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Abstract

Thermodynamics provides a systematic study of the thermal properties of macroscopic systems

by establishing relationships between various physical quantities like heat, temperature, internal

energy, entropy, etc. These relations help one quantify the various thermal attributes of the sys-

tem in question and enable us to design and control systems of our choice. But with the advent

of quantum mechanics the size of the system of interest is shrinking, and with this it is imper-

ative that we understand the behaviour of the above mentioned thermodynamic quantities in the

quantum regime as well. Quantum thermodynamics tries to bridge the gap between two fields

of physics, thermodynamics and quantum mechanics, which are separated by a period of about a

century in their origin.

One can say, the field of modern thermodynamics started with Sadi Carnot’s work on engine

efficiency in his publication “Reflection on the Motive Power of heat” in 1824. Quite similarly,

it can be argued that the study of contemporary quantum thermodynamic started in 1959, when

Scovil and Schulz found the equivalence of a three-level maser with Carnot heat engine. This was

followed by people trying to define and understand the various thermodynamic quantities in the

quantum domain. Today, with the advancements of experimental techniques in quantum mechan-

ics it is possible to probe and control a wide variety of quantum systems with ever increasing size

and complexities. One can now use experimental systems, like NV centres, trapped atoms/ions,

Nuclear Magnetic Resonance (NMR) etc., to study the thermodynamic properties like heat, work,

entropy in a wide range of quantum mechanical systems, giving way to experimental realization

and investigation of quantum thermodynamics.

This thesis is based on the use of ensemble nuclear magnetic resonance of molecular spin

registers with sizes varying from two to thirty-seven qubits, to understand the thermodynamic

properties, like time-crystalline behaviour, and thermodynamic relations, like heat-exchange fluc-

tuation relation and thermodynamic uncertainty relations (TURs), of out of equilibrium quantum

systems, their quantum many-body effects and their interplay with quantum correlations. It has

now long been known that quantum information can be used as a resource to perform work on
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quantum systems. Here we try to experimentally observe the kind of effect these quantum correla-

tions can have in the process of heat flow between two qubits, and investigate its localization in a

classically mediated quantum correlation transfer. We also use the NMR spin registers to investi-

gate the newly discovered time crystalline behaviour and show the robust period-two oscillations

of the spins under error-some driving.
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Synopsis

With the advancements in the experimental techniques in quantum mechanical systems, it is now

possible to probe and control a wide variety of quantum systems with ever increasing sizes and

complexities. One can now use these experimental systems, like Nitrogen Vacancy (NV) centres,

trapped atoms, Nuclear Magnetic Resonance (NMR) etc., to study the thermodynamic proper-

ties like heat, work, entropy in a wide range of quantum mechanical systems, giving way to the

experimental realisation and investigation of the field of Quantum thermodynamics. Quantum

thermodynamics tries to bridge the gap between two independent theories of physics: Quantum

Mechanics and Thermodynamics. In this thesis we report the experiments done using NMR spin

Qubits, of varying sizes, to better understand the relationship between the, above mentioned, ther-

modynamic quantities in the quantum regime and their interplay with quantum correlations and

quantum information. We also explore the recently discovered and interesting property of many-

body thermodynamic property of stability of discrete time-crystalline order in driven many-body

quantum systems, known as the Time crystals, and localization of entanglement in some quantum-

classical systems.

Chapter 1 − Introduction

In chapter 1 we introduce the concepts and terminology we use in this thesis describing the

quantum information processing (QIP) and its implementation in Nuclear Magnetic resonance to

realise the quantum thermodynamic phenomena discussed in the subsequent chapters. We start

with defining a quantum bit, or a qubit, which forms the basic building block of quantum infor-

mation processing. This is followed by a more thorough discussion of a qubit’s properties, form

and various ways one can manipulate it. Further, we delve into the role played by information

in thermodynamics and some of the basic concepts involved. Finally we end the chapter with

demonstration of the NMR implementation of some quantum information processing techniques.

Chapter 2 − Quantum heat-exchange fluctuation relation
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Most of the equalities we come across between thermodynamic quantities are for systems which

are at equilibrium or very near to equilibrium. In 1996, Christopher Jarzynski put forward an

equality, relating the difference in free energy and exponential average of the work performed

on an out-of-equilibrium system. Since then a number of such equalities have been put forward

for non-equilibrium thermodynamic systems. These relations are collectively referred to the fluc-

tuation relations (FR). These FRs are valid under certain assumptions made about the transient

system in question. In this chapter we experimentally explore the validity of one such fluctua-

tion, called the Jarzynski and Wójcik FR for heat-exchange between two quantum systems using

liquid-state NMR setup. We further introduce quantum correlations into the system and show the

apparent reversal of flow of heat.

Chapter 3 − Thermodynamic Uncertainty Relations

Heisenberg’s uncertainty relation provides a lower bound to the extent to which we can mea-

sure observables like position and momentum simultaneously. Along the same lines one can also

think of a bound for thermal fluctuations in heat flow between quantum systems. These bounds

are now called the Thermodynamic Uncertainty Relations (TURs). In the last few years people

have extensively explored these theoretical bounds quantifying the extent of fluctuations entailed

in the quantum heat exchange process. In this chapter, we experimentally study a few of these

TURs in a two-qubit system, for the first time, using a liquid-NMR setup and explore the regions

of validity and violation of these relations in various parameter regimes.

Chapter 4 − Experimental localisation of quantum entanglement through monitored clas-

sical mediator

lIn recent works (e.g. PRL 119, 240401 or PRL 119, 240402) entanglement gain between two

objects interacting via mediator has been proposed as a witness of the non-classical mediator. In

chapter 4 we show that this conclusion depends on the initial state of the whole tripartite system.

Using nuclear magnetic resonance techniques on a nuclear spin quantum register, we experimen-

tally prepare an initial state whose later dynamics give rise to entanglement gain via a classical

mediator. To emphasize the strong notion of classicality we have also dephased the mediator

during dynamics. We are convinced this work will have major implications in quantum optome-
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chanics, quantum biology, and quantum gravity.

Chapter 5 − Discrete Time Crystalline behaviour in NMR spin systems

One of the very curious properties of out-of-equilibrium driven quantum systems is their recently

discovered robust period two oscillation of the magnetization, which led to the observation of

a new phase of matter known as the Time crystals. Since its conception in 2012 by the Frank

Wilczek, tremendous amount of work, both theoretically and experimentally, has been done to-

wards understanding this exotic behaviour. In this chapter we experimentally study the response

of star-shaped clusters of initially unentangled nuclear spin-1
2

moments in solid and liquid NMR

samples to an inexact π-pulse sequence, and show that an Ising coupling between the centre and

the satellite spins in the liquids and long-range dipolar coupling in solids, result in robust period-

two magnetization oscillations.
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CHAPTER 1

Introduction

Necessity is the mother of inventions, and quantum mechanics is no exception to this. Quantum

mechanics came about at the turn of the twentieth century, as a theory to rescue the troubled

souls from a plethora of inconsistencies in the physical theories, like ‘ultraviolet catastrophe’,

electrons in an atom spiralling down into its nucleus, etc. And with it also came our potential

to understand and manipulate the very very small physical systems with astounding accuracy.

Richard Feynman, in his exemplary 1959 seminar at the annual meeting of American Physical

Society, [1], talked about what it meant to go down to the atomic levels, how the laws there are

nothing like ours at large scale and how one can use the quantisation of energy levels and the

interactions between these quantum particles, like spins, to make things like a circuit and even a

computer. In 1980s, he and Yuri Manin independently went even further and pointed out that a

classical Turing machine would take exponentially long time and resources to simulate a quantum

system and the right way to go about it would be to use a quantum system to do so. He famously

said ‘There is plenty of room at the bottom’, foreshadowing the marvels that were to be achieved

in the next half a century.

Today almost all the tech. giants of the world are spearheading their research and develop-

ment to realize a universal quantum computer, to declare a clear quantum supremacy [2]. But

why do we need a quantum computer? The answer very much depends upon whom you ask, but

for a scientists interested in understanding the dynamics of quantum systems, a quantum com-

puter is a tool to simulate quantum systems to learn and thus develop new quantum technologies.

These quantum technologies use the fundamental laws of quantum mechanics, governing these

sub atomic systems, to realize devices which in turn have far reaching practical implications in

real world. One such area of research is the study of the thermodynamic properties of these

quantum systems, which help us to not only answer some very fundamental questions about the

connection between the two completely different theories in Physics, quantum mechanics and

thermodynamics, but it also paves the way to realize various thermodynamic machines and tech-
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Chapter 1

nologies, like heat engine, refrigerators, thermal diodes, batteries, etc. in the quantum domain.

Trapped ions, neutral atoms, quantum dots, super-conducting qubits, nitrogen vacancy centres,

are some of the experimental architectures today being used as a test bed to simulate and study

quantum systems and their behaviours. The two main requirements for an experimental archi-

tecture to be a possible test bed for quantum simulations are, long coherence time and good

accessibility to the quantum system or the qubits. Although a long coherence time needs the

system to be sufficiently decoupled from the surrounding environment, for sufficient control over

the qubits, initial state preparation and read-out the system needs to be well coupled to external

controls. Nuclear Magnetic Resonance (NMR) is one such experimental test bed, with compara-

bly large coherence time and sufficient accessibility to the qubits, which has been accepted as a

suitable platform to perform and incorporate quantum algorithms and tasks [3, 4].

In this thesis we explore some of the thermodynamic properties of these quantum system us-

ing the nuclear magnetic resonance (NMR) quantum information processing (QIP) techniques

and further see how information and/or quantum correlations play the role of resource in these

quantum thermodynamic systems. We begin with a brief discussion and pre-requisites for QIP

and NMR in this chapter, followed by elaborate descriptions of each project undertaken in subse-

quent chapters.

1.1 Quantum information processing (QIP)

Following Feynman’s idea, QIP is the use of fundamental principles of quantum mechanics to

perform computational processes on quantum information. Instead of performing operations on

a classical bit of information, QIP works with a generalised concept of a bit of information in the

quantum world, a quantum bit (Qubit). This helps us understand and study the various quantum

phenomena, like quantum entanglement, measurement disturbance, particle number statistics etc.,

and further utilise it in real world. In this section we will start with the notion of quantum bits

and how we manipulate them to perform various operations on it.

1.1.1 Qubits

In today’s digital world we process and store information in bits, which can take only two values.

This we assign as the logical 0 and logical 1. Physically this can be realized in any system with

2



1.1 Quantum information processing (QIP)

two distinct states like two voltage nodes or a transistors two different regions of operation or

alignment of a magnetic material. We know that a quantum system with spin-1/2 also has two

distinct states. The quantum state of |0〉 corresponds to logical 0 and |1〉 corresponds to logical

1. But in contrast to a classical bit, which can take only 0 or 1 state, a quantum two level system,

qubit, exhibits the property of quantum superposition. Because of this a qubit can exist in a

superposition of the two eigenstates |0〉 and |1〉. A general state of a qubit can be written as

|ψ〉 = a|0〉+ b|1〉, (1.1)

where a and b are the complex numbers, called the superposition coefficients. These coefficients

are such that the state |ψ〉 is always normalised, |a|2 + |b|2 = 1. The overall phase of |ψ〉 is

irrelevant as it practically can not be revealed by any experiment. The state can then be written as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (1.2)

which is helpful in visualizing a qubit as a point on the Bloch sphere. Here θ and φ are the polar

and azimuthal angles as shown in Fig. 1.1. By convention |0〉 is taken in the +ve z-direction.

Using θ = π/2, for two values of φ = 0 and π/2 in Eq. 1.2 one can write two important single

qubit states, |0〉+|1〉√
2

and |0〉+i|1〉√
2

, as shown in Fig. 1.1 as point A and B respectively. It is important

to understand that such superposition states are fundamentally different from a classical state in

the sense that, instead of pointing along a particular direction a quantum superposition state is

both |0〉 and |1〉 at the same time. This seems counter intuitive, but is at the very heart of the

quantum advantage that QIP makes possible.

1.1.1.1 Multi qubit system

Block sphere is an intuitive way to visualize a single qubit state using two variables, θ and φ. But

when dealing with a multi qubit system, where each qubit is in an arbitrary superposition state,

one can no longer think of the state as a point sitting on the block sphere. Considering two qubits

in their arbitrary normalised states, |ψ1〉 = a1|0〉+ b1|1〉 and |ψ2〉 = a2|0〉+ b2|1〉, one can write

3



Chapter 1

x

y

z

A
B

Figure 1.1: Bloch sphere representation of the state of a qubit, |Ψ〉.

the combined two qubit state as the kronecker product of the two as

|ψ12〉 = |ψ1〉 ⊗ |ψ2〉

= a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉, (1.3)

where we have abbreviated |0〉 ⊗ |0〉 as |00〉 and so on. The coefficients a1a2, a1b2 and others

are all arbitrary complex numbers. Along with this, writing the basis state |00〉, |01〉 etc. in the

decimal form one can simplify Eq. 1.3 as

|ψ12〉 =
2n−1∑
j=0

cj|j〉. (1.4)

Here cj are the complex coefficients satisfying the condition,
∑2n−1

j=0 |cj|2 = 1. It is very in-

structive to observe that the number of variables, cj , required to represent a quantum state grows

exponentially with the size of the quantum system. This is in stark contrast to the classical case

where the number of variables describing a system of size n scales only linearly. Thus we visu-

alise a n-qubit quantum state as a point in the 2n dimensional Hilbert space, which is an extension

of the Block sphere.

1.1.1.2 Pure and mixed quantum states

Till now we dealt with quantum systems which are in definite quantum states like, ψi = ai|0〉 +

bi|1〉. Such a state is called a pure state as there is no ambiguity about it being in any other state.

But if to the best of our knowledge a quantum system is in one of the many pure state, |ψi〉, or is
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1.1 Quantum information processing (QIP)

an ensemble of such states with a non-zero probability pi, such a system is said to be in a mixture

of pure states, and is called a mixed state. In other words, mixed states are statistical mixture

of pure quantum states. When dealing with such mixed quantum states, it is quite cumbersome

to deal with a statistical mixture of kets. Thus such systems are often represented in the density

operator formalism as

ρ =
∑
i

pi|ψi〉〈ψi|. (1.5)

Here 〈ψi| is the Hermitian conjugate of the pure state |ψi〉. Naturally the probabilities, pi,

satisfy the conditions, 0 ≤ pi ≤ 1 and
∑

i pi = 1. A pure state density matrix can also

be written similarly as ρ = |ψ〉〈ψ|. A density matrix satisfies the relation Tr[ρ] = 1, as

Tr[ρ] =
∑

i piTr[|ψ〉〈ψ|] =
∑

i pi. Furthermore, all the eigenvalues, λi of the density opera-

tor have to be +ve. Using Eq. 1.4 and 1.5 one can write the decomposition of the density matrix

as follows,

ρ =
∑
i

pi|ψi〉〈ψi| =
∑
i

pi
∑
j,k

cjc
∗
k|j〉〈k| =

∑
j,k

cjc∗k|j〉〈k|, (1.6)

where c∗k is the complex conjugate of ck and cjc∗k represents ensemble average and are the popula-

tions and coherences (discussed later) present in the system. |j〉 and |k〉 are orthogonal eigenstates

of ρ. The spectral decomposition of ρ can further be written in terms of its eigenvalues, λi, as

ρ =
∑
i

λi|i〉〈i|. (1.7)

This expression shows us that a quantum system in state ρ is basically in a state |i〉with probability

λi. Mathematically one can distinguish between a pure and a mixed state by noting that, a pure

state has only one non-zero eigenvalue (necessarily being 1) and a mixed state has more than one

non-zero eigenvalue. A convenient way to distinguish between a pure state and a mixed state is

by computing Tr[ρ2]. If this value comes out to be 1, the system is in a pure quantum state. But

if Tr[ρ2] < 1 the system is in a mixed quantum state. Another important property of the density

operator is that it is Hermitian, ρ† = ρ. Finally it is instructive to note that, where as a single

qubit pure state is represented by a point on the Bloch sphere, a single qubit mixed state can be

visualized as a point inside the Block sphere.

When dealing with a composite system, ρAB, it is often desirable to look at only a subsystem,

say ρA. The density operator formalism provides a suitable way to do so, maintaining the correct

5



Chapter 1

definition of the observables and their measurement statistics for the subsystem, with the help of

reduced density operators. The reduced density operator does so by defining a map of operators

known as the partial trace. Consider we have a composite system ρAB, of which we are only

interested in the state of A. In that case, one writes the reduced density operator for system A as,

ρA = TrB[ρAB] = TrB[
∑
ijkl

cijkl|ai〉〈aj| ⊗ |bk〉〈bl|]

=
∑
ijkl

cijkl|ai〉〈aj|Tr[|bk〉〈bl|] =
∑
ijk

cijkk|ai〉〈aj|. (1.8)

Here we have used the the expression Tr[|bk〉〈bl|] = 〈bl|bk〉 = δkl. Another use of reduce density

operator comes in quantifying the amount of quantum entanglement (discussed in later sections)

in pure composite states. If such a system is in a separable state, the reduced density operator of

its subsystems also turn out to be pure states. Whereas, if we have an entangled state, tracing out

one of the subsystem reduces the purity of the rest of the system.

1.1.1.3 Populations and coherences

In the previous section we saw that density operator formalism provides a convenient way to deal

with mixed ensemble of quantum states. The matrix representation of such a density operator is

shown in Eq. 1.6. The coefficients, cjc∗k, are the various components of such a density matrix.

