC | − 1/|2JFC |, and τHF = 1/(2JHF ), from thermal equilibrium. The solid
bars represent rotations by an angle and about a direction as indicated over them. Blank rectangles represent
π pulses and the black half ellipsoids represent PFG along +z axis to destroy coherences.

logical labelling [7]. We describe the spatial averaging technique which has been used in this

thesis. This technique makes use of single and multi-qubit gate to transfer populations between

different spin states. These naturally generate coherences, which are destroyed using gradients

(PFG), and hence the name spatial averaging. For the two-qubit system formed by 19F and 31P

nuclei of sodium fluorophosphate molecule and three-qubit system formed by 13C, 1H, and 19F

spins of dibromofluoromethane molecule used in this thesis, the pulse sequences which prepares

PPS from thermal equilibrium are shown in Fig. 1.5. In the two-qubit system, such a sequence
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transforms the thermal state as

γ1Iz1 + γ2Iz2
PPS−−−→ Iz1 + Iz2 + 2Iz1Iz2 ≡ |00⟩⟨00|. (1.38)

1.3.3 Measurement and readout

A crucial part of any information processing task is to estimate the state of the system at desired

instances in time. Complete knowledge of the density matrix enables extraction of all informa-

tion about the state, including populations and correlations. In NMR, as explained in Sec. 1.2.1.4,

the sample has a net magnetization, which at thermal equilibrium is aligned parallel to the exter-

nal field. When an RF pulse is applied to tilt it away from this direction, it begins to precess

about the z-axis. In NMR architecture, RF receiver coils are in the transverse plane. Hence, as

the magnetization precesses, it cuts through these coils generating a time-varying magnetic flux,

which in turn induces an emf in the coils. However, due to inherent relaxation mechanisms, the

measured signal decays with time, giving the free induction decay (FID) [48, 49]. This signal is

proportional to

M(t) = tr[ρ(t)(σx + iσy)], (1.39)

which gives the transverse magnetization components. The frequency spectrum is obtained by

taking a Fourier transform of the time-domain FID signal. A schematic of the NMR spectrometer

and components are shown in Fig. 1.6. At this juncture, it is important to note that in the mea-

surement scheme of NMR, only single quantum coherences can be measured since the transitions

are governed by selection rule ∆ms = ±1 [49]. Hence, a single measurement is insufficient

to provide information about populations and all the off-diagonal elements (coherences) of the

density matrix. To estimate the complete density matrix, we employ quantum state tomography

(QST) which involves a series of experiments from whose measurements all the elements of ρ(t)

can be estimated [61, 62]. The intuitive idea of QST is to apply unitary operations which will

transfer information about populations and different coherence orders to the single quantum co-

herence order (or the measurement basis in the architecture used), which is then experimentally

measured. This is akin to measuring in different bases, since unitary rotations on the state are

simply basis transformations. The series of measurements gives a set of linear equations in the

elements of ρ(t), which is solved to individually estimate each density matrix element. Detailed
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Figure 1.6: Schematic of a NMR spectrometer. The sample is inserted through a bore (a), where it sits in
a region of uniform external magnetic field B0 generated by a superconducting coil (b). The RF coils lie
inside, closer to the sample (c). The preamplifier and amplifier (d) help apply pulses and collect the signal
from the sample. The FID signal (e) collected from the sample is Fourier transformed to get the frequency
spectrum (f).

information of the QST experiments used in this thesis are given in the Appendix A.2.

1.4 Nonlinear dynamics using NMR

Nonlinearity is a fundamental concept describing functions whose dependent variables do not

vary linearly with the independent variables, mathematically defined by behaviours f(x + y) ̸=

f(x) + f(y) and f(αx) ̸= αf(x). It is essentially true of systems characterized by multiple

parameters and interactions ranging from celestial bodies, coupled oscillators, chemical reactant

concentrations, atmospheric systems, to predator-prey models, population dynamics, circadian

rhythms, economies, markets, and stocks [63–66]. The ubiquity of nonlinear effects in classical

mechanics prompts the question - how does nonlinearity manifest in the quantum domain? This

is a natural curiosity that arises in the light of Bohr’s correspondence principle which says that
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synchronization

Quantum 
simulations

Figure 1.7: A brief overview of the thesis. We have studied some fundamental effects of nonlinearity such
as quantum chaos, dynamical tunneling and quantum synchronization. From an application perspective,
we have studied the role of nonlinear interactions in simulating quantum dynamics of Rydberg atoms.

classical mechanics is a limiting case of quantum mechanics. However, a direct extension of clas-

sical principles of nonlinearity to the quantum regime is not straightforward since the dynamics

are governed by the Schrodinger equation, which is linear. There have been developments to

include nonlinear principles in quantum dynamics such as the nonlinear Schrodinger equation,

Gross-Pitaevskii equation, Hatree-Fock approximation, etc. In this thesis, we study this subject

from the aspect of nonlinearity in the Hamiltonian operators under which the system evolves, and

the effects that arise therein. These can be simulated in nuclear spin systems by a combination

of RF pulses and scalar spin-J coupling interactions. Hence, using the concepts of NMR and

quantum information precessing introduced here, we study the following topics:

(i) Quantum chaos in small and large spin registers

(ii) Dynamical tunneling

(iii) Quantum phase-synchronization

(iv) Simulating interaction induced Rydberg blockade and freezing in spin systems,

as shown in the flowchart in Fig. 1.7.
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CHAPTER 2

Quantum chaos in a two-qubit kicked top

Abstract

In this chapter, we experimentally study chaos in a two-qubit system comprising of a pair

of spin-1/2 nuclei using the quantum kicked top model in nuclear magnetic resonance

architecture. We simulate the kicked top by a series of linear kicks realized using radio-

frequency pulses, and the nonlinear interaction realized using indirect spin-spin coupling.

After a variable number of kicks, we employ quantum state tomography to reconstruct the

single-qubit reduced density matrices, using which we extract von Neumann entropies and

Husimi distributions. These measures enable the study of correspondence with classical

phase space as well as probing distinct features of quantum chaos, such as symmetries and

temporal periodicity in the two-qubit kicked top.

Reported in

V. R. Krithika, V. S. Anjusha, Udaysinh T. Bhosale and T. S. Mahesh, NMR studies of

quantum chaos in a two-qubit kicked top, Phys. Rev. E 99, 032219 (2019).

2.1 Introduction

Chaos is one of the hallmarks of nonlinear systems. Classical chaos is an extremely well studied

field in physics, both theoretically and experimentally. Classically chaotic systems are determin-

istic systems, with exact equations of motion to describe the evolution of system parameters, but

are nonetheless unpredictable over long time scales [63]. Such systems exhibit extreme sensitivity

to initial conditions and are characterized by Lyapunov exponents which capture the exponential

divergence of nearby trajectories. Nonlinear systems are ubiquitous, and chaos has been shown

to have far-reaching applications beyond physics, in fields ranging from biology, chemistry, earth
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2.1 Introduction

science to finances [63, 65, 66].

A natural extension of classical chaos is to the quantum domain following Bohr’s correspon-

dence principle, which states that classical mechanics is a limiting case of quantum mechanics

[67, 68]. This prompts the question - are there signatures of chaos in the quantum regime? If

so, how do we study them? It might seem that a direct extension of the principles of classical

chaos to quantum mechanics would be straightforward. That is however not the case due to two

main constraints (i) the uncertainty principle in quantum mechanics which renders it impossible

to estimate system parameters simultaneously at the initial instant and at later times with arbitrary

precision, and (ii) quantum dynamics is governed by the Schrodinger equation, which is linear

and preserves the overlap of states. Hence, contrary to classical trajectories diverging exponen-

tially, quantum dynamics preserves the overlap between states, i.e., the overlap within an initial

pair of states is equal to that of the transformed pair. The bridge between classical chaotic sys-

tems and their quantum counterparts has thus been a major subject of study both theoretically and

experimentally [68–84].

Understanding quantum chaos is not only of interest from fundamental perspectives, but is

also crucial for building operable quantum computers. Studies have probed the interplay of quan-

tum chaos with quantum algorithms [85–87], and have also shown that chaotic interactions in a

system can have deleterious effects on the functionality of quantum computers [88–90]. Since

classical measures of chaos cannot be extended to the quantum domain, quantum chaos needs to

be defined and characterized by inherent quantum mechanical properties. Signatures of quantum

chaos have been studied using various quantities like entanglement [91–95], Lyapunov exponents

and Husimi probability distributions [96], the dynamics of quantum discord [97], level statistics

of chaotic Hamiltonians [72, 98], the dynamics of open quantum systems undergoing continuous

quantum measurement [99], etc. Quantum chaos has also investigated for its relation with other

phenomena in quantum systems such as decoherence [100–109], and thermalization [81, 110–

118]. More recently, the relation between quantum chaos and out-of-time-order correlations has

gained immense attention [119–132].

Quantum chaos has been studied in a host of models such as billiards, kicked rotor, etc. [133–

142]. In this work, we use the kicked top model, which is apt for spin systems. This model is a

classic example for studying chaos, which shows transition from regular to chaotic behaviour as a
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function of the chaoticity parameter. It has been studied theoretically [72, 91–94, 143–149], and

has also been realized experimentally in various systems including laser-cooled cesium atoms

[78] and superconducting circuits [81]. Recently, the kicked top consisting of just two qubits,

which is in a deep quantum regime, has also been studied theoretically in detail [93, 150]. It has

been shown that the model is exactly solvable for up to four qubits [148]. In this work, we use

nuclear magnetic resonance (NMR) as the experimental platform to study quantum chaos. NMR

is a versatile technique that offers long coherence times, precise control over spin dynamics, and

efficient readout of output states [49]. It has been a successful test bed for implementing various

quantum information processing tasks and for understanding quantum correlations [52, 53].

2.2 Objectives

In this project, we study quantum chaos in a two-qubit system formed by a pair of spin-1/2

nuclei in NMR architecture. We implement the quantum kicked top (QKT) Hamiltonian using

spin-spin interaction between two nuclear spins as the nonlinear evolution and intermittent radio-

frequency pulses as linear kicks. We initialize the system to different initial conditions and system

parameters. Following this, we

(i) Apply variable number of kicks and characterize the final state via quantum state tomography

from which we obtain the von Neumann entropy

(ii) Capture the signatures of correspondence between the classical phase space and the quantum

dynamics using entanglement as a witness via the time averaged von Neumann entropy

(iii) Further analyse the single qubit Husimi distributions to understand the contrasting dynamics

between regular and chaotic regions in the quantum regime.

These studies help us understand and characterize the behaviour of systems in the deep quan-

tum regime, and thereby aid in building efficient quantum protocols for quantum computing and

information processing tasks.

2.3 Quantum Kicked top

We first introduce the quantum kicked top (QKT) model [72, 151] and its classical limit. The

quantum kicked top is described by the piecewise Hamiltonian consisting of periodic linear x
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2.3 Quantum Kicked top

Figure 2.1: Schematic of the quantum kicked top model for a two-qubit system, initialized into a coherent
state |θ0, ϕ0⟩ ⊗ |θ0, ϕ0⟩. The filled rectangles represent linear kicks, which together with the nonlinear
evolutions simulate a QKT.

kicks of width ∆ and strength p separated by nonlinear evolutions each of an interval τ >> ∆

(see Fig. 2.1)

H(t) = pJx, for t ∈
[
nτ − ∆

2
, nτ +

∆

2

]
and

H(t) =
k

2jτ
J2
z , otherwise (2.1)

where J = [Jx, Jy, Jz] is the total angular momentum vector. The value of ℏ has been set to

1. The time lapse of the n-th kick is given by [nτ − ∆
2
, nτ + ∆

2
]. The nonlinear term in Eq.

2.1 describes a torsion about the z axis wherein k is the chaoticity parameter and j is the total

spin size. A spin-j QKT can be simulated using 2j number of qubits which are symmetric under

exchange, a property which has earlier been used to study various quantum correlations [97].

We simulate a QKT of j = 1 using a pair of interacting qubits. We set p∆ = π/2 to simplify

the quantum and classical maps [94, 151]. The time evolution of the system is governed by the

Floquet unitaries

Ukick = e−iπ
2
Jx , UNL = e−i k

2j
J2
z , and UQKT = UNLUkick. (2.2)

The overall unitary UQKT is applied repeatedly to realize the desired number of kicks. In the

Heisenberg picture, the evolution of the angular momentum operator for any time step is given
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by [94]

J ′ = U †
QKT J UQKT. (2.3)

The x and y components of J can be expressed in terms of raising and lowering operators as

Jx = (J++ J−)/2 and Jy = (J+− J−)/2i, which can then be studied in the Jz eigenbasis {|m⟩}

following the ladder equations

J+|m⟩ = cm|m+ 1⟩ and J−|m⟩ = dm|m− 1⟩. (2.4)

We first show the calculation of J+ component evolution since J− will simply be its Hermitian

conjugate (H.c):

J ′
+ = U †

QKTJ+UQKT = U †
kickU

†
NLJ+UNLUkick. (2.5)

The action of UNL on the operator J+ in the |m⟩ basis can be computed as

⟨m|U †
NLJ+UNL|n⟩ = ⟨m|ei

k
2j

J2
zJ+e

−i k
2j

J2
z |n⟩

= exp

{
i
k

2j
(m2 − n2)

}
⟨m|J+|n⟩

= exp

{
i
k

2j
(m2 − n2)

}
cnδm,n+1

=

e
i k
j
(n+ 1

2
)cn, if m = n + 1,

0, otherwise

= ⟨m|J+ei
k
j
(Jz+

1
2
)|n⟩, (2.6)

so that

U †
NLJ+UNL = J+e

i k
j
(Jz+

1
2
). (2.7)

Following this, the kick Floquet unitary is applied on the above operator. The action of

the kick unitary is to bring about a clockwise rotation of angle π/2 about the x axis giving

U †
kick(Jx, Jy, Jz)Ukick = (Jx,−Jz, Jy), which gives

J ′
+ = U †

QKTJ+UQKT = U †
kickJ+e

i k
j
(Jz+

1
2
)Ukick

= (Jx − iJz)e
i k
j
(Jy+

1
2
). (2.8)
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The transverse components of the angular momentum operator after one iteration of QKT

evolution are thus

J ′
x =

J ′
+ + J ′

−

2
=

1

2

[
(Jx − iJz)e

i k
j
(Jy+

1
2
) +H.c

]
,

J ′
y =

J ′
+ − J ′

−

2i
=

1

2i

[
(Jx − iJz)e

i k
j
(Jy+

1
2
) −H.c

]
. (2.9)

The Jz component of angular momentum operator commutes with the nonlinear Floquet uni-

tary and hence remains invariant under the unitary UNL. It however evolves under the kick unitary

which causes a π/2 rotation about the x axis giving U †
kickJzUkick = Jy, such that

J ′
z = Jy. (2.10)

Eqs. 2.9 and 2.10 describe the evolution of the components of the angular momentum operator

in the QKT model. In the following section, we study the classical limit of QKT .

2.3.1 Classical limit of QKT

It is insightful to first look into the classical behaviour of the QKT in the semiclassical limit,

i.e., j → ∞. Scaling the variables as X = Jx/j, Y = Jy/j, and Z = Jz/j, we obtain the

commutation relation [X, Y ] = iZ/j, which vanishes in the large j limit. In this classical limit,

Eqs. 2.9 and 2.10 give the iterative map [94, 151]

X ′ = X cos(kY ) + Z sin(kY ),

Y ′ = X sin(kY )− Z cos(kY ),

Z ′ = Y. (2.11)

Since the total angular momentum of the system is conserved, these components can be

parametrized in terms of polar coordinates (θ, ϕ) as X = sin θ cosϕ, Y = sin θ sinϕ, and

Z = cos θ. The nature of the phase space is determined by the chaoticity parameter k, and

as the value of k increases, the phase space undergoes a transition from regular to a combination

of regular and chaotic regions before becoming predominantly chaotic for large values of k. The
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Figure 2.2: Classical trajectories of the kicked top in |θ, ϕ⟩ phase space for chaoticity parameter values
(a) k = 0.5, (b) k = 2.5, (c) k = −2.5, and (d) k = 2π + 2.5. The phase space points chosen for detailed
analysis are marked by black dots.

classical phase space for different values of k is shown in Fig. 2.2 The trivial fixed points at

(θ, ϕ) = (π/2, 0) and (π/2, π) which can be seen in Fig. 2.2(a) for k = 0.5 become unstable at

k = 2. At k = 2 new fixed points are born and they move away as k is increased as shown in

Fig. 2.2(b). For large values of k > 5 the phase space becomes mostly chaotic as shown in Fig.

2.2(d).

2.4 QKT with a pair of NMR qubits

In this section, we explain how the QKT model can be implemented in a pair of NMR qubits. We

consider a kicked top of spin j = 1 realized using a pair of interacting qubits with spin angular

momentum operators I1 and I2 respectively. Denoting the total z component of the system as

Jz = Iz1+Iz2, we can expand the nonlinear term as J2
z = 1/4+1/4+2Iz1Iz2. The identity terms

only introduce global phases in the evolution, and can hence be dropped. The nonlinear dynamics

can thus be realized using the bilinear term 2Iz1Iz2. Such an interaction occurs naturally in a pair

of coupled nuclear spins via indirect spin-spin interaction under weak-coupling limit [49], i.e.,

HJ = 2πJ Iz1Iz2. (2.12)
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2.4 QKT with a pair of NMR qubits

Here J is the strength of the indirect spin-spin coupling. The estimation of J in a two-qubit

system is explained in detail in the Appendix A.3. The spins also interact with the external

magnetic field via Zeeman interaction. For an external field B = B0ẑ, the spins precess about

the magnetic field with Larmor frequency ωi = γiB0, where γi is the gyromagnetic ratio of the i-

th spin species [49]. For a pair of heteronuclear spins, these Zeeman Hamiltonian can be ignored

by moving to a doubly rotating frame resonant with the Larmor frequencies of the individual

spins. Comparing Eq. 2.12 with the nonlinear term in Eq. 2.1, we obtain k = 2πJ τ .

The linear kicks are realized using radio-frequency (RF) pulses with the Hamiltonian

Hrf =
π

2∆
(Ix1 + Ix2), (2.13)

on both the qubits. Comparing this with the linear term in Eq. 2.1, we choose π/(2∆) = p. The

RF pulse duration ∆ << k/(2πJ ) = τ , the duration of nonlinear evolution corresponding to

the chaoticity parameter k (see Fig. 2.1). Thus in our experiment, Ukick = exp(−iHrf∆), UNL =

exp(−iHJ τ), which helps realize the QKT Floquet UQKT = UNLUkick (see Eq. 2.2) using a pair

of qubits.

2.4.1 Experimental Setup

In our experiments, the pair of qubits was formed by 19F and 31P spins of sodium fluorophosphate

molecules dissolved in D2O (5.3 mg in 600 µl) shown in Fig. 2.3. All the experiments were

performed on a 500 MHz Bruker NMR spectrometer at ambient temperatures and on-resonant

conditions. The indirect spin-spin coupling constant in this system was J = 868 Hz. The experi-

ments consisted of two parts, i.e., preparation of initial states (θ0, ϕ0), followed by simulating the

QKT unitary, as illustrated in Fig. 2.1.

In NMR systems, owing to the low nuclear polarization at an ambient temperature T and a

typical external field B0, the initial thermal equilibrium state

ρ0 =
1

4
+ ϵρ̃

is in a highly mixed state with a low purity factor ϵ = ℏB0/(2
nkBT ) ∼ 10−5, which accounts for a

finite nuclear magnetization. The uniform background population represented by identity remains
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Figure 2.3: Sodium fluorophosphate molecule comprising the two-qubit 19F and 31P system.The table
shows the Hamiltonian parameters of the system, with diagonal elements indicating offsets, and off-
diagonal element indicating scalar J coupling constant.

invariant under unitary evolution while the traceless deviation density matrix ρ̃ = γ1Iz1 + γ2Iz2

evolves and captures all the interesting dynamics. Preparing a pure state in NMR systems requires

very low temperatures and unrealistically high magnetic fields. The routine protocol thus involves

preparing a pseudopure state [6], which is isomorphic to pure states and mimics their dynamics,

as explained in Sec. 1.3.

31P

Pseudopure State Initial State Kicked Top Detection

19F

PFG

θ 𝑦 φ𝑧 𝜋

2 𝑥

𝜋

2 𝑥

1

2 τ

τ

Tomo

G1 G2

𝜋

2 𝑦

8  

θ 𝑦 φ𝑧

𝜋

6 𝑥

𝜋

3 −𝑦

Figure 2.4: NMR pulse sequence for simulating a QKT in a two-qubit system. The flip angles and phases
(subscripts) are shown under each radio-frequency pulse. Here G1 and G2 correspond to pulsed-field-
gradients (PFG).

The NMR sequence for the entire experiment is shown in Fig. 2.4. We use the {|0⟩, |1⟩}

eigenbasis of Iz as the computational basis. First, we prepared the pseudopure state equivalent to

|00⟩ by transforming ρ̃ into Iz1+Iz2+2Iz1Iz2 using spatial averaging technique with a pair of RF
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2.4 QKT with a pair of NMR qubits

pulses followed by a pulsed field gradient (PFG), which introduces a spatially inhomogeneous

magnetic field across the sample volume, thereby destroying any transverse components of the

magnetization.