The diagonal entries can be written as
∑

j |cj|2|j〉〈j|. These real and positive coefficients, cjc∗j ,

represent the populations of the jth eigenstate, satisfying the relation
∑

i cic
∗
i = 1. As all spin-1/2

particles have an intrinsic magnetic moment associated with them, the difference of the population

in the two eigenstates of an ensemble of spin-1/2 particles represent the net magnetic polarization,

dictated by the direction of the eigenstates. It is important to understand here that the population

of an eigenstate does not represent the fraction of spin-1/2 particles in that state. In-fact most

of the particles in the ensemble are in the superposition of the eigenstates. This brings us to the

discussion of the coherences present in these quantum states. The coefficient of the off-diagonal

terms in the density matrix, cjc∗k where j 6= k represent the average component of the magnetic

moment for the particles in the ensemble, orthogonal to the eigenbasis in which the density matrix

is represented. These off-diagonal coefficients are called the coherences. Mathematically kjth

component of these coefficients can be represented as 〈k|ρ|j〉 = cjc∗k. Given the Hermiticity of

the density operator, coherences satisfy the condition 〈k|ρ|j〉 = 〈j|ρ∗|k〉. It is also important to

6



1.1 Quantum information processing (QIP)

note that coherences are basis dependent in the absence of any quantizing field (Hamiltonian).

These quantum coherences can be classified in terms of their quantum numbers, called co-

herence order. Here we give a very brief discussion of the same. Let us consider ijth coherence

term, ρij , in a quantum state of ρ. For simplicity, lets say the system is in a pure state. Thus the

coherence term can be written as

ρij = 〈i|ρ|j〉 = 〈i||ψ〉〈ψ||j〉 (1.9)

Such a system placed in a high z-magnetic field has well-defined eigenstates with eigenvalues,

Sz|i〉 = Mi|i〉 and Sz|j〉 = Mj|j〉. The order of coherence, mij , for (ij)th component of the

coherence in such a system is then defined as the difference of the z-angular momentum of these

connected ith and jthstate. Mathematically this can be written as mij = Mi −Mj .

1.1.2 Quantum correlations

Quantum correlation can be thought of as the quantification of the connection between the two

systems states, expressed in terms of the impossibility to completely divide the measurement out-

comes of the corresponding states into independent non-overlapping sets. Quantum correlations

are often used as a resources in quantum information processing to our benefit. There are quite a

few kinds of quantum correlations. In this section we will briefly touch upon a few of them which

will be used in this thesis.

1.1.2.1 Quantum discord

There are more than one agreed upon definitions of quantum discord [5]. In this thesis we will

use the definition proposed by Zurek et. al. [6] in 2001. We first give qualitative explanation of

quantum discord. For this we first consider a bipartite quantum-classical state of the form

ρQC =
∑
i

piρA ⊗ |bi〉〈bi|, (1.10)

where {bi} forms the orthonormal basis for the classical system, B. Here A is taken as the

quantum state, which very much depends upon the measurement performed on it. Whereas, B is

considered to be in a classical state because a classical state should be represented by orthogonal

states and thus be distinguishable, and there exists a measurement on the B, Πi = |bi〉〈bi|, such

7
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that the entire state of the system remains unchanged,
∑

i Π
i
BρQCΠi

B = ρQC and the measurement

satisfies the condition
∑

i Π
i
B = 1. Any bipartite state which can not be written out in the form

of Eq. 1.10, must have quantum discord in it. This qualitative definition makes it clear that

separability does not imply absence of quantum correlation and since quantum discord depends

upon the measurement performed on a subsystem, quantum discord is not symmetric.

H(A|B) H(B|A) + -

- ORH(A|B)H(A) - H(B|A)H(B)

H(A) H(B) H(A,B)

H(A) H(B)

I(     )

I(     )

Figure 1.2: Venn diagram for the information in terms of Shannon entropy. This diagram pictorially
represents that the two classical definitions of mutual information lead to the same value.

Zurek and Ollivier in their 2001 seminal paper, [6], quantified quantum discord in terms of

the difference between the two definitions of mutual information, in quantum regime. It is often

instructive to use an information Venn diagram when discussing quantum mutual information.

Information is measured in terms of Shannon entropy of a state. Mutual information between two

subsystems A and B, I(A : B), is the common information shared between them. For a classical

system this is written in terms of the Shannon entropy as follows,

I(A : B) = H(A) +H(B)−H(A,B). (1.11)

H(A,B) is the joint Shannon entropy [7] of the combined system AB. Another way of defining

mutual information is in terms of the conditional entropy, H(A|B) and H(B|A), which involves

8



1.1 Quantum information processing (QIP)

measurements on B and A, respectively, and is defined as

H(A|B) =
∑
i

p(B = bi)H(A|B = bi) = −
∑
i,j

p(B = bi)p(A = aj|B = bi)ln[p(A = aj|B = bi)].

(1.12)

At this point we use Bayes rule of condition probability, p(A = aj|B = bi) = p(A = aj, B =

bi)/p(B = bi), in equation 1.12 to obtain

H(A|B) = −
∑
i,j

p(A = aj, B = bi)ln[p(A = aj, B = bi)] +
∑
i,j

p(A = aj, B = bi)ln[p(B = bi)]

= H(A,B)−H(B). (1.13)

Thus, along with Eq. 1.11 one can very easily see that the classical mutual information shared

between system A and B can also be written as

I(A : B) = H(A)−H(A|B) = H(B)−H(B|A). (1.14)

Fig. 1.2 explains these two definitions of mutual information pictorially. As we know quantum

systems are immensely sensitive to measurements, things are not quite the same in quantum

mechanics. Information in quantum state, ρ, is measured using quantum von Neumann entropy

[8] S(ρ) = −
∑

i λilog2λi, where λi are the states eigenvalues. In 2001, Henderson and Vedral

[9] showed that the maximum classical correlation in a system can be expressed as the maximum

value of

J (A : B) = S(A)− S(A|B) = S(A)−
∑
i

piS(A|B = bi), (1.15)

where the maximisation is performed over orthonormal measurements on B, Πi
B. Quantum mu-

tual information, which includes all classical and quantum correlations, is defined as

I(A : B) = S(A) + S(B)− S(A,B). (1.16)

Thus one can find the non-classical correlations in a system as the difference

D(A|B) = I(A : B)−max
ΠiB

J (A : B). (1.17)

This difference is the mathematical definition of Quantum Discord that we use in this thesis.

From here it is easy to see that Discord is not symmetric, i.e. D(A|B) 6= D(B|A).
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1.1.2.2 Quantum entanglement

Quantum entanglement is a restricted subsection of quantum correlations, possessed by systems

whose states can not be written as a product of two states. In this thesis we will only be dealing

with bipartite quantum entanglement. A pure composite quantum state is said to be entangled, if

it can not be written in a separable form

|ψAB〉 = |ψA〉 ⊗ |ψB〉. (1.18)

For the mixture of product states separability is defined as

ρAB =
∑
i

piρ
i
A ⊗ ρiB, (1.19)

where the pi are the probability of the product states. Any state which can not be written in this

form is said to have entanglement. Entanglement is extensively used in quantum information

processing as a resource. Like discord, quantum entanglement also has a number of quantifiers,

but in this thesis we are only interested in Entropy of Entanglement and Negativity as the measure

of Entanglement for pure and mixed states, respectively.

Using Schmidt decomposition, one can write the generalised state of a bipartite pure state as,

ρAB =
∑
i

λi|ai〉|bi〉. (1.20)

Here λis are the Schmidt’s coefficients and in a sense contain the information about the quantum

entanglement in the system. The entropy of such a pure state is always zero, i.e. S(AB) = 0. On

this state if one performs partial trace, see Eq. 1.8, over one of the sub-systems, the individual

states of the remaining sub-systems can be written as

ρA = TrB[ρAB] =
∑
i

|λi|2|ai〉〈ai|

ρB = TrA[ρAB] =
∑
i

|λi|2|bi〉〈bi|. (1.21)

It is instructive to convince one-self here that for certain values of λi in Eq. 1.20, the reduced

density matrix of the subsystems, Eq. 1.21, can represent a mixed state. This decrease in the

purity of a state under partial transpose can be seen as measure of inseparability of a quantum

state and is quantified by the von Neumann entropy of the remaining sub-system obtained after

10



1.1 Quantum information processing (QIP)

partially tracing out the other sub-system, i.e.

EA:B = S(A) = S(B). (1.22)

Here,EA:B is called the entropy of entanglement and S(A) and S(B) are the von Neumann en-

tropy of the corresponding subsystems.

The above definition of quantum entanglement can not be extrapolated for mixed states. It

was shown by A. Peres in [10] that the eigenvalues of partial transpose of a separable composite

state, w.r.t it’s subsystem is always positive. As entanglement is the measure of non-separability

of a quantum state, one can imagine quantifying Quantum entanglement in terms of the negative

eigenvalues of the partial transpose of the bipartite system, w.r.t it’s subsystem. Mathematically

we define this quantifier as

N(ρAB) =
||ρTAAB|| − 1

2
, (1.23)

where, ||ρTAAB|| is the trace norm of partial transpose of the composite state ρAB w.r.t to subsystem

A [11].

1.1.3 Quantum gates

Any processing require a sequence of steps, which finally achieves a desired effect. In quantum

information processing these steps performing a specific task and is referred to as Quantum Gates.

Since in quantum mechanics, evolution of a quantum state is done by operation of a unitary, which

in turn is generated by the Hamiltonian of the system, quantum gates are just unitary evolutions

[12, 13]. Just as we have gates in classical information processing like NOT, OR, NOR, XOR

etc. which perform their respective operations on a bit or multiple bits, the quantum analogue

of such gates operating on quantum states and performing corresponding operations is called a

Quantum Gate. In this section we briefly mention the single and two-qubit quantum gates used

in this thesis, as it has been shown in [14] that a set of single and two-qubit gates can perform

arbitrary multi-qubit unitary operations.

1.1.3.1 Single-qubit gates

Single qubit gates are the simplest building blocks of quantum information processing. All single

qubit gates can be written as a rotation in the Bloch sphere, Rn̂(θ). This Rn̂(θ) represents a
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rotation by an angle θ about a direction n̂ = (nx, ny, nz) in the Block sphere, which we define in

terms of the Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.24)

These matrices follow the relations,

σxσy = iσz, σyσz = iσx, σzσx = iσz,

(σx)2 = (σy)2 = (σz)2 = σ1 =

1 0

0 1

 (1.25)

Using −→σ = (σx, σy, σz) we define the rotation operator as

Rn̂(θ) = exp

(
−in̂.−→σ θ

2

)
= cos(θ/2)σ1 − i sin(θ/2)[nxσ

x + nyσ
y + nzσ

z]. (1.26)

One of the simplest but most extensively used single qubit gates is the NOT gate. This gate maps

the |0〉 to |1〉 and vice versa. In terms of rotation, NOT gate is a 180° rotation about x̂-axis, up to

an overall global phase, which is irrelevant. The matrix representation of NOT gate is

UNOT =

0 1

1 0

 (1.27)

Another important single qubit gate is the Hadamard gate, H , which when operated on the

computational basis states, produces superposition states, as shown below.

|0〉 H←→ |0〉+ |1〉
2

, |1〉 H←→ |0〉 − |1〉
2

.

A single qubit Hadamard gate is a 180° rotation about the direction half way between +ve ẑ and

+ve x̂ axis on a block sphere. The matrix representation of H is shown below

H =
1√
2

1 1

1 −1

 . (1.28)
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1.1 Quantum information processing (QIP)

1.1.3.2 Multi-qubit gate

One of the most widely used two-qubit gate in quantum information processing is the controlled-

NOT gate or CNOT gate. The action of CNOTij is to apply a NOT gate on the target qubit, qubit

j, only if the the control qubit, qubit i, is in state |1〉. The truth table for such a gate is represented

below

CNOT12 =

In Out

00 00

01 01

10 11

11 10

, CNOT21 =

In Out

00 00

01 11

10 10

11 01

One can write an arbitrary two-qubit quantum state, ψ = a|00〉 + b|01〉 + c|10〉 + d|11〉, in its

matrix representation as

|ψ〉 =


a

b

c

d


The two qubit gate, CNOT, can also be written as a 4× 4 matrix as follows

CNOT12 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , CNOT21 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

Just as we defined a CNOT gate where a NOT operation was performed on the target qubit, only if

the control was in the |1〉 state, one can also think of similar control operation in which NOT gate

is operated on the target qubit only when the control qubit is in |0〉 state. The natural extension

of such a controlled gate is a controlled-U gate, where the unitary operation, U , is performed on

the target qubit instead of a NOT gate. Here we mention another two-qubit gate called the SWAP

gate, which as the name suggests swaps the state of the two qubits. The matrix representation of

13



Chapter 1

it is shown below.

USWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



1.2 Quantum Thermodynamics and Information

Computation and communication (Quantum and classical), both deal with processing of informa-

tion. This information in turn can take many forms. But as discussed before, whatever the form

of the information it is always processed, stored and transformed in terms of 0’s and 1’s. And we

need physical systems to represent these 0’s and 1’s, in order to do something meaningful with

this information. In doing so the abstract notion of information becomes a subject of physical

laws and in turn has a very close connection to thermodynamics.

Let us take an example of four coins. These four coins can have 16 configurations: 6 config-

urations for two heads and 2 tails, 4 configurations each for both 3 tails and 1 head, and 3 heads

and 1 tail. Finally, there is only 1 configuration each for 4 heads and 4 tails. One can thus assign

respective probability, pi, for these events. It is easy to verify that
∑

i pi = 1. But what is inter-

esting to note is that, if we toss all the four coins simultaneously with our eyes closed we have

very little information about the outcome of the toss. As soon as we open our eyes we know the

state of the system for sure. So in the process of going from closed eyes to open eyes, we gained

information about the system. The lack of the information about the system when our eyes are

closed is quantified by the so-called Shannon Entropy [13] and is defined as below

H = −
∑
i

pi log2 pi. (1.29)

For the case of the 4 coins, before we open our eyes, the Shannon entropy can be seen to be

around 2.03. Where as, as soon as we open our eyes we exactly know which event has occurred

( or state the system is in) and thus all values of pi become 0, except one. From this it is easy

to see that the lack of information, quantified by the Shannon entropy, is 0. It is for this reason,

entropy is also thought of as the measure of the disorder in the system. One can similarly quantify
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1.2 Quantum Thermodynamics and Information

information in quantum domain using von Neumann entropy as defined previously.

We mentioned earlier that as the information is being stored in physical systems, it comes to

obey the physical laws, dictating the system, and the second law of thermodynamics is one of the

most pious laws in Physics which has stood the test of time over and again. Although we give a

detained discussion of this in the next sections, here we give a brief flavour of the same. If we

consider a collection of spin-1/2s in a bath. In the absence of any external magnetic field all the

spins are randomly oriented and thus the system can be said to be disordered. But as soon as one

switches on a static magnetic field, there is a slight bias of the spin orientations toward the applied

magnetic field. Thus the spins on an average are oriented along the static field. After switching

on the field we know more about the system (their average orientation) as a result the system can

be said to be less disordered. In other words the entropy of the system reduced. Entropy also has

a role in thermodynamics, and second law of thermodynamics tells us the reduction of entropy

has to be accompanied by energy being pumped into the system by, say, the environment. Thus

one can see the direct connection between information and thermodynamic variables, like heat

and work.

1.2.1 Landauer’s principle and implications

Figure 1.3: Schematic for Maxwell’s demon.

Landauer in his 1961 seminal paper, [15] showed that, erasure of 1 bit of information always

entails at least kBT ln 2 amount of energy cost and reduces the entropy of the system by an

amount kB ln 2. Here kB is the Boltzmann constant.

Landauer’s principle helped put the age old problem of Maxwell’s Demon to rest. Maxwell

in 1871, proposed a hypothetical experiment, in which we have a gas at thermal equilibrium with
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its environment. This gas is partitioned in the middle with a an elastic wall with a small window

operated by a very smart demon, know as the Maxwell’s demon. This demon operates the window

such that only the fast moving gas particles are allowed to cross the window from one side and

the slow moving from the other side. The problem with this setup is that it seems to violate our

very precious second law of thermodynamics. Due to the selective passage of gas particles from

one side to other, mediated by the demon, one can obtain a separation of gas at two different

temperatures, thereby reducing the entropy of the whole system, without performing any work.

There were many attempts at resolving the inconsistency, but this problem was finally put to bed

by Charles Bennett, using Landauer’s principle [16–18]. In the next section we give a quantitative

and simpler example of information to work/heat conversion.

1.2.2 Szilard Engine

T

??

T

Ahaa!

T

Ahaa!

T

bit 2

T

-----

T

-----

T

bit 1

L L/2

Figure 1.4: Schematic of Szilard engine.

The role played by information in thermodynamics is well illustrated by the working of single

particle Szilard Engine [19], proposed by Leo Szilard in 1929. Let us consider a box with volume

V, length L and elastic walls, in thermal contact with a surrounding environment maintained at

temperature, T at all times (see Fig. 1.4). Inside this box we have an ideal gas particle bouncing
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around with a constant kinetic energy of kBT (kB is the Boltzmann’s constant). This box is under

continuous supervision by a Maxwell’s demon. Since this system is at thermal equilibrium with

the environment, from Clausius statement of second law of thermodynamics it is evident that

no amount of work can be extracted from this system. At some instant, the demon introduces a

movable wall in the middle of this box, as shown in Fig. 1.4. It can be so assumed, that the wall

has infinitesimal mass and thus the work needed to introduce the wall is zero. At this point the

demon has no information about the position of the gas particle in the box. The particle can either

be in left (bit 1) or right (bit 2) of the introduced wall, with the same probability. The demon

at this point measures the position of the particle and stores this information. The demon then

utilises this information gained, to appropriately attach a pulley-weight system to the movable

wall at the centre, see Fig. 1.4. As the particle is trapped in one side of the movable wall, the

particle pushes the wall in the direction depending upon its position and lifts the weight attached

to it performing work. If the wall was introduced in the middle of the box one can calculate the

work performed/extracted in the expansion as

W =

∫ Vf

Vi

PdV =

∫ V

V/2

PdV =

∫ V

V/2

kBT

V
dV

= kBT ln 2 (1.30)

Here we have used the ideal gas equation for a single particle, PV = kBT, to get the value of work,

W. Finally when the system has expanded to the volume V,the movable wall is removed from one

of the ends of the box. It seems as if the system has returned to its initial state and the cycle is

complete, but we would be wrong to assume this. Initially the demon started off with a single

bit of empty memory. But when the measurement was performed, the demon either stored 1 or

2 (depending upon the outcome of the measurement) into its one bit memory. To make sure that

the entire system, which also includes the demon returns to its initial state thus completing the

cycle, we need to make sure that the memory of demon should also me restored, in other words,

we need to erase the memory containing the information about the measurement performed. But

from Landauer’s principle we know that an energy cost of atleast kBTln 2 is required to erase

one bit of information. Comparing with Eq. 1.30 we see that this is precisely the amount of

work we extracted. Thus what we saw was conversion of information, gained by measurement,

(along with heat) into work. This thought experiment gives us a taste of information being as
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physical as other thermodynamic variables like heat and work. Just like these thermodynamic

variables, information can be used as a resource. People have experimentally realised variants of

such engine in the past decade [20, 21].

It is instructive to mention it here that the above mentioned protocol was completely clas-

sical and did not take into account the quantumness of the gas particle. People have extended

such a classical information engine to quantum scenario, where the particle is now considered

to be de-localised inside a potential [22]. A few major differences in the quantum case are: i)

the introduction of the wall (here a potential) changes the boundary conditions of the box, thus

requiring work, ii) the particle statistics is quite different and iii) The memory of the demon can

be entangled with particle [23]. Extending this work people have also realised engines driven by

information [24, 25].

1.2.3 Work and Heat in quantum systems

t    (t ,t ) t    (t ,t )

Heat
Reservoir

Work
Reservoir

System
1 2 32

Figure 1.5: Schematic for temporally separated heat and work exchange. The quantum system, here
represented by a spin-1/2 particle, exchanges energy in the form of work with the work reservoir for time
t ∈ (t1, t2). Followed by this, for time t ∈ (t2, t3) the system exchanges energy in the form of heat with a
heat reservoir maintained a constant inverse temperature, β1.

Measuring and distinguishing work and heat in quantum processes are non-trivial tasks. The

reason for this is, a quantum state ρ may not always be in one of the eigenstates of the Hamil-

tonian. As a result measurement of the energy causes the quantum state to collapse onto one of

the eigenstates of the Hamiltonian thereby disturbing the system. Moreover, the measurement of

the average energy, E = 〈H〉 = Tr[Hρ], involves averaging over many trials. Here H corresponds

to the Hamiltonian of the system. Depending upon the system in question, there are many ac-

cepted protocols to measure heat and work. One of the definitions involve separating heat and

work exchange temporally and then measuring the change in the internal energy ∆E. As shown
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in the Fig. 1.5 the quantum system’s interaction with the heat and work reservoirs are separated

in time. In doing so we can account for the energy change associated with each process, quan-

tifying the amount of work or heat exchange. One major drawback of such temporal separation

of the processes is that it can not handle situations in which both heat and work exchange occur

simultaneously, among others.

Instead of separating heat and work in time, we can define work in terms of the control pa-

rameters and heat in terms of the state of the quantum system. The internal energy, E(t), of a

quantum system, in a state ρ(t), can be written in terms of the expectation value of Hamiltonian,

H, as E(t) = 〈H(t)〉 = Tr[H(t)ρ(t)]. Using this relation one can write

dE(t) = ρ(t)dH(t) + H(t)dρ(t)

= dW(t) + dQ(t). (1.31)

The first and second term in the above equation are identified as the the work and heat energy

exchanged by the system, respectively. The work exchanged term only includes the energy asso-

ciated with the change of the control parameter, namely the Hamiltonian. Where as, the heat term

corresponds to the energy exchange due to the change in the state of the system. For example, it

we consider the case of a single spin-1/2 particle in a static magnetic field, B(t)ẑ. In the pres-

ence of such a magnetic field the spin-1/2 particle undergoes Zeeman splitting, with energy gap

between the eigenstates proportional to the magnitude of the field applied. Now if one increases

the strength of static magnetic field very slowly, quantum adiabatic theorem [26] tells us that the

state of the system remains unchanged. The energy pumped into the system due to the adiabatic

increase of the magnetic field, B(t), solely corresponds to the work done on the system. Sim-

ilarly, if under certain operation the Hamiltonian of the system remains unchanged and just the

state of the system changes, the energy exchanged by the system is then identified as Heat. In this

thesis we will be considering only these definitions of work and heat.

1.2.4 Some quantum thermodynamic phenomena

The thermodynamic processes we are going to deal with in this thesis are for systems out of

equilibrium. Such non-equilibrium thermodynamic processes deal with thermodynamic systems

in transient processes, driven systems, steady state systems, etc. and establishes relationships
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between the various thermodynamic quantities like heat, work, entropy, free energy etc. for such

out of equilibrium processes. Most of the equalities that we come across in phenomenological

thermodynamics are for systems in equilibrium with its environment. Jarzynski-Crooks’ fluctua-

tion relation was the first equality proposed for a transient system and relates the free energy of

an out of equilibrium system to the exponential average of the work performed on it [27, 28]. The

quantum version of the same was soon put forward by Hal Tasaki [29]. In Chap.2 we will see

the quantum version of such a fluctuation relation for the case of heat exchange in great details.

Further we examine the bounds on the uncertainty of the heat flow between two quantum systems

in Chap.3. One of the many interesting properties of driven many-body quantum systems is the

stability of discrete time-crystalline order. Just as crystals spontaneously break the translational

symmetry of the space, certain driven quantum systems break the symmetry of their underlying

driving Hamiltonian, thereby breaking the time translational symmetry. Driven systems exhibit-

ing such a many-body behaviour are called Time Crystals and have been used to study quantum

thermodynamic properties of out-of-equilibrium systems like quantum thermalisation [30] and

dissipative systems [31]. In the last chapter we will delve deeper into the experimental realization

of this exotic behaviour.

1.3 Quantum information processing using NMR

Nuclear Magnetic Resonance, NMR, for long has been considered as an attractive and insightful

test-bed for studying and implementing quantum computations, information processing and vari-

ous other quantum phenomena. Although in the past few decades extensive work has been done to

use the sophisticated technology developed for NMR to investigate various quantum computation

and information processing problems, because of the very small magnetic moment associated

with the nuclei, resulting in weak detection, and its thermal nature, as it operates in the room

temperature, NMR is not considered the ideal choice for developing a realizable quantum com-

puter. Nonetheless, it remains to be one of the most versatile and well studied topics which still

remains relevant in exploring and demonstrating various quantum phenomena. In this section we

will briefly go through the workings of NMR qubits and how to manipulate them to perform the

desired operations.
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1.3.1 NMR qubits
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Figure 1.6: (a) Schematic for NMR setup. The NMR tube holds the ensemble of molecules consisting
of spin-1/2 nuclei, which act as qubits. These spins are manipulated and read-out using Radio-Frequency
(RF) pulses. (b) Zeeman splitting of the nuclear spin-1/2 particle.

The basic requirements for a quantum system to realize a qubit are that it should posses two

distinct energy levels, can be well characterised and can be manipulated enough, by an external

perturbation, to realize the initial states and perform operations. NMR spin-1/2 systems in a

strong static magnetic field, fulfil these requirements [12]. NMR qubit is an ensemble of spin

systems. As will be shown, these spin systems can be in solid, liquid or even liquid-crystal phase.

Typically an NMR sample consists of around ≈ 1015 molecules, say Chloroform (CHCl3), in an

NMR tube placed inside a superconducting magnet with a static field of ∼ 10T (see Fig. 1.6(a)).

The NMR active nuclei in the molecule (1H in CHCl3) posses the inherent property of spin. These

spins have a net angular momentum associated with them, Ŝ, which takes discrete values of the

form ~
√
S(S + 1) for a spin-S particle. As these spins are also associated with a net magnetic

moment, depending upon the angular momentum as µ = γ~Ŝ, in the presence of a net magnetic

field they undergo Zeeman splitting (see Fig. 1.6(b)). For the magnetic field (B) oriented in the

z-direction the Zeeman Hamiltonian can be written as,

H = −B · µ = −γ~B0S
z = ~ωSz, (1.32)

where Sz = σz/2, B0 is the strength of the applied magnetic field and γ is the gyromagnetic

ratio, characterising the nuclei. One can imagine ω as the Larmor frequency of the magnetic

moment associated with the spin, precessing about the applied magnetic field. For our case,
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the precession frequency is in hundreds of MHz. The eigenvalues of the Hamiltonian, H, takes

discrete values of -m~γB0. Here m is the magnetic quantum number and takes integer or half-

integer values separated by 1 in the range of [−S, S]. Thus for a spin-1/2 particle we have two

distinct states, with magnetic quantum number |m = 1/2〉, |m = −1/2〉 (see Fig. 1.6(b)). We

can label |m = 1/2〉 as logical zero, |0〉 and |m = −1/2〉 as logical one, |1〉, which correspond to

one bit of information.
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Figure 1.7: Schematics of net magnetic moment (M0) in an NMR sample inside a static magnetic field B0

and its dynamics under the operation of 90° pulse about y-axis, Ry.

For simplicity if we consider an ensemble of non-interacting spin-1/2 particles at temperature

T0, initially in the absence of any external field the magnetic moment of these tiny magnets

(spins) are all randomly oriented. If we now switch on a static magnetic field (say along z-axis),

these magnetic dipoles re-orient partially towards this external bias, giving rise to a finite net

magnetic moment M0, as shown in Fig. 1.7. In the sample, the local magnetic field experienced

by the nuclei is slight different from the applied field. This is because of the different chemical

environment experienced by the nuclei due to the shielding introduced by the electron cloud. The

effective Zeeman Hamiltonian for jth spin under secular approximation can be re-written as

Hj = −γ(1− δj(Θ))B0~Szj = ~ω0
jS

z
j , (1.33)

where δj(Θ) is the secular chemical shift tensor averaged over the molecular orientation due to

motional averaging (as will be seen later, this averaging is not considered in the case of Solids)

under high magnetic field and ω0
j is the chemically shifted Larmor frequency of the jth spin. At

room temperature in the presence of external magnetic field the spin ensemble follow Boltzmann
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1.3 Quantum information processing using NMR

distribution with a slight excess of population in the ground state. The density operator corre-

sponding to the thermal state can then be written as

ρeq =
e−H/kbT0

Tr[e−H/kbT0 ]
. (1.34)

Under the assumption of ~ω0 << kBT0 (high temperature approx.), the above form can be written

in the matrix form as below

ρeq ≈

1
2

+ ~γB0

4kBT0
0

0 1
2
− ~γB0

4kBT0

 . (1.35)

Where the diagonal elements correspond to the populations of |0〉 and |1〉 eigenstates respectively.

This can further be simplified to write the equilibrium density matrix as,

ρeq ≈
1

2
12 + ερdev =

1

2
12 +

ε

2
σz. (1.36)

Here ρdev is called the traceless deviation part of the equilibrium density matrix and ε = ~γB0/2kBT0

is called the purity factor. Eq. 1.36 can be seen as containing two parts, a uniform background

(12) which does not evolve under unitary operations and thus contributes to no signal and a de-

viation part, which evolves under the unitary evolutions, from which we get the signal. It is easy

to see that this state is highly mixed as Tr[(ρeq)
2] << 1 for ε ∼ 10−5 (see Sec. 1.3.3.3). The net

magnetization, M0, at room temperature, T0, is proportional to the population difference of the

two levels [32, 33]. The RF pulses can then be used to implement rotations. These RF pulses are

linearly polarised pulses with two circularly polarised components. One of the components can

be neglected and thus the interaction Hamiltonian of the spin with the RF pulse can be written as,

HRF (t) = γBn~(Sx cos(ωRF t+ φ) + Sy sin(ωRF t+ φ)), (1.37)

where Bn is the strength of the RF pulse, ωRF is the carrier frequency and φ is the phase of the

applied RF field. In the rotating frame of the RF field the total Hamiltonian of the system can be

written as

Hφ = −(ω0 − ωRF )~Sz + γBn

(
Sx cos(φ) + Sy sin(φ)

)
. (1.38)

γBn is often referred as the nutation frequency and (ω0 − ωRF ) is the effective chemical shift

(precession frequency) of the spins in the rotating frame. As shown in Fig. 1.7 when the state at
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thermal equilibrium, ρeq is subjected to Ry(π/2) = exp[−iπ
2
Sy] rotation, the magnetic moment,

M0, comes in x-y plane. The expression

ρ = Ry

(π
2

)
ρeqR

†
y

(π
2

)
, (1.39)

represents such a density matrix which now has off-diagonal elements or coherences. In the

presence of the external magnetic field, B0, this magnetic moment precesses about the z-axis (se

Fig. 1.8). Inside the NMR spectrometer there are coils, through which the magnetization cuts

to induce electromagnetic flux called the free induction decay, FID. The observable of interest

here is D = σx + iσy, the expectation value of which is the signal we obtain from the Fourier

transform of the FID,

〈D〉 = Tr[Dρ]. (1.40)

Here ρ is the density operator of the system we are measuring. This gives us the net magnetization

in the transverse plane, from which one can obtain the diagonal elements of the density matrix.

To find all the elements of the density matrix one needs to use quantum state tomography [34, 35],

discussed below.Temp = T0
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Figure 1.8: Detection of NMR signal. The red coils pick up the electromagnetic induction generated as
the magnetic moment, M0, cuts through it while precessing about the static magnetic field, B0. The time
domain real and imaginary part of the signal are Fourier transformed to get the frequency domain spectrum.

Initialization and executing quantum protocols are the indispensable part of quantum infor-

mation processing. But it is often useful to test the preparation of the initial state, estimate the
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1.3 Quantum information processing using NMR

quantum error introduced by application of quantum gates and finding the fidelity of the final

quantum state, among other things, while performing a quantum protocol. And for these quantifi-

cations one needs to characterise the full state density matrix of the quantum state. One way of

characterising the full density matrix is by using quantum state tomography. It involves perform-

ing measurements on the quantum state of interest and reading them out. For example, if we have

a quantum state ρ which we need to tomograph, the measurement of operators, Uai = |ai〉〈ai|

on the state gives us all the diagonal terms in the density matrix, in the basis {ai}. But not

all elements of the density matrix can be obtained from single measurements in the same basis.

For other elements one needs to perform measurement on the same state in different basis. This

process of characterizing the whole density matrix is called the quantum state tomography.

In the case of liquid NMR, which is what we are going to consider for most of the work taken

up in this thesis, the diagonal entries can be inferred by reading out the NMR signal, see Eq. 1.40.

As mentioned before, for the off-diagonal elements we need measurements in different basis.

But the measurement along another basis, is just a unitary transformation in the form of rotation

followed by a measurement in this rotated basis. As it can be shown

Tr[ρU †|ai〉〈ai|U ] = Tr[U †ρU |ai〉〈ai|], (1.41)

rotation of the measurement basis is equivalent to the rotation of the quantum state being mea-

sured. These rotations can be realised using RF-pulses, before being measured in z-basis. Thus

NMR quantum state tomography consists of performing a set of unitaries, realised by RF pulses

and J-coupling (see Sec. 1.3.2) between the spins [36].

1.3.2 Interacting NMR qubits

Till now we have considered ensemble of non-interacting spin-1/2 systems. Chloroform, CHCl3,

molecule in a solvent is one such example in which 1H nuclei is the only NMR active nuclei and

in which, further due to the motional averaging, the inter-molecular interactions are suppressed.

In this section we consider NMR systems with more than one spin-1/2 nuclei with inter as well as

intra molecular interactions. These systems are thus multi qubit systems and we will see how we

can use the various interactions between these qubits along with the external RF field to realise

various quantum gates and operations.
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For simplicity we consider the interaction Hamiltonian between two spin-1/2 nuclei. The in-

teractions considered in this thesis are mainly of two types, i) electron mediated indirect coupling,

also known as the J-coupling, and ii) direct dipolar coupling, which is mediated through space.

The most general Hamiltonian for two interacting spin-1/2 nuclei can be written as,

H0
12 = ω1

0S
z
1 + ω2

0S
z
2 + 2πJ12S1 · S2 +D12(3Sz1S

z
2 − S1 · S2). (1.42)

where, Si = Sxi î+Syi ĵ+Szi k̂ are Pauli spin operators on ith spin and ωi0 = −γiB0(1− δi(Θ)) are

the chemical shifted Larmor frequency of ith nuclei with δi(Θ) being their corresponding secular

motional averaged chemical shift (see Eq. 1.33). The first two terms correspond to the Zeeman

field experienced by the two nuclei. The third term is the isotropic electron mediated indirect

scalar J-coupling term with J12 being the strength of the coupling (usually in Hz). Generally Jij

is a 3 × 3 tensor, but as will be made clear below in this thesis we deal with only the isotropic

part of this term. The fourth term in Eq. 1.42 is the secular direct dipolar coupling term obtained

by neglecting the non-secular part of the total Hamiltonian in high magnetic field (see Appendix

6 of [37]). D12 is the secular dipolar coupling strength which has form of

D12 =
µ0

8π

γ1γ2~
r3

12

(
3 cos2(Θ12)− 1

)
. (1.43)

Where rij , γi and µ0 are the distance between the ith and jth spin, gyromagnetic ratio of the ith

spin and the magnetic constant (µ0 = 4π × 10−7H m−1) respectively. The angle Θij corresponds

to the angle between the unit vector joining ith and jth spin, r̂ij , and the static magnetic field B0.