After preparing the pseudopure state, we initialized the system into spin-coherent states since

they are closest to a classical state [152, 153]. The spin coherent states were prepared by a θy

pulse followed by a ϕz rotation (as shown in Fig. 2.4) which prepares the two qubits in the state

ρθ,ϕ ≈ (1− ϵ)
1

4
+ ϵ[|θ, ϕ⟩⟨θ, ϕ| ⊗ |θ, ϕ⟩⟨θ, ϕ|], (2.14)

where

|θ, ϕ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩ (2.15)

is the corresponding Bloch vector for each qubit. In the classical limit, the above initialization is

analogous to initializing the kicked top into the point (θ, ϕ) on the phase space. The ϕz pulses for

different angles were generated by an optimal control technique [154].

Subsequently, we implemented the QKT unitary UQKT using RF pulses of duration ∆ and

evolution under the interaction between the qubits for duration τ , as explained in Sec. 2.4.

The Floquet unitary UQKT was applied up to n times and the reduced density operator of 19F

ρn = TrP[U
n
QKTρθ,ϕU

n†
QKT] was estimated using single-qubit pure-phase quantum state tomogra-

phy [155]. The tomography protocol consisted of three NMR experiments: (i) A PFG to destroy

all the coherences followed by a (π/2)y pulse to obtain the diagonal elements of the density

matrix; (ii) (π/2)−y pulse followed by a PFG and (π/2)y pulse to obtain the real part of the off-

diagonal coherence element; (iii) (π/2)−x pulse followed by a PFG and (π/2)y pulse to obtain

the imaginary part of the off-diagonal coherence element. In this way, the single-qubit deviation

density matrix ρ̃n can be reconstructed from only the pure-phase NMR signals, which are easy to

quantify.

2.4.2 Probing quantum chaos via von Neumann entropy

In this section, we explain the characterization of quantum chaos in a two-qubit system using

von Neumann entropy measure. It has been observed that a kicked top initialized in a state

corresponding to a classically chaotic region results in higher entanglement production [91, 94].
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Of course, since we are considering closed quantum dynamics, the full system remains pure and

the entropy of the entire system remains invariant under QKT dynamics. However, the qubits

can get entangled during the evolution, which will result in a reduced single-qubit state that has

higher mixedness than the composite system. The degree of entanglement, and hence the degree

of chaos, can then be quantified by the von Neumann entropy given by

S(ρn) = −
∑
λ± ̸=0

λ± log2 λ± (2.16)

of the reduced density operator ρn with eigenvalues λ± = (1±ϵαn)/2. Here, ±αn are eigenvalues

of the traceless deviation density matrix ρn. However, in low-purity conditions, the von Neumann

entropy is already close to unity,

S(ρn) ≊ 1− ϵ2α2
n,

due to the dominant contribution of the identity term in ρn. Consequently, the contrast in the

entropy between regular and chaotic regions is low. In order to address this issue, we define an

n-kick order parameter

sn =
1− 1

n

∑n
m=1 S(ρm)

ϵ2
≊ ⟨α2

n⟩, (2.17)

which extracts information from only the deviation part after different number of kicks, and hence

serves as a convenient measure of chaos. Smaller values of the order parameter correspond to

higher chaoticity and larger order parameter values indicate higher regularity. We use this order

parameter to characterize the QKT dynamics of the two-qubit system.

2.5 Results and Discussion

We now present the experimental results for the two-qubit NMR system. We carried out four sets

of experiments for chaoticity parameter values k ∈ {0.5, 2.5, 2π − 2.5, 2π + 2.5}. Following

the experimental sequence shown in Fig. 2.4, we initialized the system into different initial spin

coherent states and then applied the QKT evolution for n-kicks, and finally estimated the single-

qubit reduced density matrix via quantum state tomography. To evaluate the effectiveness of the
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experimental protocol, we estimated the state fidelity [156]

F (ρ̃n, ρ̃
th
n ) =

Tr[ρ̃nρ̃
th
n ]√

Tr[ρ̃2n]Tr[(ρ̃
th
n )2]

(2.18)

of the n-kick experimental state ρ̃n with the corresponding theoretical deviation state ρ̃thn for

all initialization points (θ, ϕ) and for all k values. The average fidelity versus kick number is

displayed in Fig. 2.5 which indicates high fidelities of above 0.95 up to six kicks and above 0.8

up to eight kicks. We hence restricted the number of QKT iterations in the system to eight.

1 2 3 4 5 6 7 8
Kick number

0.8

0.85

0.9

0.95

1

A
ve

ra
ge

 F
id

el
ity

Figure 2.5: Average fidelity of the experimental states for various kick numbers. The error bars indicate
one standard deviation of distribution.

Next, using experimental data we reconstructed the reduced density matrix and estimated the

order parameter sn for the number n of kicks ranging from 1 to 8. The contours the experimental

order parameter sn for various values of n and chaoticity parameter values k are displayed in Fig.

2.6. The colour background in each plot was obtained from numerical simulation and is provided

as a comparison for experimental data. The average rms deviation δ between the experimental

and simulated values were calculated to be (i) 0.14 for k = 0.5, (ii) 0.033 for k = 2.5, (iii) 0.031

for k = 2π − 2.5, and (iv) 0.032 for k = 2π + 2.5. The experimental and simulated values hence

seemed to be in general agreement.
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Figure 2.6: Contours represent experimental order parameter averaged over n kicks (sn) for chaoticity
parameter k = 0.5 [(a1)–(a8)], k = 2.5 [(b1)–(b8)], k = 2π − 2.5 [(c1)–(c8)], and k = 2π + 2.5
[(d1)–(d8)]. Background colour maps represent the corresponding simulated values.
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2.5 Results and Discussion

For one kick at k = 0.5 we observed almost uniformly high order parameter s > 0.6, while

for other k values, we observed similar patterns with a pair of highly ordered regular islands.

Gradually, with increasing number of kicks, the averaged order parameter settled to a character-

istic pattern that resembled the corresponding classical phase space, except for k = 2π + 2.5.

Ultimately, we obtained domains of regular islands corresponding to high order parameter for all

k values. In accordance with expectation, we observed overall high order parameters for k = 0.5.

On the other hand, for the high value k = 2π + 2.5, unlike the classical phase space which is

highly chaotic, in the quantum scenario, the regular islands survived. This feature can be at-

tributed to the periodicity of the order parameter with respect to the chaoticity parameter, i.e.,

s(k) = s( mod (k, 2π)) for the two-qubit (j = 1) case considered here. This was evident from

the similarity between the contours of columns 2 and 4 in Fig. 2.6 as well as from the reflection

symmetry between the columns 2 (or 4) and 3. The periodicity of entropy distribution as a func-

tion of chaoticity parameter k and the number of qubits has been theoretically studied in detail in

[150].

The results presented in Fig. 2.6 show clear distinction in the values of the order parameter

between regular and chaotic regions. For all values of k, we observed that the time-averaged or-

der parameter for regular regions was higher than that of chaotic regions. This in turn reinforces

the fact that the time averaged entropy of regular regions is lesser that that of chaotic regions. It

is evident that the time-averaged order parameter could capture the correspondences and devia-

tions between classical and quantum behaviour under QKT dynamics. Theoretical studies of von

Neumann entropy in the deep quantum regime with mixed phase space [92, 147] have shown that

there are instances where entropy of initial states in regular regions leads to high entanglement

generation. However, its time average were shown to be less than that of the chaotic region [92],

which is in agreement with our NMR experiments. Hence, time-averaged order parameter (and

hence time-averaged entropy) serves as a good witness for quantum chaos.

2.5.1 Husimi probability distribution

The von Neumann entropy captures the entanglement between the qubits that constitute the QKT.

However, it is not sensitive to the angular location of the single-qubit reduced state on the Bloch

sphere. The Husimi probability distribution function measures the overlap of reduced state ρn
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Figure 2.7: Experimental (mesh grids) and simulated (color background) Husimi probability distributions
(in units of 1/π) for certain k values and initial states (as indicated in the left of each row) after kick
numbers n = 0 to 8 (from left to right).

with Bloch vectors {|θ, ϕ⟩} on the phase space, and is defined as [157, 158]

Q(θ, ϕ, n) =
1

π
⟨θ, ϕ|ρn|θ, ϕ⟩. (2.19)

Using the Husimi probability distribution function, we could visualize the dynamics of the re-

duced state as it evolved under the QKT unitary. The results of the normalized Husimi distri-

butions for select values of k and initial states are shown in Fig. 2.7. Here the mesh-grid lines

represent the experimental distribution while the color background represents the numerically

simulated distribution. A state initialized in a regular region had a corresponding Husimi proba-

bility distribution that is either stationary or highly periodic. This is clearly evident for the state

initialized at |π/2, π⟩ for k = 0.5 which lies in the high-order parameter region, and whose

distribution remained localized throughout the evolution time. On the other hand, for a state

initialized into a chaotic region, the distribution showed more intricate dynamics. The distribu-

tion corresponding to such states showed periodic temporal modulations and exhibited significant

delocalization over the Bloch sphere.

To capture the delocalization better, we tracked the dynamics of the first 20 extrema, that is,

the values closest to the highest and lowest values of the normalized Husimi probability distribu-

tion. As shown in Fig. 2.8, the extrema regions for k = 0.5 were localized after the evolution,

whereas they spread out on the phase space for higher values of k. Interestingly, the mismatch
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2.6 Summary and outlook
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Figure 2.8: Distribution of extrema neighborhood of Husimi probability function on the Bloch sphere.
Blue dots represent simulated data and red dots represent experimental data for the values of k and initial
angles (a) k = 0.5, |π/2, π⟩, (b) k = 2.5, |π/3, 7π/6⟩, (c) k = 2.5, |π/3, 4π/3⟩, and (d) k = 2π −
2.5, |π/6, 4π/3⟩.

between experiment and simulation data increased with increasing k, implying the sensitivity of

the system dynamics to initial conditions and experimental imperfections. This observation high-

lighted the notion that quantum chaos could pose a hurdle in quantum information processing

tasks, whose detrimental effects might have to be mitigated [88].

2.6 Summary and outlook

In summary, we experimentally investigated the quantum signatures of chaos in a two-qubit NMR

system using kicked top model. We could characterize the dynamics in two distinct ways:

(i) We studied the correspondence between classical phase space and quantum dynamics using

order-parameter profiles extracted from the von Neumann entropy of the reduced system. These

profiles could capture good correspondence with classical phase space features for low chaoticity

parameter values. Additionally, they could also capture the inherent periodicity and symmetry in

the quantum dynamics for larger chaoticity parameters, a feature absent in the classical equiva-

lent. The order-parameter could pick up clear distinguishing features despite the quantum state

purity of the NMR system being well below the threshold for entanglement.

(ii) We also studied the localization and delocalization of the reduced quantum state on the Bloch
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sphere using the Husimi probability distribution function. We observed the localization of the

profiles for low chaoticity conditions and significant delocalization otherwise. The Husimi dis-

tribution profiles also showed temporal periodicity that is characteristic of the quantum system.

Moreover, the study emphasised the sensitivity of the distribution to experimental imperfections,

particularly at higher values of the chaoticity parameter.

It is interesting to note that the system considered here, comprising only two-qubits, is in the

deep quantum regime, but still exhibits the marks of quantum chaos. Further investigation of

other quantum correlation measures such as discord, negativity, etc. under more varied parameter

regimes will help better understand the bridge between chaos in quantum and classical systems.

Another topic that is currently gaining significant momentum is the study of out-of-time-order-

correlations (OTOC) in the Heisenberg model and its relation to quantum chaos and the quantum

equivalent of Lyapunov exponent. These can be systematically studied in spin systems of varying

sizes to understand and characterize quantum chaos.

In the next chapter, we use the kicked top model to study quantum chaos in large star-topology

spin registers.
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CHAPTER 3

Quantum chaos in large spin-registers

Abstract

In this chapter, we numerically study chaos in a star-topology system using the quantum

kicked top model. Star-topology registers consist of a central spin uniformly coupled to

identical and indistinguishable satellite spins. We numerically study the behaviour of dif-

ferent sizes of star-topology registers when evolved under varying degrees of chaos. We

initialize the systems to a definite region in the phase space and use entanglement entropy

to characterize its dynamics when evolved under the kicked top model. These large spin

registers being much larger systems, are closer to the classical limit and help understand

the quantum-classical bridge of chaos.

Reported in

T S Mahesh, Deepak Khurana, V. R. Krithika, G J Sreejith and C S Sudheer Kumar,

Star-topology registers: NMR and quantum information perspectives, J. Phys.: Condensed

Matter 33 383002 (2021).

3.1 Introduction

Quantum chaos manifests in interacting spin systems and it is important to understand the fun-

damental aspects of the phenomenon for developing robust quantum technology, where such

interactions might be detrimental. In the previous chapter, we studied quantum chaos in a two-

qubit system. A natural extension would be the study of large spin systems, which are closer to

the classical limit, thus bridging the quantum and classical domains. Star topology systems are

convenient candidates for such studies.

47

https://iopscience.iop.org/article/10.1088/1361-648X/ac0dd3
https://iopscience.iop.org/article/10.1088/1361-648X/ac0dd3


Chapter 3

3.1.1 Objectives

In this work, we numerically study quantum chaos in star-topology spin registers. We begin we a

brief description of star systems and their Hamiltonian. Following this, we investigate -

(i) how star systems can be used to simulate the dynamics of quantum kicked top (QKT) with

disorder using NMR spin registers

(ii) the behaviour of star systems of different sizes evolving under QKT dynamics with varying

degrees of chaos via entanglement entropy.

3.1.2 Star topology registers

Star topology registers (STR), as shown in Fig. 3.1, are systems with a central spin coupled

uniformly to many surrounding identical and indistinguishable satellite spins, with no effective

couplings between the satellite spins. In liquid state NMR, such samples allow control over the

central spin and the satellite spins collectively. These systems also possess a high degree of sym-

metry since the system remains invariant under exchange of satellite spins. Such geometry and

interaction configuration is advantageous for the generation of highly entangled and correlated

states. Some such states have been shown to be highly useful for sensing applications [159, 160],

microscopy and imaging [161, 162], diffusion studies [54], algorithmic cooling [163], quantum

Fisher information amplification [164], time crystal studies [165], quantum batteries [166], and

quantum state tomography [167] to name a few.

AC

A

A

A
A

A

BB

B
A

A
A

C

A
A A

A

A

(a) (b)

Figure 3.1: Schematic of (a) star topology (b) hierarchical star topology systems

A general star topology liquid state NMR system with central spin (C) and N − 1 satellite
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3.1 Introduction

spins (A) has a Hamiltonian of the form

H = ωCI
C
z + ωA

N−1∑
i=1

IAzi + 2πJCAI
C
z

N−1∑
i=1

IAzi, (3.1)

where ωC = −γCB0 and ωA = −γAB0 are the Larmor frequencies of central and satellite spins

respectively, and JCA is the strength of scalar J -coupling between them. The eigenstates of

this Hamiltonian are product states of individual qubits in Zeeman basis (computational basis)

{|0⟩, |1⟩}. Single-qubit gates can be realized on the central spin, while only collective rotations

can be implemented in the satellite spins due to lack of individual addressability. This enables

creation of NOON states which are of the form

|ψ⟩ = |0⟩C ⊗ |0102...0N−1⟩A + |1⟩C ⊗ |1112...1N−1⟩A√
2

≡ |N, 0⟩+ |0, N⟩√
2

, (3.2)

where the notation |N, 0⟩ is representative of N spins in state |0⟩ and zero spins in |1⟩, while

|0, N⟩ implies the vice-versa, which gives these states their signature name. For a three-spin sys-

tem, with one central qubit and two satellite qubits, this is nothing but the GHZ state |ψGHZ⟩ =
|000⟩+|111⟩√

2
. These states can be prepared in systems with any geometry, but it is easier in star

systems due to collective control over satellite spins. Starting from the pure ground state |ψ⟩ =

|0⟩C ⊗ |0102...0N−1⟩A, applying a Hadamard gate (Uhad) on the central spin followed by CNOT

(CCNOTA with control on C and target on A)on the satellite spins gives

|0⟩C ⊗ |0102...0N−1⟩A
UC
had−−→ |+⟩C ⊗ |0102...0N−1⟩A =

|0⟩+ |1⟩√
2

⊗ |0102...0N−1⟩A

CCNOTA−−−−−→ 1√
2
|0⟩C ⊗ |0102...0N−1⟩A +

1√
2
|1⟩C ⊗ |1112...1N−1⟩A, (3.3)

which is the NOON state. The same protocol applied to thermal equilibrium state with Boltz-

mann population distribution gives a mixed state with combination of different coherence order

states |ψ⟩ = |M,S⟩+|S,M⟩ where |M,S⟩ impliesM spins in state |0⟩ and S spins in state |1⟩ and

|S,M⟩ implies the vice-versa. Depending on the exact values of M,S, the states have different

coherence orders. Consider the previously mentioned three-qubit example. For M = 3, S = 0,

this gives the NOON state (also GHZ state in this case). For M = 2, S = 1, we get states

of the form |001⟩+|110⟩√
2

and their permutation in satellite spins, i.e., |010⟩+|101⟩√
2

. The coherence or-
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der (mq) of a state can be estimated from the net of eigenvalues of |M,S⟩ and |S,M⟩, taking

ms(|0⟩) = 1/2,ms(|1⟩) = −1/2, as

ms(|M,S⟩) =M/2− S/2, ms(|S,M⟩) = S/2−M/2, mq = ms(|M,S⟩)−ms(|S,M⟩).

A state with desired coherence order can be filtered from the mixture of all coherence orders using

a pair of pulsed field gradients [54, 56]. Though such states can be prepared in systems with other

topologies, it is easier in star-systems due to the high symmetry and collective addressability

of satellite spins. They have been shown to be good candidates for studying out-of-time-order

correlation function behaviours [55], spreading of correlations [168], etc. Here, we use star-

systems to numerically study quantum chaos using the kicked top model. Since these are large

spin registers, they are closer to the classical limit, and are ideal systems to understand the bridge

between classical and quantum chaos.

3.2 Quantum chaos in star topology systems

In this work, the kicked top model (introduced in the previous chapter) is extended to the star

topology systems. The Hamiltonian of a single kicked top for a spin-j system is given by

HQKT = pJx
∑
n

δ(t− nτ) +
k

2jτ
J2
z , (3.4)

where Jα =
∑

i Iαi, α = x, y, z are the net spin angular momentum components with Iαi, denot-

ing the spin operators of constituent qubits.

The Hamiltonian of a star-system with RF pulse of duration ∆α for α ∈ C,A on both the

central and satellite spins is given by

H =
π

2∆C

ICx +
π

2∆A

(∑
i

IAxi

)
+ 2πJCAI

C
z

∑
i

IAzi, (3.5)

such that π/2∆C = p = π/2∆A. We can see that Eq. 3.5 can be mapped to Eq. 3.4 using

Jx ≡ ICx +
∑

i I
A
xi, and k

2j
J2
z ≡ 2πJCAI

C
z

∑
i I

A
zi and setting p = π/2. An important point to note

here is that J2
z would necessitate couplings between all spins in the system, i.e., JCAI

C
z

∑
i I

A
zi
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3.2 Quantum chaos in star topology systems

and Ji,jI
A
ziI

A
zj . However, in a star-system, all-to-all coupling is absent and only the centre-satellite

interaction term is present as described in the previous section. Hence, in liquid-state NMR,

a star-system can be used to simulate a kicked top with disorder where, since some couplings

are absent, we get a set two-qubit kicked-tops with j = 1, each of which is constituted by an

ancillary qubit and the common central qubit. Moreover, such a model does not have a well-

defined equivalent in the classical limit. It hence provides an almost exclusive study of chaotic

behaviour in quantum systems with coupling configurations as present in STR. Different values of

chaoticity parameter k can be realized by changing evolution time τ under the scalar J -coupling

term since k = 2πJCAτ . In the following numerical analysis, we thus set j = 1, and simulate the

dynamics of a star-topology system with varying number of satellite spins for different values of

k.

3.2.1 Results and discussion

We use entanglement entropy as a measure for diagnosing quantum chaos, as done in the previous

chapter. Fig. 3.2(a)-(d) shows the von Neuman entropy of an STR of sizeN = 10 with JCA = 50

Hz and varying chaoticity parameter k. In each case, the STR qubits were initialized to the

phase-space point (θ, ϕ) in the Bloch sphere, followed by the evolution under the Hamiltonian

in equation Eq. 3.5. We can see that for k = 0 (Fig. 3.2(a)), the entropy is identically ≈ 0

over the entire phase space, and as the chaoticity parameter increases, the average von Neumann

entropy of the system increases as well (Fig. 3.2(b)-(d)). Moreover, for smaller k values, the

phase space shows distinct islands of low entropy surrounded by high entropy regions. Such

distributions can be interpreted as a quantum equivalent of regular and chaotic regions of the

classical phase space. Furthermore, to study the role of STR size in the dynamics of the system,

we initialized the system to a fixed point in the phase space (θ, ϕ) = (π/2, π/2) and evolved

the system for 200 kicks while varying the number of ancillas from 1 to 9. The von Neumann

entropy of the central spin averaged over the last hundred kicks is shown in figures Fig. 3.2(e)-

(f). Interestingly, we can see that the dynamics shows oscillatory behavior for both odd and

even number of ancillas. For small systems, we can expect such oscillations due to the small

dimension of the Hilbert space. However, the system with any even number of ancillas shows

more prominent oscillations, compared to odd number of ancillas, in the von Neumann entropy
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Figure 3.2: Quantum chaos in an STR. von Neumann entropy of the central qubit for (a) k = 0, (b) k = 2,
(c) k = 5, and (d) k = 10. Entropy as a function of STR size for (e) odd and (f) even number of ancillary
qubits for the fixed initial state (θ, ϕ) = (π/2, π/2). In all the cases JCA = 50 Hz and the entropy is
averaged over the last 100 out of a total of 200 kicks.

of the central spin for large values of k. Such a characteristic can be attributed to symmetries in

the system in the different cases considered. Moreover, these results also indicate that the role

of multiple-quantum coherences, which is fundamentally linked to the size of the system. The

interplay between multiple quantum coherences and chaos is yet to be probed and is crucial for

understanding chaos in such systems.
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3.3 Conclusions and outlook

3.3 Conclusions and outlook

Star-topology registers are large spin systems with ease of coherent control for studying various

quantum information processing tasks. They are ideal candidates for producing highly entangled

and correlated states which have proven to be extremely useful for versatile applications, mainly

quantum sensing and metrology. Here, we have numerically studied quantum chaos in STR

using the kicked top model for different values of chaoticity parameter k. However in STR due

to absence of all-to-all couplings, these systems can be understood to simulate a kicked top with

disorder. Using time averaged entanglement entropy as a witness for quantum chaos, we observed

islands of low-entropy regions separated by sea of high entropy regions, much like the entropy

patterns for a well defined two-qubit kicked top model. Furthermore, we studied the dynamics

of the system as a function of size of STR when initialized to a fixed region in the phase space

corresponding to (θ, ϕ) = (π/2, π/2). We observed oscillations in the time averaged entropy for

STR with both odd and even number of satellite spins, with system with even number of ancillary

spins showing more prominent oscillations. These features can be ascribed to the symmetries in

system for odd and even number of satellite spins. The dynamics of such a system are intimately

linked to the generation and spreading of correlations within the system with time evolution.