In a solid sample all the spin-1/2 nuclei in the sample interact with all the other spin-1/2

nuclei. In this case the anisotropic part of J-coupling survives. This anisotropic part is negligibly

small as compared to direct dipolar coupling and thus can be neglected or can even be included

in the dipolar term as they both have the same from. Thus, using Eq. 1.42 the total Hamiltonian

of a solid sample can be written as,

Hsolids =
∑
i<j

H0
ij, (1.44)

where now the ωi0(Θ) = −γiB0

(
1 − δi(Θ)

)
, has dependence on the atomic orientation, Θ, with

applied magnetic field. As a result the solid state samples have a plethora of disorder in the

system.
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1.3 Quantum information processing using NMR

Anisotropic liquids, liquid crystals, have a favourable spatial direction (referred as the director

in liquid crystal literature) and thus the translational and rotational mobility of the molecules are

not isotropic. This makes liquid crystals very different from isotropic liquids. Due to the partial

motional averaging in a favoured direction the chemical shift for such an anisotropic liquid is

obtained by averaging over the molecular orientation, Θ, with their corresponding probabilistic

weights. Similarly, due to the translational diffusion of the molecules in a liquid crystal the

short-term inter-molecular dipolar interactions are averaged out. Although the long range inter-

molecular interactions are not averaged out, their strength is so weak that they can be safely

ignored. In liquid crystals, due to the preferred molecular orientation (which can be oriented away

from the applied static magnetic field), the secular part of the intra-molecular dipolar interactions

are not averaged out. The total Hamiltonian for such an anisotropic liquid can then be written as

Hlc =
∑
i<j

ωi0S
z
i + ωj0S

z
j +Dij(3S

z
i S

z
j − Si · Sj). (1.45)

Here ωk0 has the same meaning as in Eq. 1.42. Also the overbar in the secular dipolar interaction

Dij corresponds to the average of Eq. 1.43 over all the molecular orientations, Θ, with their cor-

responding probability. Note that here we have dropped the scalar J-coupling term as explained

in the case of solids.

For the case of isotropic liquids things become relatively simpler as the molecules tumble

around freely in every direction and orientation with equal probability. The secular dipolar cou-

pling is thus averaged out and the chemical shift takes isotropic average of δi(Θ). The only

interaction that survives in a liquid sample is the intra-molecular scalar J-coupling term, which

is further simplified in the weak coupling limit. The net Hamiltonian of a liquid sample in high

magnetic field and weak coupling limit (|Jij| << |ωi0 − ω
j
0|) can be written as,

Hliq =
∑
i<j

ωi0S
z
i + ωj0S

z
j + JijS

z
i S

z
j . (1.46)

In the next section we use these coupling Hamiltonians along with the interaction with RF field

(see Eq. 1.37) to realize some quantum gates and demonstrate the preparation of multi-qubit PPS.
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1.3.3 NMR quantum gates and PPS

Quantum computation and information processing are based on a set of universal quantum gates

and operations, just like the classical information processing. These gates and operations are the

building-blocks of quantum simulations and executing quantum algorithms. These quantum gates

are nothing but unitary operations on the spins to generate the desired effects. NMR has a long

history of manipulating large spin systems using RF pulses, spin-spin interactions and precession

under the static magnetic field. In this section we will see the NMR implementation of a few of

these universal single and multi qubit gates and operations using the RF rotations on the spins

and interactions between the spins discussed in the previous section.

1.3.3.1 Single qubit gates

As will be seen, most of the simple single qubit gates are realised as rotations about a direction

in the Bloch sphere using RF pulses. The action of RF pulse with an amplitude of Bn on a spin

for a time t is of the form

(θ)φ = exp
(
− iθSφ

)
= exp

(
− iωntSφ

)
. (1.47)

Where ωn = γBn is the nutation frequency and depends upon the RF amplitude, Bn, and Sφ =

Sx cos(φ) + Sy sin(φ) is the spin operator with phase, φ. This operation performs the rotation of

the spin by an angle of θ about a direction dictated by the phase φ in the Bloch sphere. We now

see how this is used to realise some single qubit gates.

One of the simplest but extensively used gate is the X or NOT gate. This gate flips |0〉 → |1〉

and has a matrix representation as follows

X =

0 1

1 0

 . (1.48)

In NMR this can be realised simply by performing a π angle rotation about x-axis as follows

(π)x = −i

0 1

1 0

 . (1.49)

The global phase factor of −i can be neglected.

Another useful gate is the Hadamard gate, which produces an equal superposition of |0〉 and
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|1〉 when operated on |0〉. The matrix form for it is shown below

H =
1√
2

1 1

1 −1

 . (1.50)

This quantum gate can again be realised as follows

(π)x

(π
2

)
y

=
1√
2

1 1

1 −1

 . (1.51)

Note that the pulses are time ordered from right to left.

The various phase gates like

Z =

1 0

0 −1

 , S =

1 0

0 i

 , T =

1 0

0 eiπ/4

 , (1.52)

are obtained by the application of the pulse sequence

R(θ) =
(π

2

)
x
(θ)y

(π
2

)
−x
. (1.53)

From the above expression one can get back the form of Z, S and T gates by putting θ = π, π/2

and π/4 in Eq.1.53.

1.3.3.2 Multi qubit gates and operations

XY

Qubit-1

Qubit-2

-Y

Figure 1.9: Pulse sequence for refocussing the J-coupling between two spin-1/2 particles. The pulses are
time ordered from left to right. The black and white narrow bars represent π and π/2 angle pulses about
the axis mentioned above them. τ is the time for each evolution under the interaction Hamiltonian given
Eq. 1.46. The blue shaded region represent the evolution under the J-coupling Hamiltonian represented by
UJ12(τ).

Here we will discuss a few important multi-qubit gates and their implementation in NMR. For
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this we are going to use liquid NMR system as an example as this is the system pre-dominantly

used in this thesis. Thus the interactions used to prepare the gates will be of the form shown

in Eq. 1.46. Before moving on to these examples it is instructive to consider a very important

method used in NMR to ‘turn off’ the J-coupling (see Sec. 1.3.2) between two spin-1/2 particles

in a liquid NMR system. This method is called refocussing, for reasons which will become clear

as we move along. For simplicity we consider two different species of spin-1/2 nuclei, coupled

to each other in a molecule in a liquid sample, each initialised in the z-direction. The refocussing

pulse sequence is shown in Fig. 1.9. Starting from the left, qubit 1 initialised along z-axis of the

Bloch sphere is subjected to (π/2)y pulse which takes it along the x-axis. After this the two spins

are allowed to interact with each other by J-coupling, of the form shown in the figure, for a time

τ . This is followed by a (π)x pulse on the 1st qubit and followed by again an evolution under

the coupling as shown. This second evolution along with the (π)x pulse on the first qubit undo

the effect of the first evolution and one can think of it as the refocussing of the state. As a result,

before application of the final π/2 pulse the system returns to the same state as after application

of only the first π/2 pulse. The final π/2 pulse just brings back the state along z-axis. Thus we

see that although the system evolved under the coupling for a total time of 2τ , the state of the

system remained unchanged. we are going to see the use of this in method when making PPS and

some multi qubit gates.

Controlled NOT (CNOT) gate is one of the most useful gates in quantum information pro-

cessing and computing. The matrix form of this gate is written as

CNOT1 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , CNOT2 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 . (1.54)

Where CNOT1 and CNOT2 are controlled NOT gate with control on the 1st and 2nd qubit respec-

tively. Such a controlled (non-local) gate can be realised in NMR setup using pulse sequences

shown below.
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UCNOT1 =
(π

2

)S1

z

(−π
2

)S2

z

(π
2

)S2

x
UJ

12

( 1

2J12

)(π
2

)S2

y

UCNOT2 =
(π

2

)S2

z

(−π
2

)S1

z

(π
2

)S1

x
UJ

12

( 1

2J12

)(π
2

)S1

y
. (1.55)

Here the pulse sequences have been time ordered from right to left.

1.3.3.3 Pseudo-pure state

In Sec. 1.1.1.2 we discussed about what it means for a system to be in a pure state and mixed

state. NMR system is largely in a highly mixed state as preparation of a pure state requires either

application of very high static magnetic field, B0, or reducing the temperature of the system to

extremely low temperatures. This can further be seen in Eq. 1.36, where we present the highly

mixed state of an NMR system. Rewriting the thermal state of an ensemble of non-interacting

spin-1/2 NMR system, given in Eq. 1.36, as

ρeq =
(1− ε

2

)
12 + ε|0〉〈0| (1.56)

one obtains the pseudo-pure state (PPS), which mimics the behaviour of a pure state [38]. Here

ε is the purity factor as mentioned before and takes a value of ∼ 10−5 for an ensemble of 1H

nuclei in a static magnetic field of B0 = 10T. As many of the quantum information processing

protocols require initializing the systems in pure state (we will see this in subsequent chapters),

PPS provides a way to simulate such protocols in a highly mixed experimental system like NMR.

From this mixed system signal is obtained only from the deviation part, which is smaller by a

factor of ε than if the system was in a pure state. In other words, if the deviation part of a mixed

ensemble state (ρeq) is pure (see Eq. 1.56), the state is called a pseudo-pure state. Such proposal

for simulating a pure state using an effective pure state was first put forward by Cory et al [38]

and Chuang et al [39] in 1997. People have extensively used these states since then to simulate

quantum information processing and computation in NMR for the last three decades [40]. As one

can observe, a single qubit system is always in a pseudo-pure state. It has been established that

for multi-qubit systems such pseudo-pure states can not be obtained from their corresponding

thermal equilibrium states using only unitary operators. There are a number of procedures used

to prepare PPS for multi-qubit systems. Here we describe two-qubit PPS preparation in detail.
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X

Qubit-1

Qubit-2

X

PFG

Figure 1.10: Pulse sequence for preparing two-qubit pseudo pure state. The pulses are time ordered from
left to right. The black narrow bar represents π angle pulse about the axis mentioned above it. The white
narrow bars correspond to θi angle pulse about the axis mentioned in the subscript. τ = 1/2J12 is the time
for each evolution under the interaction Hamiltonian given Eq. 1.46. The blue shaded region represent the
evolution under the J-coupling Hamiltonian represented by UJ12(τ). The dashed line corresponds to Pulse
Field Gradient (PFG) to destroy x-y magnetization.

Considering two nuclear spins with gyromagnetic ratios γ1 and γ2, we wish to prepare a

pseudo pure state from the thermal equilibrium state. Here using the deviation density matrix

representation of the states, thermal equilibrium state and the PPS can be written as γ1S
z
1 + γ2S

z
2

and Sz1 +Sz2 + 2Sz1S
z
2 respectively. The pulse sequence for preparation of two qubit PPS is shown

in Fig. 1.10. The values of θi depend upon the values of γi. For the case of |γ1/2| ≤ |γ2|,

θ1 = cos−1(γ1/2γ2), θ2 = π/4 and θ3 = π/4. Where as if |γ1/2| > |γ2|, θ1 = 0, θ2 =

(1/2) sin−1(2γ2/γ1) [41]. One can find the experimental implementation of three and more qubit

PPS in [42].
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CHAPTER 2

Quantum heat-exchange fluctuation relation

Abstract

In this chapter we experimentally explore the validity of the Jarzynski and Wójcik quan-

tum heat-exchange fluctuation relation (FR) by implementing an interferometric technique

in liquid-state nuclear magnetic resonance setup and study the heat-exchange statistics be-

tween two coupled spin-1/2 quantum systems. We experimentally emulate two models—(i)

the XY-coupling model, containing an energy conserving interaction between the qubits,

and (ii) the XX-coupling model—and analyse the regimes of validity and violation of the

fluctuation symmetry when the composite system is prepared in an uncorrelated initial state

with individual spins prepared in local Gibbs thermal states at different temperatures.We

further extend our analysis for heat exchange by incorporating correlation in the initial

state. We support our experimental findings by providing exact analytical results. Our ex-

perimental approach is general and can be systematically extended to study heat statistics

for more complex out-of-equilibrium many-body quantum systems.

Reported in

Soham Pal, T. S. Mahesh, and Bijay Kumar Agarwalla, Experimental demonstration of

the validity of the quantum heat-exchange fluctuation relation in an NMR setupPhys. Rev.

A 100, 042119 (2019).

2.1 Introduction

With the size of system that can be measured and controlled experimentally reaching the levels

of single molecules or atoms, it is important to quantify thermal and quantum fluctuations in

these nanoscale system from both fundamental and practical perspective [43]. People have tried

to come up with theoretical frameworks, in the last few decades, to consistently describe these

fluctuations. This has led to the development of so called fluctuation relations (FRs) [27, 28, 44–
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58]. In quantum domain all the thermodynamic observables like work, heat, entropy etc. can be

thought of as random variables, to which one can associate a probability distribution function.

For these random variables, FRs provide relationship between their forward and time-reversed,

backward probability distribution functions. These relations are universal and are found to hold

in transient [27, 28, 48] as well as in steady-state regimes (i.e. equilibrium and non-equilibrium

dynamics) [56, 57]. Different kinds of FRs have been proposed in the last two decades. The

first such relation, given by Jarzynski, established a connection between the work in a classical

non-equilibrium process and the produced free energy in the system. Later this was extended

to quantum systems by Jarzynski and Crooks. A similar relation was proposed by Jarzynski

and Wójcik for heat being exchanged between two quantum mechanical systems initialized at

a thermal-equilibrium state at two different temperatures. This relation is called the Jarzynski-

Wójcik heat exchange fluctuation theorem (XFT). In spite of the major theoretical work done in

this field, experimental investigation and verification of such relations have been limited because

of the challenge in measuring the probability distribution functions (PDFs) using two-point mea-

surement technique, which relies on high fidelity projective measurements. In this work we use

an interferometric technique to circumvent the projective measurement involved and, verify and

study the quantum heat XFT.

2.2 Objectives

The objectives of this project is to explore validity of quantum version of Jarzynski-Wójcik XFT

for two coherent quantum systems (qubits) using an ancilla based interferometric technique to

extract the full heat exchange statistics [59–65] in an NMR architecture, for three different con-

ditions:

• For energy preserving coupling Hamiltonian between the two heat exchanging quantum

systems, which we call the XY -model.

• For energy non preserving coupling Hamiltonian, which we refer to as XX-model.

• And for correlated initial state.

These three conditions were chosen keeping in mind that while obtaining the expression for

the XFT, Jarzynski and Wójcik assumed uncorrelated initial states and weak coupling between
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2.3 Exchange Fluctuation Relation in Quantum Domain

the quantum systems exchanging heat. Interestingly it will be observed that for energy preserving

coupling Hamiltonian, XFT is valid for arbitrary coupling strength. Also it will be observed that

introducing a certain form of correlation into the system can cause spontaneous heat flow from

cold to hot subsystem, thus displaying signatures of “Reversal of arrow of time”.

2.3 Exchange Fluctuation Relation in Quantum Domain

Here we give a general explanation of the heat statistics and XFT for heat exchange between two

quantum systems. We consider a bipartite system with internal Hamiltonians of the subsystems

being, H1 and H2. Initially, t = 0−, the two subsystems are not coupled to each other and

are prepared in an uncorrelated pseudo thermal state, at respective inverse spin temperatures, βi,

ρ0 = ρ1 ⊗ ρ2 , where ρi = exp[−βiHi]/Zi is the Gibbs thermal state and Zi = Tr[exp[−βiHi]]

represents the partition function of the subsystems, for i = 1, 2. At t = 0 the coupling between

them is switched on and the heat exchange is allowed for a duration of t = τ . After which the

interaction is switched off again. As we are dealing with evolution of quantum systems, the heat

exchange is inherently nondeterministic and with the randomness in the initial state preparation,

the heat exchange in this quantum scenario is a stochastic variable associated with a PDF. To

find PDF of the heat exchange process one can use two-time projective measurement scheme

[52, 53, 66], in which the system is measured once in the beginning and once in the end of the

heat exchange process. One point to note here is that the two-time measurement scheme destroys

any correlation in the initial state, thus taking care of uncorrelated initial state assumptions made

by Jarzynski and Wójcik. For energy (∆Ei) exchanged between the two subsystems, the PDF

can be written as

pτ (∆E1,∆E2)=
∑
m,n

( 2∏
i=1

δ(∆Ei − (εim − εin))
)
pτm|np

0
n. (2.1)

Here p0
n =

∏2
i=1 e

−βiεin/Zi is the probability of finding the system initially in a common eigenstate

|n〉 with eigenvalues εin, after the first projective measurement. After the quantum evolution of

the system under the unitary U(t, 0) = e−
i
h
Ht, the second projective measurement is performed.

The system thus collapses onto another set of common eigenstate, |m〉, with eigenvalue εim with

the probability pτm|n = |〈m|U(τ, 0)|n〉|2. Using the form of Gibbs thermal state mentioned above

and using the principle of micro-reversibility of quantum dynamics for autonomous system, i.e.
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pτm|n = pτn|m, we can rewrite Eq. 2.1 as

pτ (∆E1,∆E2) = eβ1∆E1+β2∆E2 pτ (−∆E1,−∆E2). (2.2)

If the strength of coupling Hamiltonian between the two subsystems is much smaller than their

internal Hamiltonian, i.e. weak coupling regime, the energy lost or gained by the two subsystems,

∆E1 ≈ −∆E2 = Q can be interpreted as the heat exchanged between them. The Jarzynski and

Wójcik quantum heat-exchange fluctuation relation can then be written as

pτ (Q) = exp
[
(β1 − β2)Q

]
pτ (−Q). (2.3)

It is this relation that we aim to experimentally verify for different regimes and initial condi-

tion. Rearranging the above equation and integrating both sides one can easily see that Eq. 2.3

can be written as 〈e−∆βQ〉τ = 1, which is known as the integral form of the XFT, where 〈..〉τ
represents the average over the distribution pτ (Q) and ∆β = β1 − β2. Experimentally it is quite

challenging to obtain the PDFs directly, thus in this work the quantity of interest is the character-

istic function (CF), which is defined as the Fourier transform of the PDF pτ (Q) [67],

χτ (u) =

∫
dQ e−iuQ pτ (Q),

= Tr
[
U †(τ, 0)(e−iuH1 ⊗ 12)U(τ, 0)(eiuH1 ⊗ 12)ρ0

]
. (2.4)

Here u is the conjugate variable to Q, the heat energy exchanged. Experimentally we obtain the

CF of the heat exchange between two quantum systems by using an ancilla based interferometric

technique (see sec.2.4). The PDF is in turn obtained by the inverse Fourier transform of the CF.

In what follows we describe the experimental implementation of this interferometric technique

using NMR architecture to measure the CF and extract the PDF [63–65]. This experimentally

obtained PDF is then used to investigate the XFT. As we will see, one of the advantages of using

such an interferometric technique, over the previously used two-time measurement approach is

that, it offers analysis of arbitrary initial state with correlations and even coherences, which is

not possible with the two-time measurement approach. Along with this we are going to use the

periodic property of the characteristic function, χτ (u). Since χτ (u) is the Fourier transform of
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2.4 System and Interferometric Technique

the PDF, one can write,

χτ (u) =

∫
dQ e−iuQ pτ (Q) = 〈e−iuQ〉.

= 〈e−iu(Hf−Hi)〉.

= 〈U †e−iuHiUeiuHi〉. (2.5)

Where we have used the interaction picture. As we will see in this work, the initial Hamiltonian

of the subsystem is taken to be, Hi = hν0(σz/2). Using this one can write,

χτ (u+
2π

hν0

) = 〈U †e−iuHie−iπσzUeiuHieiπσz〉.

= 〈U †e−iuHiUeiuHi〉. (2.6)

Comparing Eq. 2.5 and 2.5 one can see χτ (u) = χτ (u + 2π
hν0

) and thus characteristic function of

the PDF of heat exchange between two quantum systems with product initial state is periodic.

2.4 System and Interferometric Technique

Hz
1000 -128.3 69.9

47.4-16330

12839

Hamiltonian Paramerters

(a) (b)

1,1,2-Trifluoro-2-iodoethane

Figure 2.1: (a) Structure of the molecule 1,1,2-Trifluoro-2-iodoethane. (b) Parameters of the Hamiltonian
in Eq. 2.7. The diagonal terms represent νi and the off-diagonal terms Jij .

In our experiments, we use liquid-state NMR spectroscopy of three 19F nuclei (F1, F2 and

F3) in 1, 1, 2−Trifluoro−2−iodoethane (TFIE) (Fig.2.1(a)), dissolved in Acetone as a test-bed to

study the heat flow between quantum systems. All our experiments are performed in 500 MHz

Bruker NMR spectrometer at an ambient temperature. Below we explain the experimental system
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used and the interferometric protocol used to extract the CF of this heat flow.

2.4.1 Experimental Setup

The three NMR active 19F nuclei in the molecule, labelled as F1, F2 and F3 and we identify

F1 as qubit 1, F2 as qubit 2 and F3 as the ancillary qubit. The molecules in the sample are all

identical and sufficiently isolated [32, 37, 68] and all the dynamics and heat exchange processes

are completed in the time scale of milliseconds, such that any relevant environmental effects can

be neglected. Note that, the longitudinal and transverse relaxation time constants in our NMR

setup are in fact of the order of few seconds.

The internal Hamiltonian (Hint) of the three spin system in the rotating frame of the radio

frequency (RF) pulses can be written as (see ch.1)

Hint =
3∑
i=1

hνi
2
σzi +

3∑
i<j=1

hJij
4
σzi σ

z
j , (2.7)

where νi is the off-set frequency of i-th nuclei and Jij being the scalar coupling between i-th

and j-th nuclei. Values of these internal Hamiltonian parameters are shown in Fig. 2.1(b). The

diagonal terms represent the value of νis and the off-diagonal terms are the scalar coupling, Jij .

F1 and F2 exchange heat by interacting under a constant coupling Hamiltonian. To study the heat

flow between these two quantum systems we consider two different coupling models for which

we go about investigating XFT. In the first model, net Hamiltonian is of the form,

H = H1 +H2 +
hJ

4
(σx1 ⊗ σ

y
2 − σ

y
1 ⊗ σx2 ), (2.8)

We refer to this as XY -model. The other model, referred to as XX- model, is given by,

H = H1 +H2 +
hJ

4
σx1 ⊗ σx2 , (2.9)

where H1 = −hν0
2
σz1 ⊗ 12, and H2 = 11 ⊗ −hν02

σz2 . σi(i = x, y, z) is the i-th component of Pauli

spin-1/2 operator.

Recall that, we are interested in extracting the statistics of heat flowing between the qubits

F1 and F2 by measuring the CF, χτ (u), as given in Eq. 2.4. The quantum circuit for doing so is

shown in Fig. 2.2. For the first set of experiments for both these models we consider uncorrelated

(product) initial state for the qubits. This is achieved by first initializing the three qubit system
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Figure 2.2: Circuit diagram for the interferometric technique to measure the CF of heat χτ (u). Here, H
is the Hadamard gate applied on the ancillary qubit, initially prepared in the |0〉〈0| state, followed by a
control gate V = exp

[
−iuH1

]
⊗12 on the qubit F1 and U = exp

[
− iHt] is the unitary propagator where

H represents the Hamiltonian of the composite system for XY model (Eq. 2.8) or for the XX model
(Eq. 2.9). ρ1, ρ2 are the initial states of F1 and F2, respectively. The readout of 〈σx〉+ i〈σy〉 component of
the ancilla finally gives us the CF χτ (u)

in a pseudo-pure |000〉〈000| state [69] (see Chap.1), followed by preparing F1 and F2 in a pseudo

thermal-equilibrium state, ρin = ρ1 ⊗ ρ2, where ρi = exp
[
−βiHi

]
/Zi being the Gibbs thermal

state with inverse pseudo spin temperatures βi. In our experiments, we realize different pseudo

spin temperatures by applying RF pulses from 0 to π/2 that redistribute the population between

the qubit states followed by a Pulsed Field Gradient (PFG) which destroys the coherences and

produces a desired thermal initial state. Note that the pseudo spin temperature is different from

the actual sample temperature which is always maintained at an ambient temperature.

With this initial state the interferometric protocol is implemented, as shown in the Fig. 2.2, to

obtain the desired CF, χτ (u), for heat exchange between F1 and F2 under the unitary evolution

U = exp
[
− i

~Ht]. The interferometric circuit in Fig. 2.2 maps the CF of the heat exchange

onto the ancillary qubit F3. Various gates used for this protocol such as the Hadamard gate H ,

controlled gate V = exp
[
−i uH1

]
⊗ 12 and U , responsible for the heat exchange between the

qubits, are prepared by utilizing the internal Hamiltonian, Hint, (Eq. 2.7) and the RF pulses (see

Chap.1 for examples). For the realization of controlled gate, V = exp
[
−i uH1

]
⊗ 12, we use a

Gradient Accent Pulse Engineering protocol [70] along with an optimization procedure (Genetic

Algorithm) [71].
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Figure 2.3: Circuit diagram for the interferometric technique to measure the CF of heat χτ (u). ρi, (i =
A,B,C,D,E) represents the intermediate states of the global system (F1, F2, F3) after gate operations.

2.4.2 Interferometric Protocol

Here we summarize the interferometric technique [60, 61] to obtain the CF for heat as given in

Eq. 2.4. We begin with the initial state of the three qubit system |0〉〈0| ⊗ ρin, where ρin is an

arbitrary initial state (may or may not include quantum correlations) for the two qubits, F1 and

F2, that exchange heat and |0〉〈0| is the state for the ancillary qubit. Following Fig. 2.3, the global

density operator in the ancillary basis can thus be written as,

ρA =

ρin 0

0 0

 .
Next a Hadamard gate, H , is applied on the ancillary qubit. The density matrix can then be

written as,

ρB = HρAH
† =

1

2

ρin ρin

ρin ρin

 .
This is followed by application of a controlled gate V = exp

[
−i uH1

]
⊗ 12 on the qubit F1. At

this stage we get,

ρC =
1

2

 ρin ρinV
†

V ρin V ρinV
†
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Following the circuit in Fig. 2.3 the system is evolved under the heat exchange unitary propagator

U , along with a σx rotation on the ancillary qubit. This gives us

ρD =
1

2

UV ρinV
†U † UV ρinU †

UρinV
†U † UρinU †.


In the final step, the controlled gate V1 is applied once again on the qubit F1. The final global

density matrix can then be written as,

ρE =
1

2

UV ρinV
†U † UV ρinU †V †

V UρinV
†U † V UρinU †V †


At this stage if we trace-out F1 and F2 qubit, the reduced density matrix for F3 takes the form,

ρ = Tr1,2[ρE] =
1

2

 1 Tr
[
U V ρinU †V †

]
Tr
[
V UρinV

†U †
]

1


The off-diagonal components of this density matrix are simply related to the expectation values

of the σx and σy components for the ancilla. We can therefore write,

〈σx〉ρ + i〈σy〉ρ = Tr
[
V UρinV †U †

]
,

= Tr
[
V †U †V Uρin

]
,

= Tr
[(
ei uH1 ⊗ 12

)
U †
(
e−i uH1 ⊗ 12

)
U ρin

]
,

= Tr
[
U †
(
e−i uH1 ⊗ 12

)
U ρin

(
ei uH1 ⊗ 12

)]
. (2.10)

Note that, the above final expression is not yet the CF of heat as obtained in Eq. 2.4, following

the two-time measurement protocol. It is only when the initial state, ρin for F1 and F2, is an

uncorrelated (product) Gibbs state i.e., ρin = ρ0 = exp[−β1H1]/Z1 ⊗ exp[−β2H2]/Z2, implying

[ρ0, H1 ⊗ 12] = 0, that Eq. 2.10 reduces to

〈σx〉ρ + i〈σy〉ρ = Tr
[
U †
(
e−i uH1 ⊗ 12

)
U
(
ei uH1 ⊗ 12

)
ρ0

]
, (2.11)

which is exactly the CF χτ (u) in Eq. 2.4.

It is important to note here, even for arbitrary initial condition Eq. 2.10 may not deliver the

correct PDF of heat, as it is not guaranteed to be always positive definite. As it will be shown,

interestingly the CF at least produces the correct definition for the first moment i.e., the average
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heat 〈Q〉 = 〈Hf〉 − 〈Hi〉, even if the initial state is not a separable product state.

2.5 Results and Discussion

In this section we finally show and discuss the experimental results for the two different type of

couplings models, XY and XX , for initially uncorrelated state and also for the special case of

initially correlated state.

2.5.1 XY -coupling model

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0 2 4 6
0

0.5

1

0 2 4 6

-0.1
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-1 -0.5 0 0.5 1
0

0.1
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Figure 2.4: Results for the XY-model (a)-(b): Plots for the real (χ′τ (u)) and imaginary (χ′′τ (u)) compo-
nents of the CF χτ (u). Solid (blue) lines and the dots correspond to theoretical and experimental results,
respectively. (c)-(d): The PDF of heat exchange pτ (Q) for two different values of β1 as shown.

For this particular model, we set the frequency for the qubits F1 and F2 as ν0 = 1 kHz

and the coupling J is chosen as 1 Hz, which ensures the weak-coupling (J � ν0) between the

qubits. For the initial state preparation, we initialize F2 at infinite pseudo spin temperature [72],

(β2h)−1 = ∞. This is achieved by applying a π/2 pulse on F2 followed by a Pulsed Field

Gradient (PFG). For F1, we prepare the qubit at different pseudo spin temperatures by applying
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RF pulses from 0 to π/2 followed by a PFG. We then measure χτ (u) by allowing heat exchange

between F1 and F2 for a time duration τ = π/J , corresponding to the maximum average heat

exchange between the two qubits. In Fig. 2.4(a-b) we display both experimental and theoretical

results for the real and imaginary components of the CF χτ (u) when F1 is at a particular pseudo

spin temperature (β1h)−1 = 1403 Hz. We take a set of measurements in one complete period

of u ∈ [0, 2π
hν0

] (red dots in Fig.2.4(a-b)) and further take advantage of the periodicity of the

CF χτ (u) = χτ (u + 2π
hν0

) (see Eq. 2.5 and 2.5) to extrapolate (orange dots in Fig.2.4(a-b)) the

obtained data for subsequent periods. We phenomenologically add a small constant damping

factor to χτ (u) with decay constant 10 Hz in both theoretical and experimental data. The inverse

Fourier transform of the obtained CF produces the desired PDF pτ (Q) which shows three distinct

peaks at Q/h = ± 1 kHz and Q/h = 0 Hz and with finite widths proportional to the decay

constant. The corresponding peak amplitudes reflect the probability of heat flowing from one

qubit to another. The location of the peaks can be understood from the energy eigenvalues of the

composite hamiltonianH (Eq. 2.8). The ± 1 kHz peaks corresponds to the transition between the

zero energy states and the highest or lowest energy states. The corresponding probabilities are

proportional to 1
2

sin2
(
Jτ
2

)
×1/(exp(∓β1hν0) + 1) (see Eq. 2.14). The peak at Q = 0 represents

no heat exchange process between the qubits and in this particular scenario, it’s peak amplitude

is independent of the pseudo spin temperatures and is proportional to 1
2

(
1 + cos2

(
Jτ
2

))
, (see

Eq. 2.15). Note that, as per our convention, positive value of Q corresponds to heat flowing from

F2 to F1 and vice versa. Fig. 2.4(c) therefore confirms that on an average heat flows from hot

qubit F2 to cold qubit F1 and thereby validates the second law of thermodynamics at the level of

ensemble average. However, at the microscopic realm, a finite probability corresponding to heat

flowing from cold to hot exists which contributes to negative entropy production. With reduction

in the pseudo spin temperature (β1h)−1 the peak value at Q/h = −1 kHz reduces and finally

disappears completely for (β1h)−1 = 0 (Fig. 2.4(d)).

In contrast, as the temperature of F1 increases (Fig. 2.5(a-c)) the probability of back-flow of

heat from F1 to F2 increases, and the peak value at Q/h = −1 kHz increases which becomes

exactly equal to the peak value at Q/h = 1 kHz at (β1h)−1 = (β2h)−1 = ∞ and thus ensuring

zero net heat exchange. The temperatures of the two subsystems are given in Fig. 2.5(a-c). All the

other parameters are kept the same as before. We next plot ln
[
pτ (Q)/pτ (−Q] against Q for the
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Figure 2.5: (a)-(c): PDF of heat exchange for XY-model for different spin temperatures of F1. Solid (blue)
lines and the red dots correspond to theoretical and experimental results, respectively. (d): Verification of
Jarzynski and Wöjcik heat XFT– plots for ln

[
pτ (Q)/pτ (−Q)

]
as a function of Q/h for four different

temperatures of F1. The shaded region indicate the simulated 5% pulse errors in the experiment. All other
parameters are the same as in Fig. (2.4)

above four sets of pseudo spin temperatures to confirm the Jarzynski and Wöjcik XFT. Note that,

as the coupling Hamiltonian in Eq. 2.8 is a constant one, pτ (−Q) is obtained simply by flipping

the forward PDF pτ (Q). Fig. 2.5(d) shows excellent agreement between the theoretical and the

experimentally obtained results with the expected slope equal to ∆β = β1 − β2. The shaded

regions indicate simulated results that involve±5% random errors in all the RF pulses used in the

interferometric technique as well as in the initial state preparation. In table 2.1 we tabulate both

theoretical and experimentally extracted values of these slopes.

It is experimentally possible to further tune the coupling J to explore the heat statistics and

the corresponding XFT from moderate to strong coupling regime. However, interestingly for this

particular model, the XFT is satisfied for arbitrary coupling strength J . This is due to the energy-

preserving interaction term in the Hamiltonian (Eq. 2.8) H12 = hJ
4

(σx1 ⊗ σy2−σ
y
1 ⊗ σx2 ) which

commutes with the total bare Hamiltonian of the two qubits H1 + H2. This symmetry implies
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Table 2.1: Table containing theoretical and experimentally obtained values for the slope ∆β = β1 −
β2, βi = 1/kBTi from (d). All other parameters are the same as in Fig. (2.4).

(β1h)−1 (Hz) Theory ∆β (kHz)−1 Experiment ∆β (kHz)−1

494 2.02 2.15 ± 0.08
655 1.52 1.55 ± 0.03
1403 0.71 0.71 ± 0.01

for the energy change of the qubits, ∆E1 = −∆E2 for any J value, as there is no energy cost

involved in turning on or off the interaction between the two qubits. As a consequence, the XFT

for heat exchange is supposed to be valid for any J value. We now present here the proof by

providing the exact analytical expression for the CF and the corresponding PDF pτ (Q).

Following the form of the characteristic function in Eq. 2.4 and the Hamiltonian in Eq. 2.8,

one can perform simple algebraic manipulations of the Pauli matrices to get an exact expression

for χτ (u) as,

χτ (u) =
[
1 + sin2

(Jτ
2

){
f1(ν0) (1− f2(ν0))

(
eihuν0 − 1

)
+f2(ν0)(1− f1(ν0))

(
e−ihuν0 − 1

)}]
(2.12)

where the function fi(ν0) = 1/(exp(βihν0) + 1), i = 1, 2 is evaluated at the inverse temperature

βi and qubit frequency ν0. Since we take (β2h)−1 =∞, it is easy to see that f2 = 1/2. Note that,

the CF has the periodicity χτ (u) = χτ (u + 2π
hν0

). Furthermore, as pointed out before, the above

χτ (u) follows the fluctuation symmetry χτ (u) = χτ (−u + i∆β) for arbitrary coupling strength

J as well as for arbitrary values of β1, β2, and ν0.