Studies to probe the relation between different orders of coherences and quantum chaos will be

very fruitful not just for building the foundations of quantum chaos, but will also contribute to

deeper understanding of Floquet systems, open system dynamics, and for applications including

quantum information processing and computing tasks.
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CHAPTER 4

Dynamical tunneling in nuclear spins

Abstract

In chaotic Hamiltonian systems, dynamical tunneling refers to quantum tunneling between

states whose classical limit correspond to symmetry-related regular regions separated by a

chaotic zone. In usual quantum tunneling, a low-energy quantum particle penetrates across

a physical barrier of higher potential energy, by traversing a classically forbidden region,

and finally escapes into another region. In a similar scenario, a classical particle inside a

closed regular region is dynamically bound from escaping to other regions of the phase

space, whereas tunneling in the quantum regime permits escape through dynamical bar-

rier. In this chapter, we report an experimental realization of dynamical tunneling in spin

systems using nuclear magnetic resonance (NMR) architecture. In particular, dynamical

tunneling in quantum kicked tops of spin-1 and spin-3/2 systems using two- and three-

qubit NMR registers is investigated. By extracting time-dependent expectation values of

the angular momentum operator components, size-dependent tunneling behaviour for var-

ious initial states is systematically investigated. Further, by monitoring the adverse effects

of dephasing noise on the tunneling oscillations, we assert the importance of quantum co-

herence in enabling dynamical tunneling.

Reported in

V. R. Krithika, M. S. Santhanam and T. S. Mahesh, NMR Investigations of Dynamical

Tunneling in Nuclear Spin Systems , arXiv:2212.12350 (2022).
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4.1 Introduction

In this chapter, we study another facet of dynamics that arises from a quantum kicked top, namely

dynamical tunneling. Quantum tunneling usually refers to the phenomenon by which a wave

packet penetrates and transits through a physical potential barrier despite having lesser energy

than the barrier height [169]. Classically, this is a forbidden process, though it is allowed in a

quantum system. The quantum tunneling phenomenon has been studied extensively and has found

applications in various fields ranging from nuclear physics, superconductivity, and electronics to

microscopy [169–176].

In chaotic Hamiltonian systems, quantum tunneling manifests into a much richer and more

complex phenomenon due to the complexity of underlying classical dynamics [73, 177]. Interest-

ingly, it was realized that the quantum tunneling phenomenon can be extended to scenarios even

without any physical barrier. In such cases, the potential barriers are replaced by dynamical bar-

riers formed by invariant phase space structures in the classical limit. Hence, this is often called

dynamical tunneling and was first studied by Davis and Heller [178, 179] in a two-dimensional

nonlinear system. Dynamical tunneling happens when a wave packet tunnels between symmetry-

related regular regions such as elliptic islands. It is important to note that the regular regions are

separated, not necessarily by potential barriers, but by dynamical constraints. A classical particle

initialized in one such regular region can never couple with the other, and hence any transport

between these regions is forbidden. In a semiclassical sense, these regular regions would con-

tribute to degenerate eigenstates. However, if tunneling is present between these regular classical

regions, we expect the disconnected classical regions to be coupled by quantum dynamics and

the degeneracy is lifted. This results in characteristic tunneling doublets in the energy spectrum.

The corresponding eigenstates are symmetric and anti-symmetric linear combinations of wave-

functions that predominantly localize on these regular regions [73, 175, 178, 180, 181]. This

can be effectively modelled as a two-state process (a two-level system) involving these nearly-

degenerate states. It was found that the tunneling rate between the regular regions can be further

enhanced if these regions are separated by a sea of chaos [73]. In this case, the tunneling wave

function has an overlap also with the chaotic region, which aids the tunneling process. In this case

dynamical tunneling, termed as chaos-assisted tunneling, can be thought of as a process involving
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three levels – the two nearly-degenerate states coupled through an intermediate chaotic state. The

chaotic state can be modelled as a typical state drawn from an appropriate random matrix ensem-

ble. It must also be pointed out that a similar mediation by the classical nonlinear resonances,

called the resonance assisted tunneling, in near-integrable regime also leads to enhanced tunnel-

ing rates between low and high excited states lying within the same nonlinear resonance region

[182–188]. The rate of tunneling in integrable systems comparatively is much slower due to the

absence of resonances and chaos. It is evident that quantum tunneling behaviour can be strongly

influenced by the underlying classical structures arising from integrability and non-integrability

of the systems [177, 181].

Though dynamical tunneling has been theoretically explored for the last three decades, ex-

perimental demonstrations are far fewer [73, 75, 76, 189–195]. They are limited to essentially

two chaotic test-beds, namely, a driven cold atomic cloud [75, 76, 191] and microwave annular

billiards [189, 192]. Despite the popularity of kicked models within the fold of quantum chaos,

especially the ones based on spins such as the kicked top model [151], only one experimental

demonstration until now has employed kicked systems [78]. A theoretical study of dynamical

tunneling in quantum kicked top (QKT) had been reported in Refs. [196] and [148]. Ref. [196]

showed that in the presence of dynamical tunneling between regular regions, the expectation val-

ues of angular momentum operator components display periodic revivals. To our knowledge, this

feature has not been explicitly shown through experiments so far. Here we study this feature in

spin-1 and spin-3/2 systems.

4.1.1 Objectives

In this work, we carry out NMR investigation of dynamical tunneling in a QKT model formu-

lated as a collection of periodically kicked and interacting spins. By monitoring the expectation

values of the angular momentum operators of the QKT, we performed a systematic experimental

investigations into

(i) dynamical tunneling in spin systems for different initial states

(ii) system size dependence of tunneling period with two different system sizes, and

(iii) effect of dephasing noise on the robustness of tunneling.

This model is useful because the approach to classical limit can be attained by expanding the
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4.2 Dynamical tunneling in spin systems

Hilbert space, by either increasing the number of spins, or the spin number, or both. Hence,

this system provides a convenient route to study dynamical tunneling and pushing it towards the

classical limit.

4.2 Dynamical tunneling in spin systems

4.2.1 Quantum Kicked Top (QKT) model

As explained in Chapter 2, the QKT model of a spin-j system is described by the Hamiltonian

(with ℏ set to unity) [151, 196]

Hqkt =

Hkick =
π
2∆
Jy, for t ∈

[
nτ − ∆

2
, nτ + ∆

2

]
Hnl =

k
2jτ
J2
z , otherwise.

(4.1)

Here Jα with α = x, y, z are components of the angular momentum operator, and ∆ is the

kick duration that produces a π/2 rotation about the y-axis described by the unitary operator

Ukick = exp{−iHkick∆}. The second term describes the nonlinear evolution governed by the

chaoticity parameter k for a time period τ with the corresponding unitary Unl = exp{−iHnlτ}.

The effective Floquet operator can then be written as F = UnlUkick. The dynamics of the system

can be evaluated from the evolution of angular momentum components of the QKT under the

Floquet evolution after the n-th kick as Jα(n+ 1) = F †Jα(n)F , for α = {x, y, z}. The classical

map can be obtained from the scaled variables V = Jα/j in the limit j → ∞ [151] which leads

to the following equations of motion:

X ′ = Z cos(kX) + Y sin(kX)

Y ′ = −Z sin(kX) + Y cos(kX)

Z ′ = −X. (4.2)

Since the total angular momentum of the system is conserved, the dynamics of the sys-

tem can be parameterized in terms of two parameters (θ, ϕ) such that X = sin θ cosϕ, Y =

sin θ sinϕ, Z = cos θ. For low values of the chaoticity parameter, k ∼ 0.5 the system is highly
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Figure 4.1: Classical phase space of the kicked top model for chaoticity parameter k = 3. The mixed
phase space has distinct regular islands separated by a chaotic sea. A classical system initialized in the
regular regions, labelled by A and A’, will continue to remain there throughout the dynamics, while that
initialized in the near-regular region, labelled by B, can move along its periodic orbit, and that initialized
in the chaotic region, labelled by C, can explore the phase space. The regions labelled by E and E’ form
a period-two orbit and keep jumping from one to the other with every kick. The dynamics of a QKT
initialized in the states A, B, and C studied here reveal dynamical tunneling between A and A’ as indiated
by the arrows.

regular, but transitions to a mixed phase space as k is increased before becoming almost com-

pletely chaotic at around k = 6 [146]. This map has time reversal symmetry and reflection

symmetry about the y-axis [151]. The classical phase space for k = 3 is shown in Fig. 4.1.

4.2.2 Dynamical tunneling in QKT model

Fig. 4.1 displays the stroboscopic map of the classical kicked top with k = 3. Under classical

evolution, even as time t → ∞, the initial conditions indicated by A and A’ in Fig. 4.1 will

remain trapped in their respective regular regions. However, if the system is initialized in a chaotic

region, indicated by C in Fig. 4.1, it can then explore the entire connected chaotic layer of the

phase space. In contrast, a QKT initialized in one of the regular regions can defy the classical

dynamical barrier and periodically tunnel to and from the other regular region of appropriate

symmetry [180]. The periodic tunneling behaviour of such a system was studied earlier using the

expectation values ⟨Jα⟩ of the angular momentum operator [196]. Interestingly, a QKT initialized

in a chaotic region does not show such clear periodicity.
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4.2 Dynamical tunneling in spin systems

Figure 4.2: Normalized expectation values of angular momentum operator components ⟨Jα⟩ obtained
from numerical simulations with k = 3 starting from the states A (a-c) and E (d-f) for spin sizes j = 1
(a,d), j = 10 (b,e) and j = 100 (c,f). As the spin size increases the system tends towards the classical
limit exhibiting prolonged tunneling periods. For the latter initial state (d-f), the oscillations in expectation
values ⟨Jα⟩ are maintained for all spin sizes, with the system exhibiting clear period-two oscillations as it
tends to the classical limit, which can be seen prominently for j = 100 (f).

We first look into the system size dependence of tunneling behaviour for chaoticity parameter

k = 3. As the system size increases (j → ∞), the classical limit is approached, and the tunneling

behaviour is suppressed. Let us consider the initial state A ≡ |θA, ϕA⟩ ≡ (2.25, 0.63) at the

centre of one of the regular regions and its symmetry related state A’ ≡ exp(−iπJy)|θA, ϕA⟩ ≡

(π − 2.25, π − 0.63) (see Fig. 4.1). The numerical simulations of ⟨Jα⟩ for the QKT model for

different spin sizes starting from A are shown in Fig. 4.2(a)-(c). It is clear that ⟨Jx⟩ and ⟨Jz⟩

show rapid oscillations for j = 1 (Fig. 4.2(a)) indicating tunneling between A and A’. However,

for a larger system with j = 10 (Fig. 4.2(b)) the period is elongated, and for j = 100 (Fig. 4.2(c))

the system shows no sign of periodicity in the chosen time range. It is interesting to note that the

other pair of similar-looking regular regions, labelled by E ≡ |θE, ϕE⟩ = (2.25, 0.63 + π) and

E’ ≡ exp(−iπJy)|θE, ϕE⟩ ≡ (π − 2.25, 2π − 0.63), have a totally different behaviour, as shown

in Fig. 4.2(d)-(f). They form a period-two orbit and oscillate between one another with every

kick in the classical limit [151]. This is clearly observed for a large spin system, such as j = 100
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Figure 4.3: Experimental systems used for tunneling experiments. (a) The two-qubit system of sodium flu-
orophosphate used to simulate a single spin-1 system and (b) three-qubit system of dibromofluoromethane
used to simualte a single spin-3/2 system, along with their Hamiltonian parameters shown in the tables
below. The diagonal elements indicate chemical shifts, while off-diagonal elements indicate the scalar
J -coupling constant values.

in Fig. 4.2(f). For smaller spin sizes, such as j = 1 and j = 10 (Fig. 4.2(d,e)), the values of ⟨Jx⟩

and ⟨Jz⟩ show irregular oscillations with beat patterns.

4.3 Experimental methodology

4.3.1 NMR Hamiltonian

To study the size dependent behaviour of dynamical tunneling, we simulated the QKT in spin-

1 and spin-3/2 systems using two- and three-qubit NMR systems respectively. The two-qubit

system comprised 19F and 31P of sodium fluorophosphate (Fig. 4.3(a)) dissolved in D2O, and

the three-qubit system comprised 13C, 1H and 19F spins of dibromofluoromethane (Fig. 4.3(b))

dissolved in deuterated acetone. All the experiments were performed on samples containing about

1015 nuclear spins maintained at 300 K on a Bruker 500 MHz high resolution spectrometer with

a static magnetic field B0ẑ with B0 = 11.7 T. As explained in Chapter 2, by moving to a rotating

frame resonant with the Larmor frequencies of the spins, their chemical shifts can be set to zero

[49]. The effective NMR Hamiltonian in the weak-coupling limit is then given only by the scalar
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Jij coupling interaction and takes the form

HJ =
∑
i,j>i

2πJijIziIzj. (4.3)

The spins can further be manipulated by radio frequency (RF) pulses resonant with the corre-

sponding characteristic Larmor frequencies and described by the Hamiltonian

HRF =
∑
i

π

2∆i

Iyi, (4.4)

where ∆i is the pulse duration corresponding to the i-th spin species. Hence the NMR system

with the RF pulses is described by the combined Hamiltonian [197]

HNMR =
∑
i

π

2∆i

Iyi +
∑
i,j>i

2πJijIziIzj. (4.5)

In systems with three or more qubits, we can realize an uniform evolution under a single effective

scalar coupling constant J by using the standard spin echo methods [48], such that

Heff
NMR = HRF +Heff

J

=
∑
i

π

2∆i

Iyi + J
∑
i,j>i

2πIziIzj. (4.6)

Comparing this with Eq. 4.1, we can see that the linear term Hkick can be mapped to the RF term

HRF. Since we realize the spin-j QKT using a collection of 2j qubits [91, 146], the nonlinear
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term in Eq. 4.1 can be expanded as

k

2jτ
J2
z =

k

2jτ

(
2j∑
i=1

Izi

)2

=
k

2jτ

[
2j∑
i=1

I2zi + 2

2j∑
i=1,j>i

IziIzj

]

=
k

2jτ

[
2j∑
i=1

1

4
+ 2

2j∑
i=1,j>i

IziIzj

]

≡ k

2jτ
2

2j∑
i=1,j>i

IziIzj. (4.7)

Thus, the nonlinear term can be mapped to the scalar J coupling termHeff
J up to the identity term

which only introduces an unobservable global phase. Moreover, comparing Eq. 4.7 with Heff
J ,

we can see that k = 2jπJ τ , which enables us to vary the chaoticity parameter k by tuning the

duration τ of the effective J evolution. Since the duration of the RF pulse ∆i ≪ τ = k/(2jπJ ),

we ignoreHeff
J during the RF pulse and hence decompose the Floquet evolution FNMR = UJURF,

where URF = exp(−iHRF∆) and UJ = exp(−iHeff
J τ).

Initial state preparation

At ambient temperatures, the thermal energy kBT of the NMR spin system is much larger than

the Zeeman energy splitting ℏγiB0. Hence, an n-qubit system is in a highly mixed state and is

given by the Boltzmann distribution [49]

ρeq ≃
1

2n
+
∑
i

ϵiIzi, (4.8)

where 1/2n captures the uniform population background, and the purity factor ϵi = ℏγiB0/(2
nkBT ) ∼

10−5 captures the deviation from uniform population distribution.

To simulate the dynamics of a QKT, it is conventional to initialize the system into coherent

states as these are closest to a classical state [152, 153]. We simulate a spin-j QKT using 2j

qubits initialized in the spin coherent state defined as

|θ, ϕ⟩ = Uθϕ|0⟩⊗n, where Uθϕ = e−iϕ
∑

i Izie−iθ
∑

i Iyi . (4.9)
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A
PPS Uθϕ QKTN

M

ρeq ρpps ρθϕ

Figure 4.4: An experimental circuit to realize the QKT model in a system of M -qubits. Starting from the
state ρeq in thermal equilibrium, a pseudopure state ρpps is prepared. This is followed by preparation of
initial state ρθϕ. We then implement the QKT model for N kicks and finally readout each qubit.

To realize this in a multi-qubit NMR spin system, we first transform the thermal equilibrium

state ρeq to a pseudo-pure state of the form ρpps = (1 − ϵ)1/2n + ϵ|ψ⟩⟨ψ| whose dynamics can

be mapped isomorphically to the dynamics of a pure state |ψ⟩ [6, 7]. The detailed NMR pulse

sequences for preparing PPS of the two- and three-qubit spin systems considered here are given

in Fig. 1.5. These states can then further be transformed into coherent states |θ, ϕ⟩ for an n-qubit

system

ρθϕ = UθϕρppsU
†
θϕ ≡ |θ, ϕ⟩⟨θ, ϕ|. (4.10)

The system is thus initialized to a required (θ, ϕ) coordinate in the phase space and the QKT

Floquet operator FNMR is subsequently applied N times to study the time evolution. An experi-

mental circuit, showing the line-up of successive operations for simulating a QKT is displayed in

Fig. 4.4.

Measurement of ⟨Jα⟩

In an NMR system, the direct signal measurement by quadrature detection gives ⟨Ixi⟩+i⟨Iyi⟩ [49].

To extract ⟨Izi⟩, we apply the following in succession: (i) a pulsed field gradient (PFG) which

destroys the x and y magnetization components of the system and following this, (ii) a (π/2)

pulse about the y-axis to rotate the z-component of magnetization to the x-axis, and then detect

the transverse magnetization. Note that measurement of the angular momentum components of

individual spins suffices to estimate the total expectation values ⟨Jα⟩. The general state ρ of the
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multi-qubit system can be expanded in the product operator basis of constituent spins as

ρ =
1

2n
+
∑
i

cαiIαi +
∑
ijαβ

cαβijIαiIβj + · · · , (4.11)

where higher order spin correlation terms are not shown. The total expectation value ⟨Jα⟩ for the

linear term can then be estimated as

⟨Jα⟩ = Tr

[
ρ
∑
i

Iαi

]
=
∑
i

cαiIαi =
∑
i

Tr [ρiIαi] , (4.12)

where ρi = 1

2
+
∑

i cαiIαi are the reduced density matrices of the constituent spin systems. In

the following, we discuss the results of the above mentioned protocols for studying dynamical

tunneling in two- and three-qubit spin systems.

4.4 Experimental Results

4.4.1 k = 0 experiments

As a control, we first studied the behaviour of the system in the absence of chaos, i.e., k = 0.

In this case, the system just evolves under (π/2) kicks applied about the y-axis. The classical

equations of motion (Eq. 4.2) at (N + 1)-th kick relate to the N -th kick as follows :

X(N + 1) = Z(N)

Y (N + 1) = Y (N)

Z(N + 1) = −X(N). (4.13)

The y-component of the system remains invariant under evolution, while the x and z components

evolve with each kick. The evolution is thus restricted to circles in the xz plane for any given

initial state. The results of this control experiment are displayed in Fig. 4.5 for the system

initialized in to the phase space region characterized by |θ, ϕ⟩ = (2.25, 0.63).

The experimental data shows a decay in the amplitude of the oscillation due to accumulation

of pulse errors with each kick. We can see that both the two- and three-qubit systems have oscil-
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Figure 4.5: Control experiments with k = 0 for the two- and three-qubit systems. (a) Denotes the classical
trajectory for different intial states. (b) Shows the data fro two- and three-qubit systems respectively.
The symbols indicate experimental data, while dashed lines indicate simulations. We can see that the
experimental data is in good agreement with simulated data. The decay in experimental data points is due
to relaxation in the systems.

lating Jx, Jz values, while the value of Jy remains constant. Moreover, the period of oscillation is

same in both cases. To understand the frequency of oscillations better, we computed the Fourier

transform of the time evolution of the system. The frequency domain analysis of the evolution

(displayed in Fig. 4.6(a)) shows that the period of oscillation, as anticipated, is independent of

the system size.

4.4.2 Tunneling in mixed phase space (k = 3)

As explained above, we initialize the two- and three-qubit based QKT systems to different regions

of the mixed phase space at k = 3, and study the tunneling behaviour via ⟨Jα⟩ for α ∈ [x, y, z].

Following Sanders and Milburn’s work (Ref. [196]) we chose the initial state A (see Fig. 4.1)

in the regular region of phase space, while the initial state B lies in the border between regular
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Figure 4.6: Fourier transform of (a) control experiments (b) tunneling experiments for spin-1 and spin-3/2
systems. We can see that in the case of control experiments, the frequency of oscillation is same for both
the systems. In the case of tunneling experiments, there is a clear shift in the frequency of the three-qubit
system as compared to the two-qubit system. This is in accordance with the expectation that as system size
increases the tunneling effect should get suppressed.

region and chaotic sea. The initial state C lies entirely in the chaotic sea. The system was evolved

for N = 25 kicks and ⟨Jα⟩ was measured after each kick. Note that a classical system initialized

in state A in the regular region is dynamically bound and cannot escape to other regions, such as

the state A’.

When working with such small quantum systems, the spreading of wavefunctions (outside the

phase space region of interest) might be significant and hence needs to be monitored to ensure that

tunneling we observe is not due to leakage of probability density. To quantify the overlap of the

the time-evolving state with the initial coherent state in regular region A and the symmetry-related

tunneling region A’, we study the trace fidelity defined as [156]

FS(t) =
tr(ρ(t)ρS)√
tr(ρ(t)2)tr(ρ2S)

, (4.14)

where ρ(t) is the traceless deviation density matrix of the instantaneous state of the system at

time t, ρS for S ∈ {A,A’} are the deviation density matrices of coherent states A and A’. The

experimentally measured (symbols) and theoretically estimated (dotted lines) trace fidelity of

systems evolving under QKT dynamics with initial state A are shown in Fig. 4.7 for spin-1 (a)

and spin-3/2 (b) systems respectively. Note that the trace fidelity can take negative values since
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Figure 4.7: Trace fidelity of the instantaneous state of the system initialized in the regular region A for
spin-1 (a) and spin-3/2 (b) systems with respect to the tunneling regions A and A’. Experimentally extracted
values of fidelity are indicated by symbols overlaid on simulated values indicated by dotted lines.

the numerator in Eq. 4.14 is the product of two traceless matrices. Exact overlap is quantified

by FS(t) = 1, while orthogonality is quantified by FS(t) = 0. Non-zero negative values indicate

partial overlap and opposite phases between states. From Fig. 4.7(a-b), it is evident that the

initial coherent state has maximum overlap with the regular region A and a modest overlap with

A’ in spin-1 and even smaller overlap in spin-3/2. Moreover, as the system evolves under QKT

dynamics, it periodically localizes in A and A’ with fidelity > 0.94 in spin-1 system and > 0.83

in spin-3/2 system. Let us now look at the extent of overlap between states localized in regions A

and A’. Fig. 4.8 shows the theoretical trace fidelity computed using Eq. 4.14 of the instantaneous

state of a system initialized in A and undergoing QKT dynamics for k = 3 for spin-1 (a), spin-5

(b) and spin-20 (c) systems. It is evident that as the system size increases, the degree of overlap of

states localized in A(A’) with A’(A) decreases. This behaviour also emphasises the importance of

chaotic states in dynamical tunneling. As the system size increases, the overlap of a localized state

in a regular region (A,A’) with the surrounding chaotic state decreases, which in turn hampers the

tunneling efficiency as is reflected in the prolonged time periods in Fig. 4.8(b,c). The fidelity of a

single spin-j system in coherent state A with the corresponding state A’ as a function of spin size

is shown in Fig. 4.8(d). It can be seen that to achieve overlap < 0.1 between A and A’, we need

at least spin-5, i.e., ten qubits, while overlap < 0.01 requires at least spin-50 (or hundred qubits),
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Figure 4.8: Trace fidelity of the instantaneous state of QKT with k = 3 initialized in the regular region
A for spin-1 (a) and spin-5 (b) and spin-20 (c) systems with respect to the tunneling regions A and A’.
Fidelity of coherent state A with A’ as a function of spin-j size (d).
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Figure 4.9: Dynamics of QKT in two-qubit spin-1 system (a-c) and three-qubit spin-3/2 system (d-f)
corresponding to initialization in states A (a,d), B (b,e), and C (c,f). The symbols indicate experimental
data while dashed lines indicate simulation. The upper three traces represent ⟨Jα(t)⟩ and the lower four
traces represent CS(t). In (a,d) we see that both the systems show clear tunneling patterns for initialization
in the regular region with good agreement between simulation and experiments. The revival patterns are
observed for the near-regular region as well (b,e), but are not as prominent as those of the regular region.
The patterns for chaotic initial state (c,f) show no clear periodicity.
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which is beyond the reach of current state of the art quantum simulators.

Fig. 4.9 shows the experimental results (symbols) and numerical simulations (dotted lines)

for spin-1 system realized using two-qubits (Fig. 4.9(a-c)) and spin-3/2 system realized using

three-qubits (Fig. 4.9(d-f)) initialized in states Q ∈ {A,B,C} of the classical phase space shown

in Fig. 4.1. In all cases, we set the chaoticity parameter k = 3 and initialized the systems

in states A (Fig. 4.9(a,d)), B (Fig. 4.9(b,e)), and C (Fig. 4.9(c,f)). In all the graphs, the top

three traces show the expectation values ⟨JQ
α (t)⟩. For the initialization into state A in the regular

region, we observe prominent oscillations in the expectation values of Jx and Jz, while that

of Jy remains constant as the system is symmetric about y-kicks (see Fig. 4.9(a,d)). A state

initialized in B near the border of regular and chaotic region shows similar periodicity, though not

as prominent as that for A (see Fig. 4.9(b,e)). For initial state C in the chaotic region, we observe

no clear periodicity, although the Jy component shows oscillation as the system periodically

gets localized and delocalized with kicks (see Fig. 4.9(c,f)). The experimental data shows a

decay in the oscillations due to decoherence and other experimental imperfections. We note that

relatively longer time period of three-qubit oscillations compared to that of the two-qubit system.

Comparing the periodicity of oscillation, we can see that the period slightly longer for the three-

qubit system which completes about three oscillations in 25 kicks, while the two-qubit system

completes three and a half oscillations in the same duration. In the case of k = 3, the period

of oscillations decreases with increasing system size. This is clear from the frequency domain

picture shown in Fig. 4.6. This is expected since as the system size increases, it approaches the

classical limit, thereby suppressing quantum behaviour.

In all the plots, the lowest four traces show correlations

CS(t) = |⟨JS|JQ(t)⟩|2 (4.15)

between JS of state S and the instantaneous total angular momentum operators JQ(t). The overlap

measure allows us to track the localization of the system in states A and A’ as it tunnels between

these regular regions. As expected, when the system is initialized in state A, we see clear periodic

and out-of-phase tunneling oscillations of CA(A’)(t) (see Fig. 4.9(a,d)). These tunneling oscil-

lations persist even for near-regular initialization in state B due to significant spreading of the

low dimensional quantum systems considered here (see Fig. 4.9(b,e)). However, such tunneling
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oscillations are washed out for chaotic initialization in state C ((see Fig. 4.9(c,f)). Furthermore,

the correlation measures CS(t) indicate that for the chaotic state, it is widely delocalized. The

bottom two traces in Fig. 4.9 capture brief leakage amplitudes to the regions E and E’, which is

the consequence of deep-quantum systems considered here.

4.4.3 Robustness of dynamical tunneling

Now that we observe tunneling across a dynamical barrier, it is interesting to see the role of

quantum coherence in sustaining tunneling. To this end, we monitor the robustness of dynam-

ical tunneling between regular regions A and A’ under dephasing noise. For this purpose, we

use pulsed field gradients (PFG) which introduce a linearly varying magnetic field along the z-

direction and accordingly distributing Larmor frequencies over the length of the sample [48].

PFG along with translational diffusion of molecules, effectively induces strong dephasing in the

system. The experimental impact of dephasing on dynamical tunneling are shown in Fig. 4.10 for

j = 1 (Fig. 4.10(a-c)) and j = 3/2 systems (Fig. 4.10(d-f)) and for PFG strengths 0 G/cm (Fig.

4.10(a,d)), 0.005 G/cm (Fig. 4.10(b,e)), and 0.05 G/cm (Fig. 4.10(c,f)). The 0 G/cm scenario in

Fig. 4.10(a,d) is the same as Fig. 4.9(a,d) and has been replotted here for visual comparison. For

reference, we have plotted the theoretical lines in Fig. 4.10 without any dephasing effects. We

find that in both j = 1 and j = 3/2 cases, the tunneling behaviour is weakened by dephasing

noise. In the two-qubit system, the periodic oscillations survive, but with decaying tunneling

amplitudes (see Fig. 4.10(b,c)). In the three-qubit case, even in the presence of weak PFG of

0.005 G/cm the oscillations decay much faster (see Fig. 4.10(e,f)). Here, the correlation measure

indicates that the system preferentially larger overlap with the regular region A compared to other

regular regions. These results indicate the fragility of dynamical tunneling under dephasing noise,

and thereby establish the importance of quantum coherence in sustaining the phenomenon.

4.5 Summary and outlook

Dynamical tunneling, such as the chaos-assisted tunneling, is a well studied phenomenon and

has been demonstrated experimentally in driven cold atomic cloud, microwave annular billiard

and has most recently been used to generate NOON states [194]. However, a systematic study
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Figure 4.10: Effects of dephasing noise on dynamical tunneling in spin-1 QKT realized with two-qubits
(a-c) as well as spin-3/2 QKT realized with three-qubits (d-f), with PFG strengths 0 G/cm (a,d), 0.005
G/cm (b,e), and 0.05 G/cm (c,f). In all the cases, the system was initialized in state A inside a regular
region of Fig. 4.1. The symbols indicate experimental data overlaid on dashed lines corresponding to
ideal simulations without any dephasing noise. The upper three traces represent ⟨Jα(t)⟩ and the lower
four traces represent CS(t). While both the systems are susceptible to dephasing noise the j = 1 system
is relatively more robust in comparison to j = 3/2 system wherein the oscillations have decayed more
severely with noise.
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of tunneling with system size and different initial conditions was not available. In this work, we

have experimentally demonstrated chaos-assisted tunneling in two- and three-qubit systems using

NMR based test bed. We initialized the systems to different regions of the phase space – regular,

near-regular (border region between regular and chaotic) and chaotic. Following [196], we use

⟨Jα⟩, the components of the angular momentum operator, as probes to study dynamical tunneling.

We observe that the systems initialized in the regular region show periodic oscillation in ⟨Jα⟩.

Systems initialized in the near-regular also show periodicity in ⟨Jα⟩, but the oscillations are not

as perfect as those for the case of initial state in a regular region. Further, systems initialized

in a chaotic region show no periodicity. Additionally, by analyzing the norm-distance between

the instantaneous total angular momentum operator and that corresponding to either of regular

regions, we monitor the periodic tunneling of the system between these regions for different

initial conditions.

To understand the significance of quantum coherence in maintaining dynamical tunneling, we

studied the robustness of tunneling against dephasing noise. Experimental results showed that

while both the spin j = 1 and j = 3/2 systems are susceptible to dephasing noise, the effect was

severe for the larger system, wherein the revivals of ⟨Jα⟩ were almost completely destroyed in

the presence of dephasing noise.

Tunneling suppression for increasing number of qubits will be related to the ℏ-scaling in the

kicked top model. For the QKT, quantum correlations are known to decay in a power-law form

as a function of ℏ [146]. It will be useful to explore the validity of this prediction for dynamical

tunneling in future studies. This is likely to be a challenging exercise from an experimental

point of view since it will require maintaining coherence with large number of interacting spins.

Further, while it might not be entirely surprising that introduction of noise kills tunneling effects,

there are Floquet engineering techniques that allow calibrated disorder while still suppressing

decoherence [198, 199]. It will be interesting to explore if such Floquet schemes help sustain

chaos-assisted tunneling even in the presence of noise. Another interesting topic to consider

would be a scenario of quantum tunneling in the simultaneous presence of a potential-energy

barrier as well as a dynamical barrier.

In Chapter 2, we had studied how to characterize quantum chaos in a two-qubit quantum

system. It is interesting to note that the same system and model also exhibit dynamical tunneling.
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This highlights the multi-faceted aspect of quantum chaos. Quantum chaos is not just a by-

product of interacting multi-qubit systems, but has important applications in many other fields -

such as generating highly entangled states via dynamical tunneling [194], studying information

scrambling using OTOCs and Loschmidt echo [200, 201], thermalization or the lack of it (many-

body scars) [113, 202, 203]. Despite extensive interest for decades, quantum chaos and its various

aspects are yet to be completely understood.
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Quantum phase-synchronization in a nuclear spin system

Abstract

Recently there has been significant interest in studying the synchronization of quantum

systems. In this work, we experimentally study phase-synchronization in a pair of interact-

ing nuclear spins subjected to an external drive in nuclear magnetic resonance architecture.

A weak transition-selective radio-frequency field applied on one of the spins is observed

to cause phase-localization, which is experimentally established by measuring the Husimi

distribution function under various drive conditions. Moreover, since synchronization ex-

periments require long wait times to allow for the system to reach a steady state, noise

in the system overwhelms the signal and standard state tomography techniques prove in-

effective. To this end, we have developed a general interferometric technique to directly

extract values of the Husimi function via the transverse magnetization of the undriven nu-

clear spin. We further verify the robustness of synchronization to detuning in the system

by studying the Arnold tongue behaviour.

Reported in

V. R. Krithika, Parvinder Solanki, Sai Vinjanampathy, and T. S. Mahesh, Observation

of quantum phase-synchronization in a nuclear spin-system, Phys. Rev. A 105, 062206

(2022).

5.1 Introduction

In this chapter, we move to a quintessential feature of nonlinear systems - synchronization. Syn-

chronization is the entrainment of a self-sustained oscillator to an external drive or another oscil-

lator via mutual coupling between the systems [204]. It is a ubiquitous phenomenon in classical
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nonlinear systems and has been a subject of widespread study in systems ranging from coupled

pendula to syncing of flashing in fireflies and neuronal firing activities [204]. Motivated by the

stability and universality of classical synchronization, quantum synchronization has also been a

field of intense study. Platforms that exhibit quantized dynamics have inspired theoretical studies

in systems such as trapped ions [205, 206], superconducting circuits [207], atomic ensembles

[208], optomechanical systems [209–212] and nanomechanical systems [213, 214]. Theoretical

studies have shown fundamental implications of synchronization to other fields such as entangle-

ment generation [215, 216], thermodynamics [217, 218], quantum networks [219] and continuous

time crystals [220].

Following the definition of classical synchronization [204], quantum synchronization can be

understood as the adjustment of rhythms of quantum limit cycle oscillators under the effect of

weak coupling or an external drive [216, 218, 221, 222]. Quantum synchronization proceeds by

first considering the quantum analogue of phase space, which is one of many quasiprobability

distributions such as Husimi function and Wigner function [223]. In order to study synchroniza-

tion in a quantum system, a valid limit cycle which is robust against external perturbations and

possesses a neutral free phase [204] must first be established. Thermal states were shown to be

examples of such limit cycle states, showing equiprobable distribution of phases in phase space

[217]. Such phase space distribution functions have been used to construct measures of syn-

chronization [210, 224–227]. Following several studies of synchronization in specific systems,

unified measures of quantum synchronization based on relative entropies have also been formu-

lated [222]. They used information theoretic measures based on quantum correlations, which

have been shown to measure synchronization [216, 228, 229]. These measures reduce to the

phase space based measures under the system specific conditions [222].

Following the theoretical interest in this subject [210, 211, 216–218, 221, 222, 230–236],

quantum synchronization has been experimentally demonstrated recently in the IBM quantum

computer [237] and spin-1 cold atoms [238]. The experimental demonstration of quantum syn-

chronization is in general a challenging task owing to the difficulty in extracting required param-

eters. Quantum synchronization measurements typically require the system to settle into a steady

state, which necessitates the need for long waiting times. Such long wait times allow for other

experimental noise sources to interfere with the signal. Besides this, tomographic reconstruction
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of the state scales with the system size, requiring O(n2) measurements for a system of dimension

n [239]. Thus, the steady state characteristics of the system are in general challenging to measure

and are often inferred by extrapolating transient dynamics or by devising complicated measure-

ment schemes. In this work, we resolve the aforementioned issues and report the observation of

synchronization in nuclear spins using NMR. NMR architecture’s ease of control and manipula-

tion in addition to inherent relaxation mechanisms, which cause the system to thermalize, offers

an ideal platform to observe synchronization

5.2 Objectives

In this work, we experimentally study quantum phase-synchronization in a four-level system.

This system is constituted by a pair of interacting spin-1/2 nuclei, and we observe its synchro-

nization with a weak transition-selective RF field applied on one of the spins in the following

way:

(i) We develop the theoretical formulation to characterize the phase space using Husimi distribu-

tion function for the four-level system.

(ii) Typically, experimental estimation of Husimi distribution requires quantum state tomography

(QST) [197]. However, QST after a long external drive proved to be highly inefficient because, as

the steady state is approached, the irradiated levels saturate and relevant transitions become too

faint. We overcame this by introducing a new interferometric technique that can experimentally

capture the Husimi distribution directly.

(iii) Using this technique, we study the limit cycle behaviour and demonstrate synchronization of

the system with a weak external drive for different drive durations, which allows us to investigate

transient as well as steady state behaviour.

(iv) We also explore the robustness of synchronization against detuning frequency and drive

strength via the Arnold tongue.

From such studies, one can envisage implications of quantum synchronization in areas such

as spectroscopy, quantum computing, and quantum thermodynamics.
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Figure 5.1: (a) Sodium fluorophosphate molecular structure with its Hamiltonian parameters and the spin-
lattice relaxation time constants (T1) shown in the table. The diagonal elements represent the offset, while
off-diagonal element represents the scalar J coupling constant. Figure (b) represents the energy levels of
the two-qubit system with four non-degenerate energy eigenstates. The numerical model presented here
considers only the single-quantum relaxation pathways (yellow curved arrows) and ignores the zero- and
double-quantum pathways (dashed grey arrows). Figures (c,d) show reference NMR spectra of 31P and
19F spins respectively, each obtained with a 90◦ pulse on thermal equilibrium state, while (e) shows the
31P NMR signal after 100 s drive on the |2⟩ ↔ |4⟩ transition. Intensity of the ρ42 element is indicated in
the dashed box, which is used for the Arnold tongue analysis. Figure (f) shows the 19F NMR spectrum at
the end of interferometric circuit from which we can directly extract the Husimi distribution at a particular
θ and ϕ values.
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5.3 Synchronization of a four-level system

We consider a non-degenerate four-level system composed of 19F and 31P nuclei in sodium fluo-

rophospate molecule, as shown in Fig. 5.1(a,b) and study the phase synchronization of the system

with an external drive. It is customary to use spin coherent states, whose evolutions are closest

to classical trajectories, to study synchronization [240]. Furthermore, they are used to charac-

terize the phase space using Husimi distribution function, as explained below. For a spin-1/2

particle, the z projection of the spin angular momentum Sz is quantized into 2s+1 levels |S,ms⟩

with eigenvalues ms = −1/2, 1/2. The spin coherent state for this spin in SU(2) group can be

described as a rotation of the extremal state |S, S⟩ such that [152, 241]

|n̂2⟩ = |θ, ϕ⟩ = e−iϕSze−iθSy |S, S⟩ =

 cos θ
2

eiϕ sin θ
2

 , (5.1)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. It is obvious that spin-1/2 coherent states can be mapped

to points on the surface of the Bloch sphere. The recursive construction of spin coherent state

vectors for an n-level non-degenerate system proposed by Kae Nemoto [241] is as follows

|n̂n⟩ =


cos θ

2

0
...

0

+ eiϕ sin
θ

2


0

|n̂n−1⟩

 . (5.2)

Note that each lower-level vector |n̂n−1⟩ is made up of a new pair of angular variables. For the

four-level SU(4) system used in this work, the extent of phase localization of the system in a state

ρ can be quantified using the Husimi-Kano Q representation function [157, 158], which can be

defined as

Q(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3) =
24

π3
⟨n̂4|ρ|n̂4⟩, (5.3)
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where

|n̂4⟩ =


Cθ1

eiϕ1Sθ1Cθ2

eiϕ2Sθ1Sθ2Cθ3

eiϕ3Sθ1Sθ2Sθ3

 . (5.4)

is SU(4) coherent state [241–243] with Cθi = cos(θi/2) and Sθi = sin(θi/2). The normalization

of the Q-function arises from the completeness relation of coherent state |n̂4⟩ defined as

∫
|n̂4⟩⟨n̂4|dµ =

π3

24
1, (5.5)

where the integration is taken over the Haar measure and volume element given by [241]

dµ = dθ1dθ2dθ3dϕ1dϕ2dϕ3C2θ1S
5
2θ1
C2θ2S

3
2θ2
C2θ3S2θ3 .