The corresponding probability distribution function of heat pτ (Q) can be simply extracted by

performing the inverse Fourier transformation of χτ (u),

pτ (Q) =

∫ ∞
−∞

du eiuQ χτ (u)

= p0,τ

∫ ∞
−∞

du eiuQ + p+,τ

∫ ∞
−∞

du eiu(Q−hν0) + p−,τ

∫ ∞
−∞

du eiu(Q+hν0)

= p0,τδ(Q)+p+,τδ(Q−hν0) + p−,τδ(Q+hν0). (2.13)

This expression clearly shows three distinct peaks for pτ (Q) at Q/h = 0,±ν0, reflecting differ-

ent heat exchange processes between the qubits. These results excellently corroborate with our
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experimental plots as displayed in Fig. 2.4 and 2.5. In Eq. 2.13 p+,τ and p−,τ corresponds to the

probability of heat absorbed and heat released by qubit F1, respectively, and are obtained from

χτ (u) as,

p+,τ = sin2
(Jτ

2

)
f2(ν0)(1− f1(ν0)),

=
1

2
sin2

(Jτ
2

)
× 1/(exp(−β1hν0) + 1)

p−,τ = sin2
(Jτ

2

)
f1(ν0)(1− f2(ν0))

=
1

2
sin2

(Jτ
2

)
× 1/(exp(β1hν0) + 1), (2.14)

where we have used the fact that f2 = 1/2. Also since the total probability has to be conserved,

p0,τ = 1− p+,τ − p−,τ

= 1− sin2
(Jτ

2

)(
f1(ν0) + f2(ν0)− 2f1(ν0)f2(ν0))

= 1− 1

2
sin2

(Jτ
2

)
=

1

2
(1 + cos2

(Jτ
2

)
), (2.15)

Here, p0,τ corresponds to the probability of no heat exchange between the qubits. It is easy to

check that p+,τ and p−,τ are related via the fluctuation symmetry p+,τ = e(β1−β2)hν0p−,τ . To

further connect these analytical results to our experimental findings, in the limit when (β2h)−1 =

∞ and (β1h)−1 = 0, one finds following Eq. 2.14 that p−,τ vanishes which indicate no back

flow of heat from F1 to F2. This outcome is confirmed in Fig. 2.4(d) as the absence of the peak

at Q/h = −ν0. With increasing (β1h)−1, the probability of back flow increases and finally in

equilibrium (β1 = β2) the forward and backward flow becomes identical (p−,τ = p+,τ ) confirming

zero net heat exchange between the qubits. These predictions are also reflected in Fig. 2.5(a-c).

In what follows, we experimentally emulate the XX model which lacks the energy preserving

symmetry between the qubits and investigate it’s consequence on heat statistics and corresponding

XFT.
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Figure 2.6: (a)-(c): PDF of heat exchange for XX-model for ν0 = 10Hz and for three different values of
coupling strength, J and for a fixed temperatures of the qubits. Solid (blue) lines and the dots correspond
to theoretical and experimental results, respectively. (d): Plots for ln

[
pτ (Q)/pτ (−Q)

]
as a function of Q

for different coupling strengths. The shaded region indicates simulated 5% pulse errors in the experiments.

2.5.2 XX-coupling model

In Fig. 2.6 the experimental results for the XX-model is shown. Unlike previous case the XX-

model coupling Hamiltonian, Eq. 2.9, does not commute with the internal Hamiltonian of the

system. As a result XFT for this model should only be valid in the weak coupling regime. As

before, we follow similar experimental approach and set the frequency of the qubits to ν0 = 10 Hz

but now tune J from 0.1 Hz upto 20 Hz to simulate pτ (Q) from weak to strong coupling regime

for a fixed temperatures for the qubits exchanging heat, (β1h)−1 = 1403 Hz and (β2h)−1 = 288

Hz and obtain the pτ (Q) corresponding to a fixed time duration τ = π/J . The PDF’s pτ (Q) for

different values of J are shown in Fig. 2.6(a)-(c). The trend for the distribution is similar to the

earlier case, with three distinct peaks at Q = 0, and Q/h = ±ν0. Note that, as the temperature

of the qubits exchanging heat is fixed, slope of the line in plot for ln
[
pτ (Q)/pτ (−Q)

]
against Q,

should remain unchanged with the change in the coupling strength J if the XFT holds. However,

the corresponding plot for ln
[
pτ (Q)/pτ (−Q)

]
against Q in Fig. 2.6(d) shows a clear violation of
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the XFT, except for the value of J = 0.1 Hz. For J = 0.1 Hz� ν0 = 10 Hz (weak coupling)

the obtained slope from the experimental data (black dots) matches very closely to the expected

∆β value (solid line). However, for moderate (J = 15 Hz) to strong coupling, (J = 20 Hz), the

experimental results (black dots) deviates significantly from the theoretical ∆β value (solid line)

which is a clear indication of the breakdown of standard XFT. This breakdown can be attributed

to the energy non-conserving coupling term in the XX model, as we show below.

To verify the XFT for this model, one can follow a similar approach as the XY model to

obtain an analytical expression for the CF χτ (u). However, instead of the CF, we provide here an

expression for the deviation term of XFT i.e., 〈e−∆βQ〉τ − 1 which captures the essential details

about the violation. We receive,

〈e−∆βQ〉τ − 1 = − J2

J2 + 16 ν2
0

sin2
(τ

4

√
J2+16 ν2

0

)
h(β1, β2, ν0), (2.16)

where the function h(β1, β2, ν0) is defined as

h(β1, β2, ν0) =
1 + eβ1hν0 − eβ2hν0 − e(β1−β2)hν0

(eβ1hν0 + 1)
. (2.17)

Note that the standard version of XFT imply 〈e−∆βQ〉τ = 1. The additional contribution in

Eq. 2.16 therefore reflects the deviation from XFT. This term yield a negligible contribution only

in the weak coupling limit J � ν0 which then reproduces the XFT for arbitrary τ . However, from

moderate (J ≈ ν0) to strong coupling (J � ν0) this term dominates, leading to the breakdown of

XFT as also observed experimentally. Note that, this deviation term is in fact related to the total

change in energy of the two qubits, and thereby linked to the energy non-conserving coupling

term H12 = hJ
4
σ1
x ⊗ σ2

x. We receive,

〈∆E1〉τ+〈∆E2〉τ =
i

h

∫ τ

0

dt
〈[
H12, H1+H2

]〉
,

= hν0
J2

J2 + 16 ν2
0

sin2
(τ

4

√
J2+16 ν2

0

)
g(β1, β2, ν0) (2.18)

where 〈∆Ei〉τ is the net energy change of i-th qubit in the time duration τ and the function

g(β1, β2, ν0) is given as,

g(β1, β2, ν0) =
2 (e(β1+β2)hν0 − 1)

(eβ1hν0 + 1) (eβ2hν0 + 1)
. (2.19)
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Comparison of Eq. 2.16 and Eq. 2.18 clearly shows the link between the energy non-conserving

interaction and the deviation of XFT.

2.5.3 Correlated initial state

0
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Figure 2.7: Absolute values for the density matrix elements for the composite system F1 and F2 for
XY model for (a) uncorrelated (ρ0 = ρ1 ⊗ ρ2) and (b) correlated (ρ0 6= ρ1 ⊗ ρ2) initial state. (c)-(d):
Comparison between the corresponding heat exchange PDF’s pτ (Q). Solid (blue) lines and dots represent
theoretical and experimental results, respectively.

We next direct our attention towards exploring heat statistics for correlated initial state. As

mentioned earlier, the ancilla based techniques offers to capture the effect of arbitrary initial

correlation present in the composite system. Note that, in presence of such initial correlations the

inverse FT of χτ (u) may not correspond to the actual PDF of heat [73, 74]. Using the first part

of Eq. 2.4 we can write χτ (u) = 〈e−iuQ〉. Thus one can write 〈Q〉 = 〈Hf〉 − 〈Hi〉, where Hi

and Hf are the initial and final Hamiltonian of the sub-system, and using the moment generating

function as
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〈Q〉 =
dχτ (u)

d(iu)

∣∣∣
u=0

= 〈eiuHfHfe
−iuHi〉

∣∣
u=0
− 〈eiuHf e−iuHiHi〉

∣∣
u=0

= 〈Hf〉 − 〈Hi〉, (2.20)

where 〈Hi〉 = Tr[H1ρ1(0)] and 〈Hf〉 = Tr[H1ρ1(τ)]. Thus, it produces the correct definition

for the first cumulant, the average heat [75] 〈Q〉 = Tr
[
H1(ρ1(τ)−ρ1(0))

]
, where ρ1(τ) being

the reduced density matrix of F1 at time τ . In our experiment, we simulate the XY model and

choose a particular uncorrelated initial state and introduce a finite amount of correlation, affecting

only the off-diagonal elements of the composite density matrix as shown in Fig. 2.7(a-b), and

measure χτ (u) to extract the corresponding pτ (Q). In Fig-2.7(c)-(d) we compare the probability

distributions of the heat exchange between two qubits, obtained for the uncorrelated initial state,

ρ0 = ρ1⊗ ρ2, and the corresponding correlated initial state, ρ0 6= ρ1⊗ ρ2, with discord D(1|2) =

0.68. One thing to note here is that the initial temperature of one of the qubits exchanging heat

is negative, (β1h)−1 = −3359.9 Hz and (β2h)−1 = 4125.3 Hz. It is well known that negative

spin temperature is hotter than infinite spin temperature, meaning when such two systems are

brought in contact thermal energy flows from the system at negative temperature to the system at

infinite temperature. In the absence of any correlation this is exactly what we see experimentally

(see Fig. 2.7(c)). Keep in mind our convention of positive heat, Q, is when it flows from F2

to F1. Since in this case F1 is hotter than F2, the heat flows from F1 to F2 and thus we see

the net heat to be negative. But in the presence of finite correlation there is a crucial change in

the statistics and thus provides evidence of reversal of heat flow (see Fig. 2.7(d)). This further

implies the breakdown of the standard Jarzynski-Wöjcik XFT. Similar effect for average heat

flow has recently been studied experimentally for a two qubit system by measuring the qubit

states following quantum state tomography [75].

2.6 Summary

In summary, we experimentally explore the validity of the quantum version of the transient heat

XFT by implementing an interferometric approach in a three qubit liquid NMR architecture.

We experimentally simulate two different heat exchange models. The experimental results show
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perfect agreement with the fluctuation symmetry when the composite system is weakly coupled

and is prepared in the uncorrelated Gibbs thermal states with different temperatures. Interestingly,

the XY-model satisfies the XFT for arbitrary coupling strength whereas for the XX-model we

observe the breakdown of XFT in the strong coupling regime. Furthermore, inclusion of any finite

amount of correlation in the initial state also leads to a breakdown of the fluctuation symmetry

and interestingly reverses the direction of the heat flow against the temperature bias, thereby

providing additional knob for controlling heat flow. We provide analytical results for these models

and found excellent agreements with experiments. In the next chapter we are going to further

investigate the quantum heat exchange process between two quantum systems using quantum

state tomography, instead of the interferometric technique, to explore the newly obtained bound

on the quantum heat fluctuations.
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CHAPTER 3

Thermodynamic Uncertainty Relations

Abstract

A cost-precision trade-off relationship, the so-called thermodynamic uncertainty relation

(TUR), has been recently discovered in stochastic thermodynamics. It bounds certain ther-

modynamic observables in terms of the associated entropy production. In this chapter, we

experimentally study the TUR in a two-qubit system using an Nuclear Magnetic Resonance

(NMR) setup. Each qubit is prepared in an equilibrium state, but at different temperatures.

The qubits are then coupled, allowing energy exchange (in the form of heat). Using the

quantum state tomography technique we obtain the moments of heat exchange within a

certain time interval and analyze the relative uncertainty of the energy exchange process.

We find that generalized versions of the TUR, which are based on the fluctuation relation,

are obeyed. However, the specialized TUR, a tighter bound that is valid under specific

dynamics, is violated in certain regimes of operation, in excellent agreement with analytic

results. Altogether, this experiment-theory study provides a deep understanding of heat ex-

change in quantum systems, revealing favourable noise-dissipation regimes of operation.

Reported in

Soham Pal, Sushant Saryal, Dvira Segal, T. S. Mahesh, and Bijay Kumar Agarwalla

Experimental study of the thermodynamic uncertainty relation, Phys. Rev. Research 2,

022044(R) (2020).

3.1 Introduction

Obtaining universal bounds of experimentally accessible physical observables has been a funda-

mental topic in physics. Such bounds include the Heisenberg uncertainty relation of quantum me-

chanics, Carnot bound for the efficiency of heat engines and Landauer erasure principle stemming

from the second law of thermodynamics. Likewise, recent studies have shown that for systems
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3.1 Introduction

that are out-of-equilibrium, there exist trade-off relations between the relative uncertainty of in-

tegrated currents (heat, charge) and the associated entropy production [76–85, 85, 86, 86, 87, 87–

95, 95–118]. These results are now collectively refereed to as Thermodynamic uncertainty rela-

tions (TUR). The specialized version of the TUR (S-TUR) reads,

〈Q2〉c
〈Q〉2

≥ 2

〈Σ〉
, (3.1)

where Q represents any integrated current, such as heat or charge, and it is a stochastic variable.

〈Q〉, 〈Q2〉c are the average integrated current and its noise, respectively, and 〈Σ〉 is the net average

entropy production in the heat exchange process, characterizing irreversibility, or how far the

system is driven away from equilibrium. The S-TUR was first conjectured for continuous time,

discrete state Markov process in steady state [77]. It was later proved with the large deviation

technique [78, 82]. Since then, this relation has been generalized to discrete time, discrete state

Markov process [83], finite time statistics [82, 85, 87, 107], Langevin dynamics [81, 84, 87, 87,

99, 102], periodically driven systems [90, 97], multidimensional system [87], molecular motors

[110], biochemical oscillations [112], interacting oscillators [113], run-and-tumble process [111],

measurement and feedback control [89, 114], broken time reversal symmetry systems [89, 91,

94, 101, 115], first passage times [86, 117] and quantum transport problems [95, 96, 103–105,

116]. Tighter bounds have also been reported for some stochastic currents [79]. More recently,

following the fundamental nonequilibrium fluctuation relation [118], a generalized version of the

TUR (G-TUR1) was derived, where the RHS of Eq. (3.1) was modified to 〈Q2〉c
〈Q〉2 ≥

2
exp 〈Σ〉−1

,

which is a looser bound compared to Eq. (3.1). In fact, a more tighter version of the generalized

bound had been obtained following a slightly different approach by Timpanaro et al. [108] as
〈Q2〉c
〈Q〉2 ≥ f(〈Σ〉), where f(x) = csch2(g(x/2)) and g(x) is the inverse function of x tanh(x).

We refer to this bound as the G-TUR2. Interestingly, in the small dissipation limit, 〈Σ〉 → 0,

both these generalized bounds reduce to the S-TUR of Eq. (3.1). Other weak-generalized bounds

resulting from the fluctuation theorem were discussed in Ref. [109].

Even with the discovery of the G-TUR, there are compelling reasons to continue and investi-

gate the S-TUR. (i) First and foremost, since the S-TUR is a tighter bound than the G-TUR, once

satisfied it offers more definite information on performance. (ii) The S-TUR was proved for dif-

ferent classes of models, in particular discrete-state Markov processes. However, several quantum
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transport models [104, 105, 116] illustrate its validity in certain parameter regimes—albeit the un-

derlying quantum dynamics cannot be simply-uniquely classified by its degree of Markovianity

(for quantum systems, there is no agreement on the definition of non-Markovianity [119]). (iii)

Notably, the S-TUR can be assessed from a fundamental nonequilibrium viewpoint, by studying

its perturbative expansion, with the equilibrium value as the reference point [104, 116]. This

series expansion approach does not rely on the notion of Markovianity, thus it allows a broader

perspective on the validity of the S-TUR. Specifically, for a heat exchange problem in steady state

the cumulants can be expanded close to equilibrium in terms of the thermal affinity ∆β = β1−β2

around a fixed inverse temperature β,

〈Q〉 = G1∆β +G2
(∆β)2

2!
+G3

(∆β)3

3!
+ · · ·

〈Q2〉c = S0 + S1∆β + S2
(∆β)2

2!
+ · · ·

〈Q3〉c = R1∆β + · · · (3.2)

HereG1 is the linear transport coefficient and S0 is the equilibrium noise. G2,G3, · · · (S1, S2, · · · )

are higher order nonequilibrium transport (noise) coefficients. As a consequence of the exact

fluctuation symmetry, the following relations hold [56]: S0 = 2G1, S1 = G2, 3S2 − 2G3 = R1,

and so on. This leads to [116] (〈Σ〉 = ∆β〈Q〉),

〈Σ〉〈Q
2〉c
〈Q〉2

= 2 +
(∆β)2

6

R1

G1

+O(∆β)3. (3.3)

While the linear coefficient for the average heat exchange, G1, is always positive, the skewness

R1 does not take a definite sign; when R1 ≥ 0, the S-TUR is valid to that order, R1 < 0 indicates

S-TUR violations.

3.2 Objective

In this chapter, we examine experimentally and analytically the S-TUR based on the perturbative

expansion Eq. 3.3, beyond the classical, Markovian scenario. Despite intense theoretical efforts

dedicated to derive and analyze the TUR, experimental studies of this trade-off relation are still

limited to kinetic-network analysis of biological molecular motors [110] and charge transport in

atomic-scale junctions [76]. Nevertheless, both studies concerned with problems that obey the
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S-TUR. We focus on the problem of quantum heat exchange between two initially thermalized

qubits in a NMR setup, in the transient regime. Moments of heat exchange are obtained by

performing quantum state tomography (QST) for the qubits. As expected, G-TURs are valid

throughout. This agreement, while fundamentally important, does not offer any practical input for

system performance or in the design of quantum heat machines. More interestingly, we identify

regimes of validity for the S-TUR in this quantum system, and quantify its violation, thus pinpoint

to favorable regimes of operation, with an excellent agreement between theory and measurements.