For a system with internal Hamiltonian H0 =
∑4

i=1 ωi|i⟩⟨i| having characteristic frequencies ωi,

they evolve as

e−iH0t|n̂4⟩ →


Cθ1

ei(ϕ1−ω21t)Sθ1Cθ2

ei(ϕ2−ω31t)Sθ1Sθ2Cθ3

ei(ϕ3−ω41t)Sθ1Sθ2Sθ3

 , (5.6)

where ωi1 = ωi − ω1. From the above equation, we can see that under free evolution of internal

Hamiltonian, ϕis represent the free phases (akin to free phases in classical oscillators) oscillating

with the respective frequencies ωi1 while θis govern the populations of the system which remains

fixed. In the absence of any external perturbation, the steady state reached by thermalization has

uniform phase distribution, and the Husimi Q-function remains independent of (ϕ1, ϕ2, ϕ3). This

points to the fact that the given system has free phases available. Along with the existence of

free phases, a system needs to be nonlinear in nature to exhibit limit cycle behaviour. Since the

dynamics of a multilevel quantum system is generally nonlinear, the availability of free phases

makes it a perfect candidate to study synchronization. On application of a weak external drive
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the system may develop a definite phase relationship with the drive, thus resulting in a localized

phase distribution. This phenomenon, known as phase synchronization, is captured and quantified

by

S(ϕ1, ϕ2, ϕ3) =

∫
dΘ Q(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3)−

1

(2π)3
, (5.7)

where dΘ = dθ1dθ2dθ3C2θ1S
5
2θ1
C2θ2S

3
2θ2
C2θ3S2θ3 . For the four-level system considered here, the

above expression leads to

S(ϕ1, ϕ2, ϕ3) =
1

16π2
Re
[
ρ43e

iϕ1 + ρ42e
iϕ2 + ρ41e

iϕ3

+ρ32e
i(ϕ2−ϕ1) + ρ31e

i(ϕ3−ϕ1) + ρ21e
i(ϕ3−ϕ2)

]
, (5.8)

where ρij = ⟨i|ρ|j⟩.

Under the effect of thermal baths and in the absence of external perturbations/drive, the sys-

tem reaches its thermal equilibrium state, that is diagonal in the energy eigenbasis of the internal

Hamiltonian. The Husimi Q-function for a diagonal state reduces to a uniform distribution show-

ing no phase localization. Therefore the thermal state constitutes a valid limit cycle state which is

stable to external perturbation and has free phases [217, 222]. Furthermore, the synchronization

measure S(ϕ1, ϕ2, ϕ3) registers zero for such limit cycle state.

5.3.1 System with drive

We now consider the entrainment of the given limit cycle oscillator with an external drive. A

drive having strength Ω and frequency ωd is applied on the |2⟩ ↔ |4⟩ transition (see Fig. 5.1 b).

The Hamiltonian describing the system with this drive is given by

H =
4∑

i=1

ωi|i⟩⟨i|+ Ω
(
|2⟩⟨4|eiωdt + |4⟩⟨2|e−iωdt

)
. (5.9)

In the rotating frame of the drive described by the unitary transformation

exp(i{(ωd + ω2)|4⟩⟨4|+ ω3|3⟩⟨3|+ ω2|2⟩⟨2|+ ω1|1⟩⟨1|}t),
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the total Hamiltonian becomes HR = ∆|4⟩⟨4|+ Ω(|2⟩⟨4|+ |4⟩⟨2|), where ∆ = (ω4 − ω2)− ωd.

For the |2⟩ ↔ |4⟩ drive considered here, the only surviving coherence under steady state is ρ42

(and its adjoint ρ24). Therefore dropping all other coherence terms, and relabelling ϕ2 as ϕ, the

Q-function defined in Eq. (5.3) can be expressed as

Q(θ1, θ2, θ3, ϕ) = Re
(
ρ42e

iϕ
)
Sθ1Sθ2Cθ3 + ρ11S

2
θ1
S2
θ2
S2
θ3

+ ρ22S
2
θ1
S2
θ2
C2

θ3
+ ρ33S

2
θ1
C2

θ2
+ ρ44C

2
θ1
. (5.10)

Since the drive is not sensitively affecting the levels |1⟩ and |3⟩, without any loss of generality

we can effectively set θ2 = π, θ3 = 0 and replace θ1 → θ in the above equation, which further

simplifies the Husimi function to

Q(θ, ϕ) = ρ44C
2
θ +Re

(
ρ42e

iϕ
)
S2θ + ρ22S

2
θ . (5.11)

From the above equation it is clear that non-zero ρ42 leads to the localization of the corresponding

phase variable ϕ in Husimi Q-function. Such a state corresponds to the synchronized state. The

synchronization measure S(ϕ1, ϕ2, ϕ3) corresponding to Eq. (5.8) also reduces to

S(ϕ) =
Re
(
ρ42e

iϕ
)

16π2
and max [S(ϕ)] =

|ρ42|
16π2

, (5.12)

which is non-zero only for ρ42 ̸= 0, similar to [217].

5.4 Experimental setup

In this section, we explain the spin system used to study quantum phase-synchronization, fol-

lowed by the numerical model to simulate the open system dynamics, the optimization of drive

amplitude to observe synchronization derived from the numerical model, and finally the inter-

ferometric technique developed to directly readout the Husimi distribution function value in the

experiments.

82



5.4 Experimental setup

5.4.1 Spin system and the drive

In this work, we considered a two-qubit system formed by the spin-1/2 nuclei 19F and 31P of

sodium fluorophosphate molecule dissolved in D2O solvent (5.3 mg of solute in 600 µl of solvent)

and maintained at an ambient temperature of 298 K. All experiments were performed on a high

resolution Bruker 500 MHz NMR spectrometer operating at a magnetic field strength of B0 =

11.4 T. Fig. 5.1(a) displays the spin system and its Hamiltonian parameters including scalar spin-

spin coupling constant (J -coupling), as well as the RF offsets νP , νF with respect to the Larmor

frequencies ωP = −γPB0, ωF = −γFB0, where γi are the gyromagnetic ratios. Note that νP is

set to −J /2, while νF is set to zero. Fig. 5.1(b) shows the Zeeman energy level diagram of this

two-qubit system. The lab-frame Hamiltonian is of the form

HNMR = ωP I
P
z + ωF I

F
z + 2πJ IPz IFz . (5.13)

As explained in Sec. 1.3 of Chapter 1, the thermal energy in NMR systems at ambient temper-

atures is much greater than the Zeeman energy splitting. Hence, an n-qubit system at thermal

equilibrium is in a highly mixed state given by

ρeq = exp

(
−H0

kBT

)
= 1/2n +

∑
i

ϵiI
i
z, (5.14)

where ϵ = ℏγiB0/(2
nkBT ) ∼ 10−5 is the purity factor. The population distribution in the high-

temperature limit follows the Boltzmann distribution. The inherent relaxation (T1) mechanism

facilitates dissipation, and helps establish equilibrium population distribution, which forms a sta-

ble limit cycle with free phases as discussed in the previous section. The thermal equilibrium

spectra of 31P and 19F spins are shown in Fig. 5.1 (c,d) respectively.

To realize synchronization, we applied a weak drive of amplitude Ω ≈ 0.1 Hz (optimization

of drive amplitude is explained in Sec. 5.4.3) selectively on the |2⟩ ↔ |4⟩ transition as indicated

in Fig. 5.1 (b). The total Hamiltonian in the doubly rotating frame is given by

Htot = H0 + V where,

H0 = −2πνP I
P
z + 2πJ IPz IFz and V = 2πΩIPy . (5.15)
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The first term with νP = −J /2 makes the drive on-resonant with the |2⟩ ↔ |4⟩ transition of

the 31P qubit that prepares ρ42 coherence (see Fig. 5.1(e)), while the dissipation mechanism

redistributes the populations of the system.

5.4.2 Steady state dynamics

In this section, we describe a simple model to estimate the instantaneous state of the two-qubit

system under different drive conditions. The time evolution of a quantum system is given by the

master equation [244]
dρ

dt
= −i[H0 + V, ρ] +D[Ô+]ρ+D[Ô−]ρ (5.16)

where H0 is the internal Hamiltonian of the system and V represents the external drive. The

thermal bath at a temperature T is modeled by the Lindblad superoperators D[Ô+]ρ + D[Ô−]ρ.

The single quantum upward transitions (indicated by yellow curves in Fig. 5.1(b)) are described

by the jump operator D[Ô+]ρ accompanied by their corresponding transition probabilities and

rates. The equivalent downward transitions are described by the Hermitian conjugate D[Ô−]ρ.

The single-quantum transition of the first qubit implies that the system in a state |i⟩|j⟩ goes to the

state |k⟩|l⟩, where k = i± 1, and l = j. The same can be extended to the single-quantum transi-

tion of the second qubit. The Lindblad superoperator for upward transitions of the combined two-

qubit system is hence given by D[Ô+]ρ =
∑

(k−i=1,l=j)D[Okl
ij ]ρ +

∑
(k=i,l−j=1)D[Okl

ij ]ρ where

D[Ô]ρ = ÔρÔ† − {Ô†Ô, ρ}/2 and jump operator Okl
ij is defined as Okl

ij =
√
gklij p

kl
ij |k⟩|l⟩⟨i|⟨j|.

Similarly, we can write D[Ô−]ρ =
∑

(k−i=1,l=j)D[Oij
kl]ρ +

∑
(k=i,l−j=1)D[Oij

kl]ρ, where Oij
kl =

(Okl
ij )

†. The coefficients of the jump operators corresponding to each qubit determine the tran-

sition rate given by gklij , and the transition probability given by pklij . The transition rate of each

spin is related to the bath temperature T via its spin-lattice relaxation time T i
1 as gi = 2π/T i

1

(see Fig. 5.1(a) for T1 values). The transition probabilities pklij can be identified with upward or

downward transitions of a particular spin. We estimate these probabilities via the Fermionic bath

model [245]. Relabelling the upward & downward transitions of nth spin as pn±, we may write

pn+ =
1

e4ϵn + 1
and pn− = 1− pn+, (5.17)

which help maintain detailed balance.
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The master equation in Eq. (5.16) is linear in ρ and can be written as follows

|ρ̇⟩⟩ = L|ρ⟩⟩ = (L0 + LV )|ρ⟩⟩ (5.18)

where L represents the Liouvillian superoperator describing the open system dynamics and |ρ⟩⟩

is the vectorised form of density matrix in Liouville space. The mathematical form of L can be

obtained by applying the transformation BρC → C∗ ⊗B|ρ⟩⟩ to the master equation where |ρ⟩⟩ is

obtained by vertically stacking the columns of density matrix [218, 246–248].

The Liouvillian superoperator L can be decomposed into two parts as shown in Eq. (5.18).

The first part L0 defines the dynamics of system in absence of external drive (V=0) and is given

by

L0 = −i(I ⊗H0 −H∗
0 ⊗ I) +

∑
j=+,−

OT
j ⊗Oj

− 1

2
(I ⊗O†

jOj +OT
j O

∗
j ⊗ I). (5.19)

The second term LV represents the superoperator corresponding to an external perturbation V

which is given by

LV = −i(I ⊗ V − V ∗ ⊗ I). (5.20)

The instantaneous state ρ(t) after solving Eq. (5.18) is given by

ρ(t) = eLtρ0, (5.21)

where ρ0 represents the initial state of the system. The steady state is given by converging solution

of Eq. (5.18), defined as ρss = limt→∞ eLtρ0. Therefore the steady state corresponds to the

eigenstate of Liouvillian superoperator having zero eigenvalue [249]. In the absence of external
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drive, one obtains a diagonal steady state,

ρss =


ρss44 0 0 0

0 ρss33 0 0

0 0 ρss22 0

0 0 0 ρss11

 , (5.22)

with elements following the thermal distribution. In the presence of an external drive V , the

steady state corresponds to the eigenstate of L having zero eigenvalue and is of the form

ρss =


ρss44 0 ρss42 0

0 ρss33 0 0

ρss24 0 ρss22 0

0 0 0 ρss11

 . (5.23)

Here, the basis states are ordered according to decreasing energy eigenvalues. Also note that since

the external drive is very weak, the steady state attained is close to the limit cycle, i.e., ρssii ≈ ρeqii .

We would like to emphasise that it is a highly non-trivial task to measure all the Lindblad

dissipation operators for the NMR system [250]. The dynamics in the system is vastly more

complex than the model considered here can capture. The set of operators comprising this model

is very minimal and intended only to capture the effective dissipation effects. A full description

of the NMR system would involve many more terms not considered in our minimal model.

5.4.3 Optimum drive amplitude

The strength of the drive is crucial to realising synchronization in any system. A very weak

drive will barely perturb the system, while a very strong drive will induce forced behaviour and

alter the limit cycle. It is hence vital to limit the drive strength within an appropriate regime

to achieve synchronization. For our system, we estimate the optimum drive strength using the

numerical model described in Sec. 5.4.2. We vary the drive strength and numerically obtain the
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Figure 5.2: The dependence of visibility of phase-localization versus drive amplitude Ω, showing an
optimum strength at around 0.1 Hz.

corresponding steady-state, for which we estimate the visibility of the Husimi distribution

v(ϕ) =
max(Qϕ)−min(Qϕ)

max(Qϕ) + min(Qϕ)
, (5.24)

where Qϕ =
∑

θQ(θ, ϕ) Note that visibility quantifies the extent of phase-localization. The

result is shown in Fig. 5.2. The drive amplitude was varied from 10−3 Hz to 103 Hz. We can

see that the visibility function is negligible for very low powers and then peaks at around 10−1

Hz before dropping to zero at higher drive amplitudes. We thus chose a drive strength of 0.1 Hz

for the experimental study of synchronization. The experimental method to calibrate such a low

amplitude drive pulse is explained in the results section Sec. 5.5.1.

5.4.4 Interferometric measurement of Husimi distribution

The Husimi function can theoretically be evaluated using Eq. (5.3) from the instantaneous state

directly predicted by solving the master equation. Experimentally, the standard way to extract

Husimi distribution is by using Eq. (5.3) after carrying out QST to estimate the steady state

density matrix ρ [197]. However, tomographic measurements in quantum systems suffer from

two main issues. Firstly, the experimental complexity of QST scales exponentially with system

size [251, 252], where each component has to be measured repeatedly. This introduces deleterious

noise sources when multiple experiments are needed to perform QST. For small quantum systems

such as a four-level system, full state tomography is routinely performed. However, even in the

small system size of four-levels considered here, the second issue was that QST of steady states

turned out to be highly inefficient. This was because QST relies on determining each element of

87



Chapter 5

(a)

Thermal bath

19F • H •
σx

31P |2⟩ ↔ |4⟩ drive U †
θ,ϕ Z︸ ︷︷ ︸ ︸ ︷︷ ︸

ρ(0) = ρeq t ρ(t) τ << t

(b)

Figure 5.3: (a) IMHD circuit for direct measurement of Husimi distribution where the drive duration t is
much longer than the measurement sequence time τ and (b) the corresponding NMR pulse sequence.

the density matrix via a linear combination of expectation values of a set of observables. If the

expectation values vary over large magnitudes, the estimation of very small magnitude elements

by inverting the system of linear equations from multiple experimental measurements suffers

from dynamic range problem. Furthermore, NMR signals are proportional to the population

differences. Since the populations are in a pseudo-spin state, their effective difference dips below

the noise threshold, rendering steady state population tomography difficult in such systems. The

interferometric method described here avoids the dynamic range problem and directly extracts

the Husimi function at each (θ, ϕ) value in a single experiment without requiring the elaborate

QST protocols. This allowed us to efficiently observe and quantify synchronization even after a

very long drive durations.

The circuit diagram describing the experiment to read the Husimi Q-function values is shown

in Fig. 5.3(a). Here, 19F qubit acts as the ancillary system, which along with 31P qubit begin from

a thermal equilibrium state ρeq. The long weak-drive responsible for synchronization is applied

on the |2⟩ ↔ |4⟩ transition of 31P qubit. As part of the interferometer, we now apply a Hadamard

operator on 19F qubit and prepare its superposition. Meanwhile, we apply the gate U †
θ,ϕ on 31P
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qubit. Subsequently, we apply a controlled phase-gate 1P ⊗ |0⟩⟨0|F − σP
z ⊗ |1⟩⟨1|F .

Starting from the extremal state |0, 0⟩ = |θ = 0, ϕ = 0⟩, we can generate the spin coherent

state

|θ, ϕ⟩ = Uθ,ϕ|0, 0⟩ =
[
e−iϕSze−iθSy ⊗ 1

F
]
|0, 0⟩. (5.25)

The corresponding interferometric measurement of Husimi distribution (IMHD) reading is

QIF(θ, ϕ) = ⟨θ, ϕ|ρss|θ, ϕ⟩ = Tr (ρss|θ, ϕ⟩⟨θ, ϕ|)

= Tr
(
ρssUθ,ϕ|0, 0⟩⟨0, 0|U †

θ,ϕ

)
= Tr

(
U †
θ,ϕρ

ssUθ,ϕ|0, 0⟩⟨0, 0|
)

= ⟨|0, 0⟩⟨0, 0|⟩ρθ,ϕ, (5.26)

where ρθ,ϕ = U †
θ,ϕρ

ssUθ,ϕ.

The NMR pulse sequence for IMHD is shown in Fig. 5.3(b). After the |2⟩ ↔ |4⟩ drive, we

implement a pseudo-Hadamard operator using a 90◦y pulse on the 19F spin. While U †
θ = eiθIy

can be realized by a single θȳ pulse, U †
ϕ = eiϕIz = e−iπ

2
Iye−iϕIxei

π
2
Iy is realized by a sequence

of three pulses. The measurement of |0, 0⟩⟨0, 0| projector can be realized via a controlled phase-

gate, which can be implemented, up to a phase-factor, by a simple free evolution under the system

Hamiltonian 2πJ IPz IFz for a time duration of 1/2J . A subsequent measurement of transverse

magnetization of the 19F spin yields the NMR signal

s = Re⟨σF
x ⟩ =

1

2
{C2θ [ρ

ss
11 − ρss22 − ρss33 + ρss44]

+ S2θ Re(e
−iϕρss24 + eiϕρss42)

}
. (5.27)

One can verify from Eq. (5.10) and Eq. (5.27) that

QIF(θ, ϕ) =
24

π3

[
1 + 2s

2
−
(
ρss11C

2
θ + ρss33S

2
θ

)]
= Q(θ, ϕ). (5.28)
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Here ρss11 ≃ ρeq11 and ρss33 ≃ ρeq33 are the populations of undriven levels and can be estimated from

the thermal equilibrium population distribution. For the highly mixed NMR systems, ρ11 ≃ ρ33 ≃

1/4, so that,

QIF(θ, ϕ) =
24

π3

[
1 + 2s

2
− 1

4

]
=

24

π3

[
s+

1

4

]
. (5.29)

Thus, the 19F signal after the IMHD circuit of Fig. 5.3 can directly measure the Husimi

distribution values. One such spectrum for a particular drive duration and (θ, ϕ) values is shown

in Fig. 5.1(f). One could use a third spin as an ancilla qubit for the interferometer circuit, but this

will open up additional dissipation pathways. To minimise such decoherence channels, here we

have used one of the system spins itself as an ancilla qubit.

5.5 Results and discussion

5.5.1 Low power RF calibration

We first explain the calibration of low power pulses in the NMR architecture. The experimental

calibration of such very weak RF pulses is nontrivial, since the signal to noise ratio is negligibly

small. For this purpose, we used a spin-system trimethylphosphite dissolved in dimethylsulphox-

ide solvent, which is different from the spin-system to study synchronization. We specifically

chose this sample because of its star-topology with 31P at the centre coupled to nine identical 1H

nuclei with a scalar J coupling constant of 11 Hz, as shown in Fig. 5.4. Such geometry is highly

preferable since the magnetization of the nine high γ proton nuclei can be easily transferred to

the central 31P nucleus via a standard NMR technique INEPT and further algorithmic cooling,

thus boosting its signal [253]. This gives better signal to noise ratio and hence more accurate

calibration values. Note that the calibration of the RF coils is not dependent on the sample. The

solvent dielectric constant does affect the pulse calibration in the sample, but it is a second order

effect and can hence be ignored. The low power drive pulse was calibrated sequentially from a

hard pulse such that it maintained the relation α = γiBRF τ = Pτ where α is the flip angle, BRF

is the amplitude of the RF-pulse, P is the corresponding power of the pulse and τ is the pulse

duration. The flip angle was kept constant α = π/2 and the power and time were varied step by
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Figure 5.4: TMP molecule and Hamiltonian parameters.
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Figure 5.5: Low power calibration using trimethylphosphite. The intensity of 31P spin after decoupling
protons is shown as a function of time for various low amplitude pulses. We can see that the response is
linear in this regime. The expected and exactly obtained values from back-calculation of the linear fit are
shown in the legend.

step, due to the highly nonlinear response of the RF coils in the low power regime which makes

direct estimation of calibration values in the low power regime error-some. This procedure was

repeated until the low power pulses of required values could be calibrated. The low power cali-

bration was carried out for amplitudes from 0.14 Hz (which corresponded to a power of 41 µW)

to 0.03 Hz (which corresponded to a power of 7 µW).

For very low amplitudes, the signal ∝ sin(Ωt) ≊ Ωt, and therefore we expect a linear de-

pendence. The calibration results are shown in Fig. 5.5. As we can see, the intensity of the 31P

spectrum after decoupling protons varies linearly with time for the low amplitude pulses. Thus

by fitting a linear function to the resulting curve, we could back-calculate the exact amplitude of

the pulse. The estimated and exact values from back calculation of the linear fit are shown in
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Figure 5.6: The full phase space Husimi distribution values for different drive durations to capture transient
and steady state behaviour in the subspace of interest obtained (a) by experiments and (b) by the numerical
model. The values mentioned in the titles indicate the visibility factors of the Husimi distributions. We
can see that in the absence of drive, there is no localization in the phase space. Upon applying the drive, in
the transient regime (upto 10 s), the phase begins to localize gradually, showing the strongest localization
experimentally at a drive duration of 1 s and saturating after 10 s.

the legend. RF fields with amplitudes lesser than 0.03 Hz could not be calibrated as the power

corresponding to such pulses were below the threshold of the hardware. These low power pulses

were used in the Husimi distribution estimation and Arnold tongue experiments.

5.5.2 Synchronization experiments

The experimental IMHD results at thermal equilibrium as well as at various drive durations are

shown in Fig. 5.6. The signal measured at the end of the IMHD circuit (Fig. 5.3) was directly

used to estimate the Husimi distributions using Eq. (5.29). The title of each sub-figure indicates

the value of the corresponding visibility factor of the Husimi distribution.

Limit cycle

In the absence of drive, the system is in thermal equilibrium with the environment. Husimi distri-

bution of the thermal equilibrium state ρeq is shown in Fig. 5.6 (a), which is uniform throughout

the phase space with no phase localization, and accordingly vanishingly small visibility factor.
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Therefore ρeq is a valid limit cycle with free phase, as is expected.

Onset of synchronization

To study synchronization in the system, we applied a weak transition-selective drive of strength

Ω = 0.1 Hz on-resonant with the |2⟩ ↔ |4⟩ transition as shown in Fig. 5.1(b). The equilibration

time of the quantum system is approximately 10 s, which means that dynamics captured under

10 s can be considered transient whereas for timescales much larger than 10 s we observe steady

states of the system. The drive is applied for different durations which enabled us to investigate

the transient and steady state dynamics in the subspace of interest. The experimentally measured

Husimi distributions for various drive durations are shown in Fig. 5.6 (a). The corresponding

distributions for the instantaneous states predicted by the numerical model (described in section

5.4.2) are shown in Fig. 5.6 (b). We can see that the system gradually develops phase localization

with the drive before reaching a steady state. For short drive durations, i.e., for 50 ms, 100 ms

we observed a weak phase localization, which captures the transient dynamics. In this transient

regime, the experimental phase distribution reached a peak localization strength at 1 s drive du-

ration. The system then reached a steady state with the phase localization stabilizing for drive

durations roughly above 10 s. It remains synchronized even up till 100 s, which is more than ten

times the drive period as well as ten times the T1 relaxation time constants of the system spins.

The experimental phase localization pattern and visibility factors matched fairly well with

those predicted by the numerical model. While an elaborate relaxation model, accounting for

all the Lindblad dissipation operators and other experimental imperfections such as RF inhomo-

geneity might explain the observed deviations, the current minimal model nonetheless captured

the essential signatures of synchronization.

Arnold tongue

Arnold tongue is a quintessential test of synchronization that probes robustness of phase-localization

against small changes in drive strengths and drive detuning [204]. As the drive strength is in-

creased, the region of synchronization can be shown to be wider, leading to the familiar “tongue”

shape. Here, we varied the drive strength of the 100 s weak drive, and its resonance-offset by

3 Hz about the resonance value. The Arnold tongue was quantified using the maximum of the

synchronization measure, max [S(ϕ)], and in this case it is only dependent on the ρ42 element of
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Figure 5.7: Arnold tongue behaviour of the system. The system shows strongest synchronization for
on-resonant drive and strong drive strengths, while off-resonant drives are unable to synchronize with the
transition of interest even for large driving strengths.

the density matrix, as evident from Eq. (5.12). Experimentally, this could be directly measured

from the intensity of 31P NMR spectrum (see Fig. 5.1(e)). Fig. 5.7 compares the result of the

Arnold tongue experiments with that of the numerical prediction (from the model described in

section 5.4.2). For strong drive strength and near resonance conditions, the degree of synchro-

nization was higher since the drive had more efficient perturbative effect on the system. On the

other hand, for larger detuning and weaker drives, the extent of synchronization was weaker. The

experimental data showed pixelation since the drive strength was varied in a discrete fashion.

Moreover, in the limit of vanishing drive strength, we expect no synchronization, which could

not be captured experimentally since the RF pulse calibration is reliable only till a certain lower

threshold, as elaborated in Sec. 5.5.1. Despite an overall correspondence between the experi-

mental and the predicted profiles, we could see a higher spread along the detuning axis in the

experimental data, which can be attributed to the limitations of the minimal numerical model and

experimental imperfections.
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5.6 Summary and outlook

In this work, we experimentally explored the quantum equivalent of a classical omnipresent phe-

nomenon of synchronization in nonlinear systems. We demonstrated the synchronization of a

two-qubit system with a weak external drive. We used the Husimi distribution function as a wit-

ness for synchronization. A weak transition selective drive was applied on one of the spins and

we observed the gradual onset of phase-localization via Husimi distribution. In the absence of

any external drive, the system evolved under its internal Hamiltonian as well as inherent relax-

ation mechanisms, thereby settling to its thermal equilibrium state. The corresponding Husimi

distribution pattern showed no phase-preference, and hence the thermal equilibrium state formed

a valid limit cycle of the system.

To bypass the difficulties of performing quantum state tomography on steady states, here we

used an interferometric technique to directly extract the Husimi distribution values by reading the

signal of the undriven spin. This method is significantly more efficient compared to the standard

tomography-based protocol.

To establish the robustness of synchronization, we investigated the response of the system to

changes in drive strengths and drive detuning. The resulting phase-localization measure of the

system exhibited the expected Arnold tongue behaviour. We compared the experimental results

with a minimalistic T1 relaxation model of the two-qubit nuclear spin system, which could capture

the general features of the experimental data.

This work demonstrated the suitability of NMR architecture for quantum synchronization

studies and also opens up avenues for further exploration of the phenomenon in larger spin sys-

tems as well as under a variety of interactions and drive conditions, such as mutual synchroniza-

tion in a network of spins. It would also be interesting to explore connections (if any) between

quantum chaos and synchronization, since it has been established that some classically chaotic

systems can synchronize [204], interplay between synchronization and quantum transport, etc.
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CHAPTER 6

Simulation of interaction induced Rydberg phenomena in spin

systems

Abstract

We experimentally emulate interaction induced blockade and local spin freezing in two and

three qubit NMR architecture. These phenomena are identical to the Rydberg blockade and

Rydberg biased freezing. In Rydberg blockade, the simultaneous excitation of two or more

atoms is blocked due to the level shift induced by the strong van der Waal’s interaction. In

such a strong interaction regime, one can also observe Rydberg biased freezing, wherein

the dynamics is confined to a subspace, with the help of multiple drives with unequal am-

plitudes. Here we drive NMR qubits with specific transition-selective radio waves, while

intermittently characterizing the quantum states via quantum state tomography. This not

only allows us to track the population dynamics, but also helps to probe quantum corre-

lations, by means of quantum discord, evolving under blockade and freezing phenomena.

Our work constitutes experimental simulations of these phenomena in the NMR platform.

Moreover, these studies open up interesting quantum control perspectives in exploiting the

above phenomena for entanglement generation as well as subspace manipulations.

Reported in

V. R. Krithika, Soham Pal, Rejish Nath, and T. S. Mahesh, Observation of interaction in-

duced blockade and local spin freezing in a NMR quantum simulator, Phys. Rev. Research

3, 033035 (2021).
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6.1 Introduction

6.1 Introduction

In this work, we explore some very different effects of interactions in giving rise to novel phe-

nomena, such as blockade and freezing, in quantum systems. The blockade phenomenon is one

in which strong interaction between systems shifts the energy of multi-excited states, and hence

prohibit their simultaneous excitation of many particles by a drive field. It has been a subject

of intense study using various quantum systems. For instance, blockade has been observed in

electrons [254–256], photons [257–261], ions [262], and Rydberg atoms [263–265]. The block-

ade effect has been used for applications in controlled preparation of quantum states [266, 267],

in particular the entangled or nonclassical states [268–270], thus becoming highly relevant for

quantum information applications [271, 272] and quantum many-body physics [273]. It is well

known that preparing entangled states in many-partical systems is no trivial task. The blockade

phenomenon offers a convenient method to prepare such entangled states and can be scaled with

the system size. In Rydberg systems, strong coupling between atoms arises as a consequence

of strong van der Waals interaction between the atoms [272]. In the Rydberg blockade regime,

a new feature has been predicted recently by Vineesha et al. [274], called the Rydberg biased

freezing. In this phenomenon, the dynamics of atoms driven with small Rabi coupling freeze.

The phenomenon of biased freezing can provide local control on selected qubits in a multi-qubit

system, which is of vital importance in many quantum computing and information processing

tasks [275].

Quantum simulations are a cornerstone of quantum computing and information processing

tasks. Since their conception in the early 1980s, quantum simulators have steadily expanded to

encompass several architectures and capabilities [10, 276, 277]. These simulators help us harness

the powerful resources of quantum systems, such as superpositions and entanglement, which are

beyond the reach of current day classical simulators. Among the many platforms that are today

available, spin-based architectures such as NMR and vacancy centres in diamond are some of

the most versatile, owing to the precise control, long coherence times, wide variety of spin-qubit

topologies, and well developed methodologies. They have been routinely used to simulate various

quantum phenomena from atomic to condensed matter physics [278–282]. Hence, given the

importance of spin-based quantum information and computing platforms, it is of timely interest
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to emulate blockade and Rydberg biased freezing in spin systems. Here, we use NMR as the

experimental demonstration platform.

6.2 Objective

In this chapter, we experimentally demonstrate interaction induced blockade and local spin freez-

ing, identical to the Rydberg blockade and Rydberg biased freezing phenomena respectively us-

ing two- and three-qubit spin systems in NMR architecture. We first establish the mapping of

Rydberg blockade and freezing dynamics to NMR spin Hamiltonian to emulate the required dy-

namics. Subsequently, we study the following

(i) Rabi oscillation dynamics of the spin systems under a radio-frequency (RF) field in the ab-

sence of interactions.

(ii) Next, we introduce spin-spin couplings in the system and study the modified dynamics, i.e.,

blockade and local spin freezing, in the systems as compared to the non-interacting case. We also

realize various configurations of Rydberg-biased freezing in the multi-qubit systems.

(iii) We carry out full quantum state tomography at different instants to monitor the state and to

extract quantum correlations in the system via quantum discord, as they evolve.

(iv) We show that local freezing is not a adhoc occurrence at some RF drive amplitudes, but can

be realized by the gradual tuning of parameters from blockade conditions.

Operational maps between atoms and spins, such as the ones used here are of interest since

they might open up new possibilities in experimental quantum simulations using NMR architec-

ture. Such maps not only provide clues towards new phenomena not foreseen by either of the

quantum architectures, but also help conceive hybrid architectures.

6.3 Rydberg blockade and Rydberg biased freezing

In this section, we briefly review the phenomena of the Rydberg blockade and Rydberg biased

freezing for two atoms (N = 2). Each atom comprises of two levels with the ground state {|g⟩}

coupled to the Rydberg state {|e⟩} by a laser field of Rabi frequency Ωi and detuning ∆i. In the
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Figure 6.1: A system of two uncoupled Rydberg atoms and their corresponding energy level diagram with
ν denoting frequency of the energy gap. The ground state of each atom is coupled to the excited state
by laser fields with Rabi frequencies Ω1 and Ω2 = Ω1 respectively. The energy levels of the system are
equally separated in energy. Hence populations periodically oscillate between the ground state {|gg⟩} and
the doubly excited state {|ee⟩} via the intermediate singly excited states {|ge⟩, |eg⟩}.

frozen-gas limit, the system is described by the Hamiltonian

Ĥ = −
2∑

i=1

∆iσ̂
i
ee +

2∑
i=1

Ωiσ̂
i
x + V0σ̂

1
eeσ̂

2
ee, (6.1)

where σ̂ab = |a⟩⟨b| with a, b ∈ {g, e}, σ̂i
x = σ̂i

eg + σ̂i
ge. Here, the value of ℏ has been set to

1. The interaction potential between two Rydberg excitations separated by a distance R is given

by the van der Waals interaction V0 = C6/R
6 where C6 is the van der Waals coefficient [272].

Henceforth, we take ∆i = 0, and work in the basis {|gg⟩, |ge⟩, |eg⟩, |ee⟩}.

In the case of uncoupled Rydberg atoms, i.e., V0 = 0, the ground state (|gg⟩), first excited state

(|ge⟩, |eg⟩) and doubly excited states (|ee⟩) are equally separated in energy as shown in Fig. 6.1.

When an oscillatory excitation field of Rabi frequency Ω1 is applied to such a system, the atoms

get excited from the ground state to the doubly excited state via the intermediate singly-excited

state, which manifests as Rabi oscillations of the populations within these levels.

6.3.1 Rydberg blockade

To observe Rydberg blockade, we move to the regime V0 ≫ {Ω1,Ω2}, and assume that Ω1 = Ω2.

Under such conditions, the doubly excited state experiences a large energy shift due to V0 [see

Fig. 6.2(a)], and gets detuned from the excitation field. In this case, if the two atoms are ini-
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Figure 6.2: The energy level diagram and allowed transitions under (a) blockade and (b) Rydberg biased
freezing of two interacting Rydberg atoms. Here, ν denotes the frequency of the energy gap. The ground
state of each atom is coupled to the excited state by laser fields with Rabi frequencies Ω1 and Ω2 respec-
tively. Under strong interaction, the doubly excited state shifts out of resonance. In the regime Ω1 = Ω2 (a),
the system exhibits dynamics between the ground state |gg⟩ and the entangled state |+⟩ = (|eg⟩+|ge⟩)/

√
2

with enhanced frequency
√
2Ω1. The entangled state |−⟩ = (|eg⟩ − |ge⟩)/

√
2 is also cut-off from the sys-

tem’s dynamics. In the regime where second atom is driven by a much weaker drive than the first atom
Ω2 = Ω1/4 (b), the dynamics of the second atom is suppressed and that of the first atom is unhindered,
resulting in freezing of the second atom.
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6.3 Rydberg blockade and Rydberg biased freezing

tialised in |gg⟩, they exhibit coherent Rabi oscillations between |gg⟩ and |+⟩ = (|ge⟩+ |eg⟩)/
√
2

with an enhanced Rabi-frequency of
√
2Ω1, cutting off |ee⟩ entirely from the population dynam-

ics. Effectively, strong interactions hinder the presence of two excitations simultaneously, over a

separation of Rb, the blockade radius. This phenomenon is called Rydberg blockade [263–265].

6.3.2 Rydberg biased freezing

Next, keeping V0 ≫ {Ω1,Ω2} such that we remain in the blockade regime, if we increase Ω2,

it eventually freezes the dynamics of the first atom [see Fig. 6.2(b)]. This phenomenon was first

shown by Vineesha et.al [274] and is termed as Rydberg biased freezing. Note that the Rydberg

biased freezing emerges as a combined effect of both strong interactions and the strong driving

on one atom [274]. Since the system is still in blockade regime, |ee⟩ is cut off from the dynamics.

Further, due to the strong bias on the second atom, the system exhibits predominant coherent Rabi

oscillations between |gg⟩ and |ge⟩, freezing the first atom.

It is straightforward to extend both blockade and freezing phenomena for more than two

atoms. For N atoms and ∆i = 0, the Hamiltonian in Eq. (6.1) can be extended as,

Ĥ =
N∑
i=1

Ωiσ̂
i
x +

N∑
i<j

Vijσ̂
i
eeσ̂

j
ee, (6.2)

where Vij = C6/r
6
ij and rij is the separation between ith and jth atoms. A fully blockaded

sample of N two level atoms exhibit coherent Rabi oscillations between the many-body ground

state |G⟩ = ⊗N
i=1|g(i)⟩ and a collective single excited state, |+N⟩ =

∑
i |gg...e(i)...gg⟩/

√
N [283].

Freezing one or more atoms in an N-atom system can also be realized by appropriately tuning the

Rabi frequencies on selected atoms. In this case, the system exhibits coherent Rabi oscillations

between |G⟩ and the corresponding product states.

6.3.3 Mapping Rydberg atom Hamiltonian to spins

In this section, we describe the spin-model corresponding to the Rydberg atom Hamiltonian used

to describe blockade and Rydberg biased freezing. We introduce the spin-1/2 operators, Î iα (α ∈

{x, y, z}) by mapping |g⟩ and |e⟩ with up (| ↑⟩) and down (| ↓⟩) spin states along the z-axis,

respectively. Then, we have σ̂i
x = 2Î ix, and σ̂i

ee = (1 − 2Î iz)/2, where 1 is the identity operator,
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and the Hamiltonian in Eq. (6.2) reads as (apart from an identity term),

Ĥ = 2
N∑
i=1

ΩiÎ
i
x +

1

4

N∑
i<j

Vij(1− 2Î iz)(1− 2Îjz )

= 2
N∑
i=1

ΩiÎ
i
x −

1

2

N∑
i<j

Vij(Î
i
z + Îjz ) +

N∑
i<j

Vij Î
i
z Î

j
z . (6.3)

Since Vii = 0 and Vij = Vji, the second term in the above equation can be further simplified as

follows

−1

2

N∑
i<j

Vij(Î
i
z + Îjz ) = −1

2

N∑
i=1

N∑
j=1

Vij
2
Î iz +

Vji
2
Îjz

= −1

2

N∑
i=1

V̄iÎ
i
z −

1

2

N∑
j=1

V̄j Î
j
z = −

N∑
i=1

V̄iÎ
i
z, (6.4)

where V̄i =
∑N

j=1 Vij/2. Thus, the overall Hamiltonian can be cast in terms of spin operators as

H = 2
N∑
i=1

ΩiÎ
i
x −

N∑
i=1

V̄iÎ
i
z +

N∑
i<j

Vij Î
i
z Î

j
z . (6.5)

In spin models, the first term in Eq. (6.5) plays the role of a transverse field, second term

acts as a longitudinal field and the third term provides the Ising interactions. In the next section,

we describe the experimental realization of the above Hamiltonian using nuclear spins. For our

convenience, we continue to use the states |g⟩ and |e⟩ as the two spin states of the NMR qubit.

6.4 Experimental setup and results

We experimentally emulated Rydberg atom dynamics on two different systems: (i) a two-qubit

system involving 19F and 31P nuclear spins of sodium fluorophosphate dissolved in D2O (Fig.6.3(a)),

and (ii) a three-qubit system involving 1H, 13C and 19F nuclear spins of dibromofluoromethane,

(Fig. 6.3(d)) dissolved in deuterated acetone. All experiments were performed on a 500 MHz

high-resolution Bruker NMR spectrometer at ambient temperatures.

Each NMR sample contains about 1015 molecules (nuclear spin-systems) placed in an external
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Figure 6.3: Sodium fluorophosphate molecule (a), the parameters of the rotating-frame Hamiltonian H0

(Eq. 6.6) (b) forming the two-qubit register, and the corresponding energy eigenstates and eigenvalues (c).
Dibromofluoromethane molecule (d), the parameters of rotating-frame Hamiltonian (e) forming the three-
qubit register, and the corresponding energy eigenstates and eigenvalues (f). In tables (b, e) the diagonal
elements represent tunable off-set frequencies νi set according to Eq. 6.7, and off-diagonal elements show
scalar coupling constants Jij between the respective qubits.

magnetic field B = B0ẑ, where B0 = 11.75 T. The Zeeman interaction lifts the degeneracy

between the spin states m = ±1/2 with an energy gap ℏγiB0 where γi is the gyromagnetic

ratio of the nuclear isotope and γiB0 constitutes its Larmor frequency. The time-averaged local

field at the site of nuclear spins in a rapidly reorienting liquid molecule differs from the external

magnetic field. The resulting individual Larmor frequencies γiB0(1 + δi) are strongly dependent

on the chemical environment.

Each of the nuclear isotopes forming our spin systems were irradiated with a linearly polarized

radio-frequency (RF) wave, whose resonant component is of the form BRF
i exp(i2πηit) charac-

terized by controllable amplitudes 2πνRF
i = γiB

RF
i and controllable carrier frequencies ηi. The

resonance offsets with respect to the carrier frequencies are given by 2πνi = γiB0(1+ δi)−2πηi.

The spins also interact with one another via a constant scalar coupling Jij mediated through co-

valent bonds. While Jij itself is not a controllable parameter, the effective evolution time of the
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scalar interaction, can however be manipulated, if required. For both the spin systems described

above, the resonance offsets and coupling strengths are tabulated in Fig. 6.3(b,e).

Thus the NMR Hamiltonian in a frame co-rotating with individual RF carriers for a heteronu-

clear system under secular approximation is

HNMR = 2π
N∑
i=1

νRF
i Î ix +H0, where,

H0 = −2π
N∑
i=1

νiÎ
i
z + 2π

N∑
i,j>i

Jij Î
i
z Î

j
z . (6.6)

We can now map the NMR parameters in Eq. 6.6 with the Rydberg system in Eq. 6.5 by setting

2πνRF
i = 2Ωi, 2πνi = V̄i, and 2πJij = Vij. (6.7)

The energy eigenstates and corresponding eigenvalues of the two and three-qubit systems for the

rotating-frame Hamiltonian H0 in Eq. 6.6 are shown in Fig. 6.3(c, f) respectively. Thus, NMR

systems along with RF pulses provide a natural test bed for emulating similar physics that can be

studied using a Rydberg quantum simulator.