3.3 Cumulants of heat exchange

Consider two systems with their Hamiltonians H1 and H2 that are initially decoupled and sepa-

rately prepared at their respective thermal equilibrium state. The initial composite density ma-

trix is thus given as a product state, ρ(0) = ρ1 ⊗ ρ2, with ρi = exp
[
−βiHi

]
/Zi, i = 1, 2 the

Gibbs thermal state with inverse temperature βi = 1/kBTi (kB is the Boltzmann constant) and

Zi = Tr
[
e−βiHi

]
the corresponding equilibrium partition function. The coupling between the

systems is suddenly switched on at t = 0 for a duration τ (total Hamiltonian H), which allows

energy exchange between the two systems. Due to the randomness of the initial thermal state and

the inherent probabilistic nature of quantum mechanics, the exchanged energy is not a determin-

istic quantity, but rather quantified with a probability distribution function (PDF). In the quan-

tum regime, this PDF is constructed by following a two-point projective measurement scheme

[52, 53, 66]: The first projective measurement of the energy of the two systems is performed be-

fore they are coupled. A second projective measurement is done at the end of the energy exchange

process (after the systems are separated). This procedure respects the fundamental Jarzynski and

Wöjcik exchange fluctuation symmetry [120]. For the bipartite setup considered here, the joint

PDF corresponding to energy change (∆Ei, i = 1, 2) between the systems, during a coupling

interval τ can be written as

pτ (∆E1,∆E2) =
∑
m,n

( 2∏
i=1

δ(∆Ei − (εim − εin))
)
pτm|np

0
n. (3.4)

Here, p0
n =

∏
i=1 2e−βiε

i
n/Zi is the probability to find the decoupled systems in the eigen-

state |n〉 = |n1, n2〉 with energy eigenvalues εin, Hi|ni〉 = εin|ni〉, after the first projective mea-

surement. The second projective measurement after the evolution under the net Hamiltonian,
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H at t = τ collapses the system to the eigenstate, |m〉 = |m1,m2〉, with energy eigenval-

ues εin, Hi|ni〉 = εin|ni〉. The transition probability of the system starting in the state |n〉 after

the first projective measurement and ending up in the state |m〉 after the second measurement

is pτm|n = |〈m|U(τ, 0)|n〉|2, where U(t, 0) = e−iHt/~ is the unitary propagator with the total-

composite Hamiltonian, H. The principle of micro-reversibility of quantum dynamics for au-

tonomous system demands, pτm|n = pτn|m. Following this relation and given the uncorrelated

initial thermal condition of the composite system, we get the following universal symmetry for

the joint PDF,

pτ (∆E1,∆E2) = eβ1∆E1+β2∆E2pτ (−∆E1,−∆E2). (3.5)

Using this relation we can write the expression for a characteristic function like quantity,〈(
e−β1∆E1−β2∆E2

)z〉
τ

=

∫
d(∆E1)d(∆E2)pτ (∆E1,∆E2)e−zβ1∆E1−zβ2∆E2

= Tr
[
ρ(0)zρ(τ)1−z

]
= exp

{
(z − 1)Sz

[
ρ(0)||ρ(τ)

]}
. (3.6)

Till this point the analysis is exact. However it is reasonable to consider the limit ∆E1 ≈ ∆E2 if

the two systems exchanging heat are weakly coupled. Furthermore, if no energy cost is associated

with turning the interaction Hamiltonian on and off, ∆E1 = −∆E2. One can then interpret the

energy change in the individual systems as heat, i.e. ∆E1 = −∆E2 = |Q|. In our convention,

energy gained by the first system is taken as the positive heat. This changes the expression in

Eq. 3.5 to pτ (Q) = e[(β1−β2)Q]pτ (−Q), which in turn modifies Eq. 3.6 to〈(
e−∆βQ

)z〉
τ

= exp
{

(z − 1)Sz
[
ρ(0)||ρ(τ)

]}
. (3.7)

Here Sz
[
ρ(0)||ρ(τ)

]
=
(
1/(z − 1)

)
ln{Tr[ρ(0)zρ(τ)(1−z)]} is the order-z Renyi divergence, a

metric for the relation between states of a composite system at the initial (t = 0) and final (t = τ )

times. As a special case when z = 1, Eq. 3.7 gives us the integral form of the heat exchange

fluctuation relation, 〈e−∆βQ〉 = 1, discussed in the previous chapter. Differentiating Eq. 3.7 n

times w.r.t z and then using z = 1, one gets,

〈Qn〉τ =
1

(∆β)n
Tr[ρ(τ)Tn

(
lnρ(τ)− lnρ(0)

)n
]. (3.8)
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Here n = 1, 2, · · · , and Tn is the time ordering operator which orders the operators from right

to left as increasing value of time and ∆β = β1 − β2. Thus we see that Eq. 3.8 provides a very

powerful and unique way to obtain various moments of the heat exchange between two quantum

systems by performing quantum state tomography at t = 0 and t = τ times. Alternatively,

cumulants of the heat exchange can be obtained by implementing an ancilla-based interferometric

technique [60–62, 121], as explained in the previous chapter. This method gives a direct access

to the characteristic function (CF) of heat [67, 122], defined using the two-point measurement

protocol (see Chap.??),

χτ (u) =

∫
dQ eiuQ pτ (Q),

= Tr
[
U †(τ, 0)(eiuH1 ⊗ 12)U(τ, 0)(e−iuH1 ⊗ 12)ρ(0)

]
. (3.9)

Here, u is the variable conjugate to Q, and as before U(t, 0) = e−iHt/~ is the unitary propagator

with the total Hamiltonian H. In terms of CF, the exchange fluctuation relation translates to

χτ (u) = χτ
(
− u+ i∆β

)
[120, 122–125].

3.4 Theoretical analysis

Taking a specific case of the so-called XY -model, consisting of two qubits with the total Hamil-

tonian,

HXY =
hν0

2
σz1 ⊗ 12 + 11 ⊗

hν0

2
σz2 +

hJ

2
(σx1 ⊗ σ

y
2 − σ

y
1 ⊗ σx2 ). (3.10)

Here,H1 = hν0
2
σz1⊗12,H2 = 11⊗ hν0

2
σz2 with ν0 the frequency of the qubits, and σi, i = x, y, z are

the standard Pauli matrices. The last term, denoted by H12, represents the interaction between the

qubits, with J the coupling parameter. An important feature of this model is that [H12, H1+H2] =

0. This commutation implies that the change of energy for one qubit is exactly compensated by

the other qubit, as there is no energy cost involved in turning on or off the interaction between

the qubits. For such an ‘energy-preserving’ Hamiltonian ∆E1 = −∆E2 = Q is exact and the

fluctuation symmetry holds for any value of coupling strength. As a consequence of this the

average entropy production simply reduces to 〈Σ〉 = (β1 − β2) 〈Q〉.

Experimentally the cumulants of heat exchange are computed from the composite density

matrix [126]. Alternatively, one can also obtain the exact theoretical form of the cumulants from
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the CF χτ (u) (see Eq. 3.9), using the expression in Eq. (3.10) as the total Hamiltonian for the heat

exchange, H. Initializing the composite system in a direct product state of the individual qubits,

each prepared in a Gibbs thermal equilibrium state with a particular inverse-temperature (β1 and

β2), utilizing Eq. 3.9 and with some algebraic manipulations of the Pauli matrices, yields [121]

χτ (u) =
[
1 + sin2(2πJτ)

{
f1(ν0) (1− f2(ν0))

(
e−ihuν0 − 1

)
+f2(ν0)(1− f1(ν0))

(
eihuν0 − 1

)}]
, (3.11)

where fi(ν0) = (eβihν0 + 1)−1, i = 1, 2. For compactness, from here onwards we identify these

functions as f1,2. It is easy to verify that the above CF satisfies the exchange fluctuation symmetry

χτ (u) = χτ (−u + i∆β) for arbitrary values of J , τ , β1, β2, and ν0. Expressions for the average

heat current and the associated noise are derived by taking successive derivatives of lnχτ (u) with

respect to iu. We write down the first three cumulants, useful for the analysis of the TUR,

〈Q〉τ = hν0Tτ (J)
[
f2−f1

]
,

〈Q2〉cτ = (hν0)2
[
Tτ (J)

(
f1(1−f2)+f2(1−f1)

)
−T 2

τ (J)
(
f2−f1

)2
]
,

〈Q3〉cτ = (hν0)3 Tτ (J)(f1−f2)
[
1−3 Tτ (J)

(
f1(1−f2) + (1−f1)f2

)
+ 2 T 2

τ (J)(f1 − f2)2
]
. (3.12)

Here, Tτ (J) = sin2
(

2πJτ
)

. These results are exact and the ratio ∆〈Q2〉cτ/〈Q〉τ can be obtained

using the closed-form expressions of the cumulants above. Throughout the work, these exact

expressions were compared with the experimental measurements.

The expression for the ratio ∆〈Q2〉cτ/〈Q〉τ was also obtained using a perturbative approach

using Eq. 3.3 only to quadratic order of ∆β [127]. This was done to more conveniently obtain

the regions of violation of S-TUR. We now explore these regions of violation using a two qubit

liquid NMR system.

3.5 Experimental setup and results

To experimentally study heat exchange between two qubits we use liquid-state NMR spectroscopy

of the 19F and 31P nuclei in the molecule Sodium fluorophosphate dissolved in D2O. Experi-
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Figure 3.1: (a) Molecular structure of the two-qubit NMR spin system, Sodium fluorophosphate. The
NMR active spin-1/2, 19F and 31P nuclei in the molecule, labelled as qubit-1 and qubit-2 respectively, are
coupled by the Hamiltonian Eq. 3.13 with the coupling strength J12 = 868 Hz. (b) Pulse sequence to
realize heat exchange coupling Hamiltonian, HXY in Eq. 3.10. The pulses are applied on qubits 1 and 2
in a time ordered manner from left to right. The black and white narrow solid bars represent π and π/2
pulses, respectively, with the phases mentioned above them. 1/2J12 represents the free evolution delay
under the internal Hamiltonian, Hint, given Eq. 3.13. The white box represents the θ (in rads) angle pulse
about y-axis.

ments are performed in 500MHz Bruker NMR spectrometer at ambient temperature. As shown

in Fig. 3.1(a), 19F and 31P are identified as the two qubits, 1 and 2, exchanging heat under the

desired coupling Hamiltonian, Eq. 3.10. As the sample is in the liquid state, the molecules can be

considered identical with intermolecular interactions averaged out due to motional averaging (see

Chap.??). All the experimental procedures: initialization of the system and the heat-exchange,

are completed in time scales much shorter than the relaxation time of the nuclei. The internal

Hamiltonian Hint of the two spins—in the rotating frame of the radio frequency (RF) pulses—

can be written as

Hint =
π

2
J12σ

z
1σ

z
2, (3.13)

where J12 = 868 Hz is the scalar coupling between the 19F and 31P nuclei in the molecule Sodium

fluorophosphate, whose structure is shown in fig. 3.1(a). The NMR active spin-1/2, 19P and 31P

nuclei in the molecule, labelled as qubit 1 and qubit 2, respectively are coupled by Hamiltonian

in eq. 3.13. The desired coupling Hamiltonian, HXY , under which the spins exchange heat is
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realized from the internal Hamiltonian Hint with the RF pulses displayed in fig. 3.1(b). The

pulses are applied on qubits 1 and 2 in a time ordered manner from left to right. The black

and white narrow solid bars represent π and π/2 pulses, respectively, with the phases mentioned

above them. 1/2J12 represents the free evolution delay during which the systems evolves under

the Hamiltonian Hint. The white box represents the θ (in rads) angle pulse about y-axis. The net

effect of the pulse sequence is that the two spins evolve under the coupling HamiltonianHXY for

a duration τ that is specified by the θ angle rotation about y-axis, as shown in fig. 3.1(b).

Figure 3.2: Quantum state tomography for the real components of the density matrix elements for both
initial and final states, for the evolution parameters Jτ = 1/4, β2 = 0, ν0 = π/20, β1ω0 = 2.02

To start with, the two qubits are initialized in a psuedoequilibrium state ρ1 ⊗ ρ2, where ρi =

exp
[
−βiHi

]
/Zi is a Gibbs thermal state with inverse pseudo spin temperatures βi and Zi the

partition function. For simplicity, we set β2 = 0 in all our measurements. Qubit 1 is prepared at a

higher inverse temperature β1 by initializing it in a pseudopure state (PPS) of |0〉〈0|, followed by

applying pulses between 0 and π/2, and a pulse field gradient (PFG). The purpose of the PFG is

to destroy coherences produced by 0 to π/2 angle pulses. The qubits—prepared at two different

pseudoequilibrium states—are made to exchange heat under the coupling Hamiltonian HXY for

different time interval τ and different β1. Following the coupling period, we perform QST of the

final state (in addition to the QST of the initial pseudoequilibrium state). Fig. 3.2 provides both

the theoretical and experimental quantum state tomography results for a particular realization.

Only the real components of the initial and final density matrix of the composite system is shown
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as the imaginary part is vanishingly small. The two qubit tomography sequence consists of six

independent experiments and measurements and the states were realized with the fidelity of more

than 98. From Eq. 3.8 achieve the cumulants of heat exchange.

In Figs. 3.3 and 3.4 we present two cases, displaying agreement and violation, respectively, of

the S-TUR. First, in Fig. 3.3 we set Jτ = 1/8. According to the theoretical analysis, the S-TUR

is valid (to the lowest perturabtive order) when the skewness is positive, or Tτ (J) = 1/2 < 2/3

(obtained by perturbative approach [127]). Indeed, we find in Fig. 3.3(a) that both R1(τ) (see

Eq. 3.3) and ∆β 〈Q
2〉cτ
〈Q〉τ − 2 are positive for all ∆β. In Fig. 3.3(b), we compare the different

bounds on the relative uncertainty 〈Q
2〉cτ
〈Q〉2τ

, experimentally as well as theoretically, and show that

the S-TUR provides the tightest bound. Next, Fig. 3.4(a) shows the results for Jτ = 1/4, for

which according to the perturbative analysis [127], violations of the S-TUR are expected to occur

already in the quadratic order of ∆β, as Tτ (J) = 1 > 2/3 . Indeed, clearly one can see a

violation for 0 < β1ω0 < 3.2. Furthermore, the third cumulant, 〈Q3〉c, is negative in this region,

which indicate the region of violation using Eq. 3.2 and 3.3. The theoretically predicted lowest

value for the S-TUR for this model is ∆β 〈Q
2〉cτ
〈Q〉τ ≈ 1.86, and we experimentally reach a value

very close to this number. The violation of the S-TUR can also be seen in Fig. 3.4(b): The S-

TUR bound (2/〈Σ〉) appears above the ratio 〈Q
2〉cτ
〈Q〉2τ

, and it is greater than the other, looser bounds.

Measurements again closely match the theoretical curves.

A complete analysis of the TUR as a function of the heat exchange duration τ and for a fixed

J = 1 Hz, is presented in Fig. 3.5. We display the first three cumulants and note that the relative

uncertainty is reduced (violation of S-TUR) within a certain region of parameters: The minimum

value of the S-TUR precisely appears when the fluctuation of the heat exchange are reduced,

below the value of the first cumulant. As expected, the skewness is found to be negative in this

region.

3.6 Summary

We experimentally examined the TUR for heat exchange by realizing the XY-model, performing

quantum state tomography and extracting the heat exchange cumulants. We found that the S-

TUR provides a tight bound up to a certain threshold value for the qubit-qubit coupling parameter

sin2(2πJτ), beyond which the bound is invalidated. As predicted theoretically, the validity of the
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Figure 3.3: (a) First three cumulants of heat exchange, along with a measure for the S-TUR, as a function
of the inverse temperature of qubit 1 β1; β2 = 0. Measurements (symbols) are constructed with the help
of Eq. 3.8, and are compared to the theory (lines), Eq. 3.12. (b) Comparison between different bounds,
showing that the S-TUR provides the tightest lower bound to 〈Q

2〉cτ
〈Q〉2τ

. Experimental results are obtained from
state tomography, yielding 〈Q〉τ , which is used to calculate the entropy production. Theoretical results are
based on Eq. 3.12. Parameters are Jτ = 1/8 and ν0 = π/20 (ω0 = 2πν0).

S-TUR crucially depends on the sign of the third cumulant. Generalized versions of the TUR are

satisfied throughout in our system, as expected, since these (weak) bounds are derived from the

universal fluctuation relations, which is satisfied in our experimental setup. Nevertheless, a most

interesting observation is that the tighter S-bound is in fact also satisfied over a wide range of the

coupling value Jτ . The S-TUR thus contains practical information: The condition to invalidate it

pinpoints to regimes of favourable performance for heat machines, operating with high constancy

and little dissipation.
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Figure 3.4: Same as Fig. 3.3 but at Jτ = 1/4 leading to Tτ (J) > 2/3, therefore the violation of the
S-TUR.
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Figure 3.5: Cumulants of heat exchange and the S-TUR as a function of Jτ for J = 1 Hz, β1ω0 = 2.02
and β2 = 0. Other parameters are the same as in Fig. (3.3).
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CHAPTER 4

Experimental localisation of quantum entanglement through
monitored classical mediator

Abstract

Quantum entanglement is a form of correlation between quantum particles that cannot be

increased via local operations and classical communication. It has therefore been proposed

that an increment of quantum entanglement between probes that are interacting solely via

a mediator implies non-classicality of the mediator. Indeed, under certain assumptions

regarding the initial state, entanglement gain between the probes indicates quantum co-

herence in the mediator. Going beyond such assumptions, there exist other initial states

which produce entanglement between the probes via only local interactions with a classi-

cal mediator. In this process the initial entanglement between any probe and the rest of the

system “flows through” the classical mediator and gets localised between the probes. In

this chapter we utilise liquid-state NMR spectroscopy, to demonstrate the optimal growth

of quantum correlations between two nuclear spin qubits interacting through a mediator

qubit in a classical state. In other words, we demonstrate maximal entanglement gain be-

tween two quantum probes via a classical mediator. We additionally monitor, i.e., dephase,

the mediator in order to emphasise its classical character. Results indicate the necessity of

verifying features of the initial state if entanglement gain between the probes is used as a

figure of merit for witnessing non-classical mediator. Such methods were proposed to have

exemplary applications in quantum optomechanics, quantum biology and quantum gravity.