6.4.1 Capturing single spin-1/2 dynamics in a multi-qubit system

Here, we explain how we realized the dynamics of non interacting spins (equivalent to V0 = 0) in

the two and three-qubit cases. The Rabi oscillation of a non interacting spin-1/2 nucleus can be

realized in different ways. For instance, one can use heteronuclear spin-decoupling to average-

out all the spin-spin interactions [49]. However, here we used a simpler method that uses low-

bandwidth transition-selective RF fields whose carrier frequencies are set on one of the transitions

of each spin and ignore all other off-resonant transitions. In the weak coupling approximation, the

Rabi dynamics on individual on-resonant transitions is equivalent to a non interacting two-level

system. To realize a single spin dynamics of spin A in a coupled spin pair AB, we first let spin B
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remain in the thermal state ρB = 1
2
|↑⟩⟨↑|− 1

2
|↓⟩⟨↓|, so that the spins are in a separable initial state

ρAB = ρA ⊗ ρB

=
1

2
ρA ⊗ |↑⟩⟨↑| − 1

2
ρA ⊗ |↓⟩⟨↓|. (6.8)

As illustrated in Fig. 6.4, the four-dimensional space can now be decomposed into two single-spin

subspaces labeled B↑ and B↓ based on the state of spin-B. The subspaces remain independent as

long as spin B is undisturbed.

Figure 6.4: Energy levels of a coupled two-qubit system AB. The dashed ellipses show the B↑ and B↓
subspaces. The two transitions of qubit A are displayed at the center with the corresponding spin orienta-
tion of qubit B labeled under each peak.

Now consider a propagator UA = U↑ ⊗ |↑⟩⟨↑| + U↓ ⊗ |↓⟩⟨↓|, which is essentially acting on

spin-A subspaces

ρAB
UA−→ ρ′AB = (U↑ρAU

†
↑)⊗ |↑⟩⟨↑|+ (U↓ρAU

†
↓)⊗ |↓⟩⟨↓|.

(6.9)

The two resolved spectral lines of spin-A allow individual measurements of the two sub-

spaces, i.e., the expectation values in the two subspaces are identical to that of a pair of uncoupled
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single spins:

s↑ = Tr[(σx ⊗ |↑⟩⟨↑|)ρ′AB] = Tr[σx(U↑ρAU
†
↑)] and,

s↓ = Tr[(σx ⊗ |↓⟩⟨↓|)ρ′AB] = Tr[σx(U↓ρAU
†
↓)]. (6.10)

Note that the above expectations are as if U↑ or U↓ is applied on a single uncoupled spin. The

above method can be easily generalized to multi-spin systems. In our experiment, we choose

↑-subspace in 2-spin case and ↑↑-subspace in 3-spin case to study the single-spin Rabi dynamics

of each nuclear spin. We take the data only from the transition of interest and ignore all other

peaks in the spectrum, thereby capturing the uncoupled dynamics. We repeat this procedure for

the individual spins in the system and then combine the results to get the overall dynamics of the

non interacting spins. In the following sections, we explain the experimental setup for interacting

spin architecture to emulate Rydberg blockade and freezing dynamics.

6.4.2 Initialization, Readout, and Modeling Experimental Imperfections

Initialization

As explained in Sec. 1.2.1.4, at ambient temperatures, the thermal energy is much larger than the

Zeeman energy gaps and accordingly an n-qubit NMR system is found in a highly mixed state

of the form ρth = 1/2n +
∑

i ϵiÎ
i
z, where 1 accounts for the uniform background population and

ϵi = ℏγiB0/(2
nkBT ) ∼ 10−5 is the purity factor capturing the deviation population distribution.

Therefore, one prepares a pseudopure state (PPS) [6] of the form ρpps = (1 − ϵ)1/2n + ϵ|ψ⟩⟨ψ|

using spatial averaging technique, which captures the essential dynamics of a pure state |ψ⟩. The

NMR pulse sequences for preparing two- and three-qubit PPS states are shown in Fig. 1.5.

Readout

We performed full Quantum State Tomography (QST) to determine the instantaneous state dur-

ing evolution, which allowed us not only to monitor populations in various energy levels, but also

to quantify coherences and thereby extract quantum correlations. Since NMR signals arise from

single-transition transverse-magnetization operators of the form I ix ± iI iy, not all elements of the

density matrix are directly measurable. Therefore, one performs a set of experiments to system-
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atically convert unobservable elements to observable elements of the density matrix, followed by

their measurements [251]. In our case, we performed six and twelve such detection experiments

for two and three qubit registers respectively, to obtain pure phase absorptive signals [155], using

which we reconstructed the full density matrix.

Modeling experimental imperfections

The two main imperfections in the NMR experiments are (i) spatial RF inhomogeneity (RFI)

causing different Rabi amplitudes at different points in the sample and (ii) z-repolarization process

T1 (relaxation to thermal equilibrium) and dephasing process T2 (loss of quantum coherence) [49].

The rate constants T1 and T2 are measured by standard NMR methods. We modelled RFI by

considering a probability distribution of RF values spread over ±10 % about the nominal value.

This distribution was then optimized by minimizing the rms deviation of the experimental data

points from the corresponding theoretical values. Decoherence effects were also incorporated

into the same model. The theoretical points were obtained by solving the von Neumann equation

in the rotating frame using Eq. (6.6) for the corresponding initial state density matrix in each

case.

6.5 Results and Discussion

6.5.1 Non-interacting spins (Jij = 0)

We first studied the Rabi oscillations of non interacting (Jij = 0) spins under a uniform drive,

i.e., νRF
i = νRF for all i. The Zeeman energy splitting provides the necessary levels for Rabi

oscillations, as illustrated in the central columns of Fig. 6.5 and Fig. 6.6. As explained before

in Sec. 6.4.1, after initializing each spin to its ground state, we applied RF fields to drive the

on-resonant transitions with field amplitudes νRF = 217 Hz and νRF = 10 Hz respectively for

the two and three-qubit registers. The relative populations of ground and excited states were then

measured by a suitable detection pulse after dephasing (and hence destroying) the coherences

with the help of a pulsed field gradient (PFG).

The dynamics for the non interacting spins in the two-qubit and three-qubit systems, are

shown in Figs. 6.5(a) and 6.6(a), respectively. Since the drive was applied to all the spins simul-
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taneously, it leads to coherent Rabi oscillations between the ground states |gg⟩ or |ggg⟩ with the

excited states |ee⟩ or |eee⟩ respectively. The decay profiles indicated by the experimental data

points relative to the theoretical expectations (dashed-lines) are due to environmental relaxations

in NMR systems as well as RFI. These effects were captured fairly well by the model indicated

by the solid lines. In two-qubit register, the population transfer from |gg⟩ to |ee⟩ takes place via

single excited states |eg⟩ and |ge⟩ and for N = 3 we have both singly and doubly excited states

as intermediate ones as shown in Fig. 6.6(a).

6.5.2 Strongly interacting case: Interaction induced excitation blockade

Next, we considered the case of strongly interacting spins with Jij ≫ νRF and νi ≫ νRF. For

the two-qubit register, we have Jij = 868 Hz, and νRF = 217 Hz.

We first prepared |G⟩ = |gg⟩ pseudopure state as explained in Sec. 6.4.2. Following the basis-

freedom in the degenerate subspace, singly-excited states |ge⟩ and |eg⟩ can be linearly combined

to form |±⟩ = (|ge⟩ ± |eg⟩)/
√
2. Under these conditions, we observed Rabi oscillations between

|gg⟩ and |+⟩ = (|ge⟩+|eg⟩)/
√
2, with no population being found in |ee⟩, indicating the excitation

blockade. This effect is shown in Fig. 6.5(c). Note that, the anti-symmetric state |−⟩ = (|ge⟩ −

|eg⟩)/
√
2 is completely decoupled from the excitation dynamics. Comparing this to the results

for the non interacting qubits [Fig. 6.5(a)], the oscillation frequency of the population in |gg⟩

was amplified by a factor of
√
2 due to the blockade. Experimentally, we observed an oscillation

frequency of (
√
2 ± 0.002)νRF, showing an excellent agreement with the expected theoretical

prediction.

In the three-qubit case [see Fig. 6.6(c)], we have νRF = 10 Hz, and the interaction strengths

are given in Fig. 6.3(d). We then prepared |G⟩ = |ggg⟩ pseudopure state as described in Sec.

6.4.2. Again following the basis-freedom in the degenerate subspace, singly-excited states |egg⟩,

|geg⟩, and |gge⟩, are linearly combined to form |W1⟩ ≡ |+3⟩ = (|001⟩ + |010⟩ + |100⟩)/
√
3

and its orthogonal counterparts |W2⟩ and |W3⟩, which can be determined by Gram-Schmidt or-

thogonalization. The basis is not uniquely fixed, but a possible combination is |W2⟩ = (2|001⟩ −

|010⟩ − |100⟩)/
√
6 and |W3⟩ = (|010⟩ − |100⟩)/

√
2. The spin-spin interactions are such that the

states with more than one excitation are energetically well separated from |G⟩ and singly excited

states. The experimental and theoretical results of the population dynamics shown in Fig. 6.6(c)
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Figure 6.5: Population dynamics (left column) and discord (right column) versus driving time for the two-
qubit register under Rabi drive (a), interaction induced blockade (c,d), freezing of the second qubit (e,f)
and of the first qubit (g,h). Plot (b) shows the population dynamics of a pair of non interacting spins with
the same driving parameters as in freezing on second qubit case (g), illustrating the importance of spin-spin
interaction to realize freezing. Experimental data points are shown by dots with error bars (indicating ran-
dom errors), theoretically expected dynamics are shown by dashed lines, and realistic numerical models are
shown by solid lines. In each case, the corresponding energy level diagram is also shown (central column)
with the same color coding as the legend shown at the top of the figure. The energy level diagram of (a)
corresponds to uncoupled spins, while those of (c)-(g) show eigenstates of the rotating frame Hamiltonian
(H0) in a relevant basis (upto the freedom in degenerate subspace) along with prominent transitions. The
discord values D(A|B) are expressed in units of ln 2/ϵ2 [46], where ϵ is the purity factor as described in
section 6.4.2.
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Figure 6.6: Population dynamics (left column) and discord (right column) versus driving time for the
three-qubit register under Rabi drive (a), interaction induced blockade (c,d), freezing of the second and
third qubits (e,f) and of the first and third qubits (g,h) and of only the last qubit (i,j). Plot (b) shows the
population dynamics for three non interacting spins with the same driving parameters as freezing on second
and third qubits (e,f), illustrating the importance of spin-spin interactions to realize freezing. Experimental
data points are shown by dots with error bars (indicating random errors), theoretically expected dynamics
are shown by dashed lines, and realistic numerical models are shown by solid lines. In each case, the
corresponding energy level diagram is also shown (central column) with the same color coding as the
legend shown at the top of the figure. The energy level diagram of (a) corresponds to uncoupled spins,
while those of (c)-(g) show eigenstates of the rotating frame Hamiltonian (H0) in a relevant basis (upto
the freedom in degenerate subspace) along with prominent transitions. The discord values D(X|YZ) are
expressed in units of ln 2/2ϵ2 [46], where ϵ is the purity factor as described in section 6.4.2
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6.5 Results and Discussion

for the initial state |G⟩ indicated that the population exchange occurs only between |G⟩ and |W1⟩,

while all other states are blocked. Here again the collective Rabi oscillation has a frequency of

(
√
3± 0.03)νRF , which also showed excellent agreement with the expected value

√
3νRF .

Figs. 6.5(d) and 6.6(d) show the quantum discord between A:B and X:YZ at different steps

of evolution under blockade conditions for two and three-qubit cases respectively. Initially, the

system was prepared in a product state |G⟩, and hence the quantum discord is zero. However,

during the course of time evolution, correlations developed between the qubits, resulting in non-

zero values of discord. We could see that the discord was maximized each time when the system

attained the entangled state |+⟩ in the case of two-qubits and |W1⟩ in the case of three-qubits. Af-

ter incorporating the imperfections, the numerical model (solid lines) and experimental (circles)

results were in excellent agreement. Brief details of discord calculations in the systems used here

are given in the Appendix A.4.

6.5.3 Strongly interacting case: Local spin freezing

In the blockade regime, by locally amplifying the Rabi coupling (or equivalently the local trans-

verse field in the spin model in Eq. (6.6)) of selected spins, we can freeze the dynamics of other

spins, which in a Rydberg lattice is called the Rydberg biased freezing [274]. This was achieved

in the two qubit NMR register by a drive on the first qubit (19F ) with νRF
1 = 217 Hz and on

the second qubit (31P ) with a weaker field, i.e., νRF
2 = νRF

1 /4. The corresponding dynamics is

shown in Fig. 6.5(e). For these values of field and interaction strengths, we expect freezing of the

second qubit and it remains in its ground state |g⟩, and the two-qubit system exhibits Rabi oscil-

lations between |G⟩ and |eg⟩ as shown by dashed lines in Fig. 6.5(e). Due to the imperfections

discussed in Sec. 6.4.2, we experimentally observed a small fraction of population in |ge⟩ (cir-

cles in Fig. 6.5(e)). After incorporating the imperfections, numerical model results (solid lines)

showed excellent agreement with the experimental values. To appreciate the biased spin freezing

due to the strong spin-spin interactions and the inhomogeneous Rabi coupling, we showed the

same dynamics as that of the non interacting qubits, but with νRF
2 = νRF

1 /4. In the latter case, we

could see that both qubits are involved in the excitation dynamics [see Fig. 6.5(b)]. If we switch

the weaker drive to the first qubit and the stronger one to the second qubit, we observed promi-

nent dynamics of the second qubit while the first qubit freezes in the presence of strong spin-spin
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interactions, as shown in Fig. 6.5(g). This effect was persistent for 12 ms, which is about 0.65

times the time period of the weaker drive. These results also showed that this behaviour is not

transient, but holds over extended times of evolution.

In addition to this, we also studied the regime in between Rydberg blockade and Rydberg

biased freezing by gradually reducing the driving amplitude of the second qubit with respect to

the first qubit and observed the populations in each of the singly excited states |ge⟩ and |eg⟩.

In Fig. 6.7(a), we show the value of population in states |eg⟩ and |ge⟩ at half the effective Rabi

period, i.e., at the first crest that appeared in the Rabi dynamics. We could see that the populations

start out equally in |ge⟩ and |eg⟩ states in blockade regime, with driving amplitude 217 Hz on

both qubits and gradually deviated from each other as the driving fields on both qubits became

different. Here, the driving amplitude of the second qubit was reduced, and hence the population

in |ge⟩ gradually decreased while the population in |eg⟩ increased. The corresponding quantum

discord values for each of these points is shown in Fig. 6.7(b). We could see that as the driving

amplitude of the second qubit is increased, the discord also increases, signalling the shift from

freezing to blockade regime. This was expected, since with increasing drive amplitude, the system

dynamics is no longer restricted to the subspace of the first qubit. The second qubit dynamics

also become prominent, finally resulting in the maximally entangled |+⟩ state under blockade

condition. This showed that local spin freezing was not a chance occurring at some values of RF

drive amplitudes, but a general phenomenon that can be realized by choosing appropriate drive

parameters.

In the three-qubit register, we can studied selective freezing of either a single qubit or two

qubits. To demonstrate two-qubit freezing we applied a drive on the first qubit with νRF
1 = 50 Hz

and the last two qubits by νRF
3 = νRF

2 = 10 Hz. As seen in Fig. 6.6(e), only the first qubit took

part in the excitation dynamics, resulting in Rabi oscillations between |G⟩ and |egg⟩. Instead of

the first qubit, if we drive the second qubit strongly, and weakly drive the first and the third ones,

we observed Rabi oscillations between |G⟩ and |geg⟩ [see Fig. 6.6(g)]. To demonstrate single

qubit freezing in the three qubit register, we applied a weak drive on the third qubit in comparison

to the first two qubits, i.e., νRF
1 = νRF

2 = 50 Hz, νRF
3 = 10 Hz. As shown in Fig. 6.6(i), the

population dynamics in this case was between |G⟩ and the single excitation states of the first two

qubits, |egg⟩ and |geg⟩ respectively, while the third qubit dynamics was suppressed. Similar to the
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Figure 6.7: (a) Population in |ge⟩ and |eg⟩ as the driving amplitude of the second qubit (νRF
2 ) is gradually

reduced from Rydberg blockade condition (νRF
1 = 217 Hz) to Rydberg biased freezing condition (54.2

Hz) (b) the corresponding discord values D(A|B) in units of ln 2/ϵ2. Experimental data are recorded at
half the effective Rabi period (for each value of νRF

2 ) and shown by filled circles, which are overlaid on
theoretical simulations shown by dashed lines.

two-qubit case, in the absence of spin-spin couplings between the qubits and under non-uniform

drive νRF
2 = νRF

3 = νRF
1 /5, all qubits were excited simultaneously, as shown in Fig. 6.6(b).

This reinforced the fact that strong spin-spin interactions cause local spin freezing and that this

phenomenon sustains over extended periods of evolution under such conditions.

Figs. 6.5(f,h) and 6.6(f,h,j) show discord between A:B and X:YZ for Rydberg biased freezing

scenarios in two and three qubit cases respectively. In the three-qubit case, discord was calculated

for different partitions as indicated in the figure 6.6(f,h,j). We could see that less entanglement

was generated under conditions of Rydberg biased freezing as compared to Rydberg blockade.

This was due to considerable suppression of the dynamics of frozen qubits during the evolution.

Accordingly, the dynamics was largely confined to exchanges between separable states, with less

quantum correlation being created as revealed by discord values. We could also see in Fig. 6.6(j)

that discord of the frozen qubit with the rest of the system was steadily increasing. Further

weakening of the drive amplitude on the frozen qubit would lead to its stronger isolation and

further suppression of quantum correlations.
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6.6 Summary and outlook

In this work, we experimentally examined interaction induced blockade and local spin freezing,

analogous to Rydberg blockade and Rydberg biased freezing respectively, in two- and three-qubit

NMR registers. While Rydberg blockade has previously been demonstrated experimentally, we

believe this is the first experimental demonstration of local spin freezing which also simulates

Rydberg biased freezing. In addition, we also characterized the dynamics of quantum discord in

these systems during the course of evolution under blockade and spin freezing conditions.

This experimental demonstration opens up many avenues for further investigations. The abil-

ity of interaction induced blockade, realized by a simple off-resonant drive, to create multi-qubit

entanglement may have interesting applications in experimental quantum information studies.

The robustness of such approaches compared to the traditional methods involving a combination

of local and nonlocal gates is hitherto unexplored. Moreover, the biased local spin freezing can

be utilized to selectively control and drive qubits in a multi-qubit system. This may find appli-

cations for local quantum control, such as exchanging information among a subset of qubits and

controlled generation of quantum dynamics in a system of interacting qubits.

It is fascinating to note that, though the concepts of NMR spin systems are altogether different

from that of Rydberg atoms, it does not hinder access to quantum phenomena featured by the

latter, thus justifying the role of NMR registers as versatile quantum simulators. This work also

reinforces the far reaching effects of (nonlinear) interactions in giving rise to diverse and rich

physical phenomena in quantum systems.
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Thesis Summary
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Figure T1: Summary of the thesis, and concepts covered in the chapters therein.

In this thesis, we have experimentally explored some nonlinear phenomena in spin systems

using NMR architecture. The nonlinear effects studied include quantum chaos using the quan-

tum kicked top (QKT) model, dynamical tunneling in two- and three-qubit systems using QKT,

quantum synchronization of a four-level spin system with a weak external drive, and simulating

interaction-induced Rydberg blockade and freezing in two- and three-qubit spin registers. These

effects were investigated using quantum information processing tools such as von Neumann en-

tropy and quantum discord for quantifying quantum correlations, Husimi quasi-probability dis-

tribution for phase space analysis, interferometric technique and quantum state tomography for

readout, as summarized in Fig. T1. This thesis highlights the scope and implications of these

phenomena for fundamental studies and application in quantum computing and information pro-

cessing, and the versatility of NMR platform for performing quantum simulations.

The work explored here can be extended to study many phenomena in NMR spin systems

which are of interest from fundamental perspectives and applications in quantum information. For
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instance, multiple facets of quantum chaos can be investigated - including its complete character-

ization in star systems, OTOCs (as demonstrated in [201]), effects of quantum chaos in quantum

control, nonlinear dynamics using quadrupolar spins (I > 1), interplay between quantum chaos

and time-crystalline behaviour, quantum many-body effects [284–287], dynamics of quantum

coherences and correlations under chaos, quantum chaotic effects in quantum algorithms [85],

etc. It would also be of interest to probe other models of quantum chaos and their effects, such

as the ratchet effect [288], in spin systems. Although the studies here have been performed on

small spin systems, these approaches can be extended to larger systems such as solid-state NMR

systems with dipolar interactions [286, 289]. There is no doubt that nonlinear effects and interac-

tions give rise to diverse phenomena in quantum systems, and studying these can help further our

understanding of physics and also develop useful quantum technology applications.
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Appendix

A.1 Pulsed Field Fradient

The pulsed field gradient is a spatially varying magnetic field which is introduced to add addi-

tional space-dependent phase, as required. In this thesis, all the gradients used were spatially

varying along the z axis, and can be described by the Hamiltonian [49]

BPFG(z) = Gzzẑ.

In the presence of such a gradient, spins at different positions along the length of the sample (ẑ)

experience different local magnetic fields. Since the Larmor frequency of the spins is directly pro-

portional to the magnetic field, the transverse components of the magnetization vector precess at

different Larmor frequencies along the length of the sample. Hence, over the duration of applica-

tion of the gradient, any phase coherence between the transverse components of the magnetization

along the sample length gets destroyed, and this effectively eliminates the net transverse magne-

tization over the bulk sample volume. This effect is pictorially shown in Fig. T1 starting from a

state with uniform transverse magnetization. It is important to note that the effects of gradient are

under precise control, and reversible (for time scales << T2) . By applying a negative gradient

(reversing direction), the spatial dephasing can be reversed and phase coherence can be restored.

A.2 Quantum State Tomography Pulse Sequences

A.2.1 Single qubit tomography example

In NMR architecture, the detection operator is given by D = σx+ iσy, and the signal is described

byM = Tr(ρD). These signals can be absorptive or dispersive (due to the complex phase factor).

To avoid errors from integration of dispersive signals, we measure only absorptive signals, i.e.,
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Figure T1: Effect of ẑ gradient.

along Dab = σx such that M = Tr(ρDab) = Tr(ρσx), which will pick out the real part of the

density matrix’s off-diagonal element.

Consider a general single qubit traceless density matrix given by ρ =

 p0 a+ ib

a− ib −p0

.

(i) Extracting populations - the population p0 is a diagonal element and not directly detectable.

Hence we transform it to the off-diagonal element and then detect by the following protocol.

ρ
PFG−−−→

p0 0

0 −p0

 (π/2)y−−−→

 0 p0

p0 0

 = p0σx;M1 = Tr(ρσx) = Tr((p0σx)σx) = p0. (6.11)

(ii) Extracting real component of off-diagonal element

ρ
(π/2)−y−−−−→

 a ib− p0

−ib− p0 −a

 PFG−−−→

a 0

0 −a

 (π/2)y−−−→

0 a

a 0

 = aσx

M2 = Tr(ρσx) = Tr((aσx)σx) = a. (6.12)

118



Note that direct detection will also give the real component of the off-diagonal element directly.

(iii) Extracting imaginary component of off-diagonal element

ρ
(π/2)−x−−−−→

 b a− ip0

a+ ip0 −b

 PFG−−−→

b 0

0 −b

 (π/2)y−−−→

0 b

b 0

 = bσx

M3 = Tr(ρσx) = Tr((bσx)σx) = b. (6.13)

Hence from the area under the peaks (signals) measured in each experiment, we can recon-

struct the original density matrix as ρ =

 M1 M2 + iM3

M2− iM3 −M1

 =

 p0 a+ ib

a− ib −p0

.

The NMR pulse sequences for absorptive full-state quantum state tomography (QST) [155] of

the two- and three-qubit systems used in this thesis are given below. QST for different systems

comprise of multiple experiments. Each experiment (Ui) has some pulses and free evolution un-

der the internal Hamiltonian Hint =
∑

i,j>i 2πJijIziIzj whose operations can be summarized as

UiρU
†
i . In each experiment, the unitary operators are followed by a gradient and detection pulse

(Udi) of appropriate angle about the y-axis.

A.2.2 Two-qubit system

The optimized QST protocol for determining the two-qubit state ρ of sodium fluorophosphate

(19F and 31P) system comprised of six experiments. The sequence of experiments (with operators

time ordered from right to left) are -

1. U1 = 1; Ud1 =
(
π
4

)F,P
y

2. U2 =
(
π
3

)F,P
x

; Ud2 =
(
π
4

)F,P
y

3. U3 =
(
π
3

)F,P
y

; Ud3 =
(
π
6

)F,P
y

4. U4 =
(
π
3

)F,P
x

exp(−iHintτ1), with τ1 = 0.0018 s; Ud4 =
(
π
4

)F,P
y

5. U5 =
(
π
3

)F,P
y

exp(−iHintτ2), with τ2 = 0.0005 s; Ud5 =
(
π
6

)F,P
y

6. U6 =
(
π
3

)F,P
x

exp(−iHintτ3)
(
π
3

)F,P
x

, with τ3 = 0.0005 s; Ud6 =
(
π
3

)F,P
y
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A.2.3 Three-qubit system

The QST protocol for the three-qubit dibromofluoromethane system (13C,1H and 19F) comprised

of twelve experiments as described below.

1. U1 = 1; Ud1 =
(

π
12

)C,H,F

−y

2. U2 =
(
π
3

)C,H,F

−x
; Ud2 =

(
π
6

)C,H,F

−y

3. U3 =
(
π
3

)C,H,F

y
; Ud3 =

(
π

5.1426

)C,H,F

−y

4. U4 =
(
π
3

)C,H,F

−x
exp(−iHintτ1), with τ1 = 0.0019 s; Ud4 =

(
π
6

)C,H,F

y

5. U5 =
(
π
3

)C,H,F

y
exp(−iHintτ2), with τ2 = 0.0019 s; Ud5 =

(
π

5.1426

)C,H,F

−y

6. U6 = exp(−iHintτ4)
(
π
3

)C,H,F

−x
exp(−iHintτ3), with τ3 = 0.0072 s, τ4 = 0.0101 s; Ud6 =(

π
3

)C,H,F

y

7. U7 = exp(−iHintτ6)
(
π
3

)C,H,F

y
exp(−iHintτ5), with τ5 = 0.0101 s, τ6 = 0.0101 s; Ud7 =(

π
5.1426

)C,H,F

−y

8. U8 =
(
π
3

)C,H,F

−x
exp(−iHintτ7)

(
π

3.2728

)C,H,F

−x
, with τ7 = 0.0081 s; Ud8 =

(
π

5.1426

)C,H,F

−y

9. U9 =
(
π
3

)C,H,F

−x
exp(−iHintτ8)

(
π
3

)C,H,F

y
, with τ8 = 0.0101 s; Ud9 =

(
π

5.1426

)C,H,F

y

10. U10 =
(
π
3

)C,H,F

−y
exp(−iHintτ9)

(
π
4

)C,H,F

x
, with τ9 = 0.0018 s; Ud10 =

(
π

5.1426

)C,H,F

−y

11. U11 =
(

π
3.2728

)C,H,F

−y
exp(−iHintτ10)

(
π
3

)C,H,F

y
, with τ10 = 0.0101 s; Ud11 =

(
π

5.1426

)C,H,F

−y

12. U12 = exp(−iHintτ12)
(
π
3

)H
−y

(
π
3

)C,F

−x
exp(−iHintτ11)

(
π

3.5999

)H
−x

(
π

3.5999

)C,F

−y
, with τ11 = 0.0078

s, τ12 = 0.0051 s; Ud12 =
(
π
6

)C,H,F

y

A.3 Estimating scalar spin-spin coupling

The scalar spin-spin coupling present in liquid state NMR samples can be directly obtained from

the spectrum of either of the coupled nuclei as explained below. The Hamiltonian of two coupled

heteronuclear spins (AB) is given by H = ΩAIzA +ΩBIzB + 2πJABIzAIzB, where Ωi = −2πνi
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Figure T1: Energy level diagram of coupled two-qubit system of spins AB. The spectrum of spin A
is shown in the center with two peaks at frequencies νA − JAB/2 and νA + JAB/2 respectively which
correspond to B↑ and B↓ configurations.

are the chemical shifts of the spins, and JAB is the scalar spin-spin coupling. The eigenstates and

their corresponding energies (in Hz) for this two-qubit system shown in Fig. T1 are

A↑B↑ − νA/2− νB/2 + JAB/4

A↑B↓ − νA/2 + νB/2− JAB/4

A↓B↑ + νA/2− νB/2− JAB/4

A↓B↓ + νA/2 + νB/2 + JAB/4.

(6.14)

Consider the transitions of spin A. There are two transitions allowed by magnetic dipole interac-

tion rules, which are A↑B↑ → A↓B↑ in which spin B remains in the ↑ state and A↑B↓ → A↓B↓ in

which spin B remains in the ↓ state. These are shown by yellow arrows in Fig. T1. The energies

of these two transitions can be calculated to be νA − JAB/2 and νA + JAB/2 respectively. These

are the two frequencies that are obtained in the spectrum of spin A, shown in the center of Fig.

T1. The difference in frequencies between the two transitions in the spectrum of spin A directly

gives the value of JAB. Identical information will be obtained from the spectrum of spin B.
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A.4 Estimating quantum discord

For discord calculations, we use bipartition of two-qubit system as A:B and for three-qubit system

as A:BC, and measurement is performed on the first qubit. Optimization over multiple measure-

ment bases was performed considering the generalized orthonormal single-qubit basis vectors

[46], |ψ1⟩ = cos(θ/2)|0⟩ + exp(iϕ) sin(θ/2)|1⟩ and |ψ2⟩ = sin(θ/2)|0⟩ − exp(iϕ) cos(θ/2)|1⟩.

By varying {θ, ϕ}, we can cover multiple measurement bases required for calculating discord.

For a two-qubit system, we used the protocol given in Ref. [290] where they developed a set of

optimized bases that bypasses the need for scanning over basis vectors |ψ1⟩, |ψ2⟩.

For three-qubit systems, we used optimization over {|ψ1⟩, |ψ2⟩} basis vectors, and the distribution

of {θ, ϕ} for this procedure was generated using the triangulation function spheretri [291].

The density matrix was permuted to generate different ordering of qubits ABC,BAC,CAB to

facilitate efficient partial trace and measurement operations.

For a general system described by ρ, for any value of {θ, ϕ}, the measurement operators on a

qubit A can be obtained as M1A = |ψ1⟩⟨ψ1|⊗1 and M2A = |ψ2⟩⟨ψ2|⊗1. The post-measurement

states of the system are ρ1 = M1AρM
′
1A, and ρ2 = M2AρM

′
2A, each weighted with their corre-

sponding probabilities. This helps evaluate the conditional entropy S(A|B) = p1S(ρ1)+p2S(ρ2)

for a pair of {θ, ϕ}, and the procedure is repeated for all values of {θ, ϕ} to obtain the optimum.

Following this, the value of discord can be obtained using Eqs. 1.25 and 1.26.

122



123





Bibliography

[1] Richard P Feynman. Simulating physics with computers. International Journal of Theo-

retical Physics, 21(6/7), 1982.

[2] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution

and coin tossing. Theoretical Computer Science, 560:7–11, 2014. Theoretical Aspects of

Quantum Cryptography – celebrating 30 years of BB84.

[3] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.

Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sci-

ences, 439(1907):553–558, 1992.

[4] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In

Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–

134, 1994.

[5] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings

of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page

212–219, New York, NY, USA, 1996. Association for Computing Machinery.

[6] David G. Cory, Amr F. Fahmy, and Timothy F. Havel. Ensemble quantum computing by

nmr spectroscopy. Proceedings of the National Academy of Sciences, 94(5):1634–1639,

1997.

[7] Neil A. Gershenfeld and Isaac L. Chuang. Bulk spin-resonance quantum computation.

Science, 275(5298):350–356, 1997.

[8] John Preskill. Quantum computing 40 years later, 2021.

[9] Andreas Trabesinger. Quantum simulation. Nature Physics, 8(4):263–263, 2012.

125



[10] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys.,

86:153–185, Mar 2014.

[11] Yasunobu Nakamura, Yu A Pashkin, and JS Tsai. Coherent control of macroscopic quan-

tum states in a single-cooper-pair box. nature, 398(6730):786–788, 1999.

[12] G Wendin. Quantum information processing with superconducting circuits: a review. Re-

ports on Progress in Physics, 80(10):106001, sep 2017.

[13] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett.,

74:4091–4094, May 1995.

[14] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage. Trapped-

ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2):021314,

2019.

[15] D. Jaksch and P. Zoller. The cold atom hubbard toolbox. Annals of Physics, 315(1):52–79,

2005. Special Issue.

[16] Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De),

and Ujjwal Sen. Ultracold atomic gases in optical lattices: mimicking condensed matter

physics and beyond. Advances in Physics, 56(2):243–379, 2007.

[17] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbene. Quantum simulations with

ultracold quantum gases. Nature Physics, 8(4):267–276, 2012.

[18] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys.

Rev. A, 57:120–126, Jan 1998.

[19] Guido Burkard, Hans-Andreas Engel, and Daniel Loss. Spintronics and quantum dots for

quantum computing and quantum communication. Fortschritte der Physik, 48(9-11):965–

986.

[20] Christoph Kloeffel and Daniel Loss. Prospects for spin-based quantum computing in quan-

tum dots. Annual Review of Condensed Matter Physics, 4(1):51–81, 2013.

126



[21] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for efficient quan-

tum computation with linear optics. nature, 409(6816):46–52, 2001.

[22] Jeremy L. O’Brien. Optical quantum computing. Science, 318(5856):1567–1570, 2007.

[23] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Mil-

burn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135–

174, Jan 2007.

[24] Stefanie Barz. Quantum computing with photons: introduction to the circuit model,

the one-way quantum computer, and the fundamental principles of photonic experiments.

48(8):083001, mar 2015.

[25] Ibm, the quantum experience.

[26] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,

Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum

supremacy using a programmable superconducting processor. Nature, 574(7779):505–

510, 2019.

[27] D-wave systems.

[28] Ionq, trapped ion quantum computing.

[29] Rigetti computing: Quantum computing.

[30] Psiquantum:fault tolerant quantum computing.

[31] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-

tion: 10th Anniversary Edition. Cambridge University Press, 2010.

[32] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum

entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009.

[33] Gerardo Adesso, Thomas R Bromley, and Marco Cianciaruso. Measures and applica-

tions of quantum correlations. Journal of Physics A: Mathematical and Theoretical,

49(47):473001, 2016.

127



[34] Yuchen Wang, Zixuan Hu, Barry C. Sanders, and Sabre Kais. Qudits and high-dimensional

quantum computing. Frontiers in Physics, 8, 2020.

[35] Yulin Chi, Jieshan Huang, Zhanchuan Zhang, Jun Mao, Zinan Zhou, Xiaojiong Chen,

Chonghao Zhai, Jueming Bao, Tianxiang Dai, Huihong Yuan, et al. A programmable

qudit-based quantum processor. Nature communications, 13(1):1–10, 2022.

[36] Oleg Kupervasser. Chapter 3 - principal paradoxes of quantum mechanics. In Oleg Ku-

pervasser, editor, Application of New Cybernetics in Physics, pages 73 – 120. Elsevier,

Amsterdam, 2017.

[37] Martin B. Plenio and S. Virmani. An introduction to entanglement measures. 2005.

[38] Asher Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413–1415,

Aug 1996.

[39] Charles H. Bennett, David P. DiVincenzo, Christopher A. Fuchs, Tal Mor, Eric Rains,

Peter W. Shor, John A. Smolin, and William K. Wootters. Quantum nonlocality without

entanglement. Phys. Rev. A, 59:1070–1091, Feb 1999.

[40] J. Niset and N. J. Cerf. Multipartite nonlocality without entanglement in many dimensions.

Phys. Rev. A, 74:052103, Nov 2006.

[41] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White. Experimental quantum com-

puting without entanglement. Phys. Rev. Lett., 101:200501, Nov 2008.

[42] Kavan Modi, Aharon Brodutch, Hugo Cable, Tomasz Paterek, and Vlatko Vedral. The

classical-quantum boundary for correlations: Discord and related measures. Rev. Mod.

Phys., 84:1655–1707, Nov 2012.

[43] T. S. Mahesh, C. S. Sudheer Kumar, and Udaysinh T. Bhosale. Quantum Correlations in

NMR Systems, pages 499–516. Springer International Publishing, Cham, 2017.

[44] Harold Ollivier and Wojciech H Zurek. Quantum discord: a measure of the quantumness

of correlations. Physical review letters, 88(1):017901, 2001.

128



[45] L Henderson and V Vedral. Classical, quantum and total correlations. Journal of Physics

A: Mathematical and General, 34(35):6899–6905, aug 2001.

[46] Hemant Katiyar, Soumya Singha Roy, T. S Mahesh, and Apoorva Patel. Evolution of quan-

tum discord and its stability in two-qubit nmr systems. Physical Review A, 86(1):012309,

2012.

[47] Anatole Abragam. The principles of nuclear magnetism. Number 32. Oxford university

press, 1961.

[48] J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton. Protein NMR spec-

troscopy: principles and practice. Elsevier, 1995.

[49] M. H. Levitt. Spin dynamics: basics of nuclear magnetic resonance. John Wiley and Sons,

2001.

[50] Charles P Slichter. Principles of magnetic resonance, volume 1. Springer Science &

Business Media, 2013.

[51] E. Knill and R. Laflamme. Power of one bit of quantum information. Phys. Rev. Lett.,

81:5672–5675, Dec 1998.

[52] Ivan Oliveira, Roberto Sarthour Jr, Tito Bonagamba, Eduardo Azevedo, and Jair CC Fre-

itas. NMR quantum information processing. Elsevier, 2011.

[53] D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortu-

nato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y.S.

Weinstein, and W.H. Zurek. Nmr based quantum information processing: Achievements

and prospects. Fortschritte der Physik, 48(9-11):875–907, 2000.

[54] Abhishek Shukla, Manvendra Sharma, and T.S. Mahesh. Noon states in star-topology

spin-systems: Applications in diffusion studies and rf inhomogeneity mapping. Chemical

Physics Letters, 592:227–231, 2014.

[55] Deepak Khurana, V. R. Krithika, and T. S. Mahesh. Unambiguous measurement of infor-

mation scrambling in a hierarchical star-topology system, 2019.

129



[56] T S Mahesh, Deepak Khurana, V R Krithika, G J Sreejith, and C S Sudheer Kumar. Star-

topology registers: Nmr and quantum information perspectives. Journal of Physics: Con-

densed Matter, 33(38):383002, jul 2021.

[57] James Keeler. Understanding NMR spectroscopy. John Wiley & Sons, 2010.

[58] V. R. Krithika, Soham Pal, Rejish Nath, and T. S. Mahesh. Observation of interaction

induced blockade and local spin freezing in a nmr quantum simulator. Phys. Rev. Research,

3:033035, Jul 2021.

[59] David P. DiVincenzo. The physical implementation of quantum computation. Fortschritte

der Physik, 48(9-11):771–783, 2000.

[60] E. Knill, I. Chuang, and R. Laflamme. Effective pure states for bulk quantum computation.

Phys. Rev. A, 57:3348–3363, May 1998.

[61] Soumya Singha Roy and T.S. Mahesh. Density matrix tomography of singlet states. Jour-

nal of Magnetic Resonance, 206(1):127–133, 2010.

[62] Abhishek Shukla, K. Rama Koteswara Rao, and T. S. Mahesh. Ancilla-assisted quantum

state tomography in multiqubit registers. Phys. Rev. A, 87:062317, Jun 2013.

[63] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry, and engineering. CRC press, 2018.

[64] Irving R Epstein and Kenneth Showalter. Nonlinear chemical dynamics: oscillations, pat-

terns, and chaos. The Journal of Physical Chemistry, 100(31):13132–13147, 1996.

[65] Tomasz Kapitaniak. Chaos for engineers: theory, applications, and control, volume 3.

Springer Science & Business Media, 2000.

[66] Edward Ott. Chaos in dynamical systems. Cambridge university press, 2002.

[67] Roderick V Jensen. Quantum chaos. Nature, 355(6358):311–318, 1992.

[68] Martin C. Gutzwiller. Quantum chaos. Scientific American, 266(1):78–85, 1992.

130



[69] D. Wintgen and H. Friedrich. Regularity and irregularity in spectra of the magnetized

hydrogen atom. Phys. Rev. Lett., 57:571–574, Aug 1986.
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weak breaking of ergodicity. Nature Physics, 17(6):675–685, 2021.

[204] Arkady Pikovsky, Jurgen Kurths, Michael Rosenblum, and Jürgen Kurths. Synchroniza-

tion: a universal concept in nonlinear sciences. Number 12. Cambridge university press,

2003.

[205] Tony E Lee and H. R. Sadeghpour. Quantum synchronization of quantum van der pol

oscillators with trapped ions. Physical review letters, 111(23):234101, 2013.

[206] Michael R Hush, Weibin Li, Sam Genway, Igor Lesanovsky, and Andrew D Armour. Spin

correlations as a probe of quantum synchronization in trapped-ion phonon lasers. Physical

Review A, 91:061401, 2015.

[207] Simon E Nigg. Observing quantum synchronization blockade in circuit quantum electro-

dynamics. Physical Review A, 97(1):013811, 2018.

[208] Minghui Xu, David A Tieri, E. C. Fine, James K Thompson, and Murray J Holland. Syn-

chronization of two ensembles of atoms. Physical review letters, 113(15):154101, 2014.

[209] Max Ludwig and Florian Marquardt. Quantum many-body dynamics in optomechanical

arrays. Phys. Rev. Lett., 111:073603, Aug 2013.

[210] Stefan Walter, Andreas Nunnenkamp, and Christoph Bruder. Quantum synchronization of

a driven self-sustained oscillator. Physical review letters, 112(9):094102, 2014.

[211] Stefan Walter, Andreas Nunnenkamp, and Christoph Bruder. Quantum synchronization of

two van der pol oscillators. Annalen der Physik, 527(1-2):131–138, 2015.

[212] Wenlin Li, Chong Li, and Heshan Song. Quantum synchronization in an optomechanical

system based on lyapunov control. Physical Review E, 93(6):062221, 2016.

143



[213] Mian Zhang, Gustavo S Wiederhecker, Sasikanth Manipatruni, Arthur Barnard, Paul

McEuen, and Michal Lipson. Synchronization of micromechanical oscillators using light.

Physical review letters, 109(23):233906, 2012.

[214] Catherine A Holmes, Charles P Meaney, and Gerard J Milburn. Synchronization of

many nanomechanical resonators coupled via a common cavity field. Physical Review

E, 85(6):066203, 2012.

[215] Dirk Witthaut, Sandro Wimberger, Raffaella Burioni, and Marc Timme. Classical synchro-

nization indicates persistent entanglement in isolated quantum systems. Nature communi-

cations, 8(1):1–7, 2017.

[216] Alexandre Roulet and Christoph Bruder. Quantum synchronization and entanglement gen-

eration. Physical review letters, 121(6):063601, 2018.
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