Reported in

Soham Pal, Priya Batra, Tanjung Krisnanda, Tomasz Paterek, and T. S. Mahesh, Ex-

perimental localisation of quantum entanglement through monitored classical mediator,

arXiv:1909.11030 (2019).
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4.1 Introduction

Quantum entanglement is widely recognised as a resource “as real as energy” [128]. Yet, limits

on establishing entanglement between remote particles were systematically studied only recently

and with surprising results. Protocols in which the distant particles get entangled by exchanging

ancillary particles can establish remote entanglement without ever communicating it, i.e., no

entanglement with the ancillaries [129–133]. It is now understood that entanglement gain in

these schemes is not bounded by the communicated entanglement, but rather by communicated

quantum discord [134–139], a form of quantum correlation that persists in many disentangled

states [140–142].

In another route to producing remote entanglement, the exchange of quantum particles is

replaced by continuous interactions of distant systems (probes) with a third object, a mediator. In

this scenario the theory predicts that not only the probes can get entangled without ever entangling

the mediator [129], but also that they can even get entangled in the absence of any quantum

discord between the probes and the mediator [143]. This lack of discord is a strong notion of

classicality which means that the mediator can be measured at any time without disturbing the

whole multipartite system. It is the same notion as “classical communication” in the framework of

local operations and classical communication at the core of entanglement theory [134, 135, 144],

but generalised to continuous in time interactions. In practical terms, the probes get entangled

even if the mediator is continuously monitored or dephased.

It is an observation of this effect, for a discrete number of measurements on the mediator, that

is reported here corroborating with the theoretical characterisation of maximal amount of entan-

glement that can be established in this way [145]. Moreover, in our experiments the monitoring

measurement is the same at all times, which reinforces classicality of the mediator being at all

times in one of two distinguishable states (correlated to the probes). Additionally to observing

exotic effect of multipartite entanglement our results have practical implications. The scenario

where two objects are coupled via a mediator is common in science. For example, entanglement

gain between the probes has been proposed as a witness of quantum mediator in various scenarios

[146], such as in condensed matter [147], optomechanics [143], quantum gravity [143, 148, 149]

or quantum biology [150]. Present results emphasise that these methods must verify features

of the initial state in order to validate their implications, i.e., non-classicality of the mediating
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system.

4.2 Classicality and Non-classicality

This section gives a brief explanation about what is meant by classical and non-classical ob-

jects in this chapter, with respect to a particular measurement. The definition of classicality or

non-classicality of the system in question is based on the type of quantum correlation, quantum

discord, it shares with another system. Quantum discord is a type of quantum correlation error,

which is more general than entanglement i.e., all entangled states have quantum discord, but not

the other way around. Discord in bipartite system is measurement dependent and a bipartite state,

ρab, is said to have non-zero discord, with measurements on ‘b’, if the net state, ρab can not be

written in a form,

ρ =
∑
i

piρa ⊗ |bi〉〈bi|. (4.1)

Where {|bi〉} form an orthonormal basis. Such a state is often referred as a ‘Quantum-Classical’

state, as it can be seen easily that there exists a set of projective measurements {
∏b

i}, where∏b
i = |bi〉〈bi|, on the sub-system ‘b’ such that,

∑
i

∏b
i ρ
∏b

i = ρ. The measurement on the sub-

system ‘b’ leaves the over-all system unchanged. In such a case, subsystem ‘b’ is said to be in

a classical state. Thus if discord of a bipartite system, with measurement on sub-system ‘b’, is

zero, one can say the system is in a Quantum-Classical state and sub-system ‘b’ is in a classical

state. Please note that this is not symmetric as, performing the same measurements on sub-system

‘a’ does not guarantee invariance of the net system state. It is important to understand here that

classicality is not just the property of the subsystem, but rather a property of the net system as a

whole. If a single system is in question, one can always find a measurement basis which leaves

it unchanged, and thus a single system is always in classical state in some reference basis. When

this basis of measurement changes with time, it can be safely argued that the system generates

quantum coherences. To conclude, classicality or non-classicality of a sub-system is related to

it’s ability to share quantum correlations with the other sub-system. If the sub-system shares zero

quantum correlation (zero discord) with the other sub-system, it can be safely remarked that the

it is in a ‘classical’ state.
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4.3 Theoretical example

A BM
HAM HBM

Figure 4.1: Schematic for the tripartite system. Probes A and B are coupled to the mediator M by a
coupling Hamiltonian in Eq. 4.3. The mediator M is measured in a specific basis, (σx basis), during as
well as at the end of the evolution.

The simplest example of the discussed phenomenon involves three qubits (spin-1
2

systems) in

the following initial state [143]:

ρ0 =
1

2
|ψ+〉〈ψ+| ⊗ |+〉〈+| +

1

2
|φ+〉〈φ+| ⊗ |−〉〈−|, (4.2)

where the first two qubits are the probes A and B, and the third qubit is the mediator M . Kets

|±〉 denote the eigenstates of σMx Pauli matrix, whereas |ψ+〉 = 1√
2
(|01〉 + |10〉) and |φ+〉 =

1√
2
(|00〉 + |11〉) are the two Bell states. Since one could dephase the mediator in the σMx basis

without perturbing the total state, the mediator is said to be in a classical form. Note also that

initially the probes are not entangled as their state is an even mixture of two Bell states [151].

This system evolves under Hamiltonian (~ = 1 throughout):

H = ω(σAx + σBx )⊗ σMx , (4.3)

where each probe individually interacts with the mediator via a coupling constant ω, but not

directly with each other. It is easy to see that the state of the mediator is stationary and hence

it remains classical at all times. Furthermore, at all times, it is one and the same measurement

i.e., dephasing along σMx basis, that keeps the total state invariant. As discussed in the previous

section, this invariance of the total state under repeated measurement of the mediator, implies that

M stays in a classical state. Yet entanglement between the probes increases and they become

even maximally entangled [143].

At first sight this example might be surprising as it seems that entanglement between the

probes is increased by local interactions with a classical mediator, in contradiction to the very
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definition of entanglement [152]. We stress that there is no contradiction as already in the initial

state each individual probe is entangled with the rest of the system. One can show that the cor-

responding entanglement, as quantified by negativity [153], is given by EA:BM = EB:AM = 1/2,

which is the amount of entanglement in maximally entangled state of two qubits. The subsequent

evolution localises this entanglement to the probes. It is the essence of our demonstration that

this localisation can be done via the classical mediator even if it is measured or dephased.

4.4 Optimality

We show in [145], that a resource behind entanglement localisation via a classical mediator is

the amount of initial correlations with the mediator. The amount of entanglement that can be

localised is bounded as follows:

EA:B(t)− EA:B(0) ≤ IAB:M(0), (4.4)

where EA:B denotes the relative entropy of entanglement [154] and IAB:M is the mutual infor-

mation [12]. We emphasise that the entanglement gain between the probes is not bounded by

entanglement or discord with the mediator, but rather the total correlation, including classi-

cal [155, 156], with the mediator is the relevant figure of merit. The theoretical example pre-

sented above realises the upper bound in Eq. 4.4. It is straightforward to verify that the mediator

is initially correlated with IAB:M(0) = 1 and maximally entangled state has relative entropy of

entanglement EA:B(t) = 1. Therefore, the implemented protocol localises as much entanglement

as possible.

4.5 Experimental setup

We use liquid-state NMR spectroscopy of 13C, 1H and 19F in dibromofluoromethane dissolved

in acetone with linear topology, H - C - F (see Fig. 4.2(a)). Nuclei of hydrogen and fluorine

are identified as probes A and B, respectively, whereas carbon nucleus is naturally the media-

tor M . Experiments were performed in 500 MHz Bruker NMR spectrometer at room tempera-

ture. The sample consists of identical and fairly isolated dibromofluoromethane molecules and

all the dynamics of the three-qubit system is completed before any significant environmental in-

fluences [68, 157, 158]. The longitudinal and transverse relaxation time constants are longer than
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Figure 4.2: (a) Molecular structure of dibromofluoromethane. We identify 1H and 19F nuclei as probe
qubits and 13C as the mediator qubit. (b) Preparing the initial state as in Eq. 4.2 using CNOT and Hadamard
gates as shown. (c) Pulse sequences used to evolve the system under the coupling Hamiltonian of Eq. 4.3.
The solid and empty bars represent π/2 and π pulses with phases shown above them. The blue pulses
cancel each other for the no-dephasing case. Dephasing of M is realized by introducing pulses shown in
the orange box in the positions marked by the dashed lines. Here PFG represents pulsed-field gradient
along ±z axis. The delays τAM = 1/(4JAM ) and τBM = 1/(4JBM ).

2 s and 0.2 s, respectively. The internal Hamiltonian of the three spin system in a frame rotating

about the Zeeman field with individual Larmor frequencies reads:

H0 =
π

2

(
JAM σAz ⊗ σMz + JBM σBz ⊗ σMz +

JAB σ
A
z ⊗ σBz

)
,

(4.5)

with JAM = 224.5 Hz , JBM = −310.9 Hz, and JAB = 49.7 Hz being the corresponding

coupling constants between the nuclei. The qubits in the molecular system have internal dynamics

that directly couples the probes A and B. The effects of this coupling must be canceled if we are

to claim generation of entanglement between the probes via classical mediator only. Thus, during

experiments, to evolve the system under the interaction Hamiltonian H in Eq. 4.3 we switch off

the internal interaction between spins A and B by applying suitable refocusing pulses as will be

explained later.

In general, the quantum state of our three-qubit NMR system is of the form (1 − ε)1
8
1 + ε ρ,
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where 1
8
1 describes the background population, ρ is the so-called deviation density matrix and ε

is the purity factor, which is in the order of 10−5. Nevertheless the NMR experiments are sensitive

to the deviation density matrix and from now on whenever we refer to the “state” of the system

we mean the pseudopure state characterized by the deviation density matrix. Starting from a three

qubit thermal equilibrium state of longitudinal magnetization at room temperature, we prepare the

state corresponding to |00〉〈00| ⊗ 1/2, written in the order ABM , using a similar pulse sequence

as given in [159, 160]. The initial state ρ0, Eq. 4.2, is then obtained by the succession of gates

given in Fig. 4.2(b). All gates are implemented using radio frequency pulses resonant with the

nuclei. The open CNOT gate is realised with the help of Krotov optimisation technique [161]

with fidelity exceeding 0.99 using push-pull optimization of quantum controls [161]. The fidelity

of the produced initial state to the ideal one is more than 97%.

Fig. 4.2(c) shows the pulses used to realize the interaction Hamiltonian, H in Eq. 4.3. In our

experiments we have set the strength of the coupling constant ω = 1 rad/s. The solid bars and

empty bars represent π/2 and π pulses, respectively. The first half of the pulse sequence evolves

the system under the coupling between M and A. Since we have σz ⊗ σz coupling in our system

to start with (see Eq. 4.5), the (π/2)y pulses transform the z-basis to x-basis which then evolves

under σz ⊗ σz coupling. Since the Hamiltonian in Eq. 4.3 is a sum of two commuting terms, we

first evolve the entire system under σAx ⊗ σMx followed by the evolution under σBx ⊗ σMx for the

same amount of time, i.e, the physical time rescaled by the coupling strengths JAM and JBM . As

all the three qubits are coupled to each other, we decouple B during the first half of the evolution

by refocusing it using a π pulse, as shown in Fig. 4.2(c). The net effect is that the system only

evolves under AM coupling, whereas B remains unaltered. The same is repeated in the second

half of the evolution with A being refocused and the system evolving under BM coupling. We

repeat the experiment with the same initial conditions and different duration of dynamics in order

to illustrate how entanglement accumulates between the probes. The probes in principle gain

maximal entanglement at ωt = π/8. Finally, we obtain the deviation density matrices via full

state tomography using eleven detection experiments [162].

To make the claim that the mediator M is classical even stronger, we introduce another set of

experiments in which we dephase (measure) the mediator qubit in between and at the end of the

evolution. The pulse sequence implementing the dephasing of M is depicted in the orange box
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of Fig. 4.2(c). In contrast to the previous set of experiments, just after the realization of σAx ⊗ σMx
the mediator qubit M is dephased in x-basis. The selective dephasing of the mediator is achieved

by a pair of opposite pulsed-field-gradients (PFGs) separated by a π-pulse on the mediator. The

PFGs cancel each other for the probes A and B, whereas they add-up for M . A π-pulse on M is

applied to undo the spin-flip caused by the previous π-pulse. Finally, measurement along x-basis

is realized by simply rotating the basis using (π/2)y and (π/2)−y pulses as shown.

4.6 Results and discussion

(a) (b)

0 0.1 0.2 0.30 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

Figure 4.3: Summary of experimental findings. Solid lines show noiseless theoretical predictions: blue
for EA:B and red for EB:AM . The corresponding experimental data is marked with yellow bars and purple
bars, respectively. Green bars show measured discordDAB|M , all within experimentally established region
of vanishing discord (grey, see main text). Dashed red lines present EA:B within a model considering the
RF inhomogeneity errors in the experiments. (a) without dephasing and (b) with dephasing the mediator
qubit.

From the experimentally measured three-qubit deviation density matrices we compute various

quantum correlations such as discord between the two probes and mediator, DAB|M , quantum

entanglement between the probes, as measured by the negativity EA:B, as well as the negativity

EB:AM . The quantum discord is calculated following the definition of Ollivier and Zurek [141].

Recall that discord is not a symmetric quantity and ourDAB|M denotes discord as measured on the

mediator. It should also be stressed that due to small admixture of the deviation density matrix,

the ensemble averaged NMR signals mask genuine entanglement [163]. From this perspective
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one can think of our experiment as NMR simulation of entanglement localization via classical

mediator.

The measured discord and entanglement are presented in Fig. 4.3 for datasets without and

with dephasing the mediator. The gray-shaded region represents measurability threshold of dis-

cord owing to experimental errors. This threshold is obtained from measurements of discord for

experimental thermal equilibrium state. Ideally this state has vanishing discord but experimental

imperfections in state tomography give rise to residual values. The amount of discord DAB|M

calculated for evolved deviation density matrices (green data points) all lie well within this exper-

imental precision limit of discord. We thus conclude that the mediator was classical at all times

during the evolution. At the same time quantum entanglement between the probes EA:B consis-

tently grows. While experimentally established entanglement does not exactly match noiseless

prediction based on Hamiltonian in Eq. 4.3, given by the blue solid line, the dashed red line

follows experimental findings more closely. This line is a prediction of a model that takes into

account inhomogeneity of the radio frequency pulses in the NMR spectrometer used to realize the

evolution under the Hamiltonian in Eq. 4.3. It is interesting to note that the entanglement between

each probe with rest of the system, EB:AM or EA:BM , remains invariant throughout the evolution.

We demonstrated that an increment of quantum entanglement between two probes coupled via a

mediator in general does not signify a non-classical mediator.

We note that the process demonstrated here is different from, e.g., entangling two spins via

dipole-dipole interaction. The Hamiltonian of the latter directly couples magnetic moments of

the two particles and hence it is not surprising that entanglement grows. In contradistinction, we

study tripartite system with an explicit mediator. Even if the dipole-dipole interaction is rewritten

in the form where the mediator is clearly distinguished, our theory shows that one has to begin

with entanglement EA:BM or EB:AM in order to localise it.

Perhaps the most interesting application for revealing non-classicality of mediators is witness-

ing quantum gravity through entanglement between nearby masses [143, 148, 149]. Estimations

with concrete experimental arrangements show that in order to observe gravitational entangle-

ment the masses need to be cooled down near the ground state of their traps [148, 164–166]. In

such a case the masses are close to a pure state and hence they are initially almost uncorrelated

from the rest of the world. This can be quantitatively measured by the sum of their von Neumann
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entropies and in principle leaves a small room for the initialEA:BM orEB:AM entanglement. If the

final gravitational (relative entropy of) entanglement between the masses exceeds this initial sum,

the produced entanglement cannot be the result of the localisation of the initial entanglement,

analogously to the phenomenon demonstrated in the present work, and hence quantum discord

with the field is witnessed during the process [143].

76





CHAPTER 5

Discrete Time Crystalline behaviour in NMR spin systems

Abstract

Study of out-of-equilibrium driven quantum systems led to the introduction of Time crys-

tals as a new phase of matter. Since its conception in 2012 by the Frank Wilczek, tremen-

dous amount of work, both theoretically and experimentally, has been done towards un-

derstanding this exotic behaviour. We experimentally study the response of star-shaped

clusters of initially unentangled nuclear spin-1
2

moments in solid and liquid NMR samples

to an inexact π-pulse sequence, and show that an Ising coupling between the centre and

the satellite spins in the liquids and long-range dipolar coupling in solids, result in robust

period-two magnetization oscillations. The period is stable against bath-effects but the

amplitude decays with a time scale that depends on the inexactness of the pulse. Simula-

tions reveal a semiclassical picture where the rigidity of the period is due to a randomizing

effect of the Larmor precession under the magnetization of surrounding spins. The time

scales with stable periodicity increase with net initial magnetization even in the presence

of perturbations, indicating a robust temporal ordered phase for large systems with finite

magnetization per spin. In the case of solids we further observe the robustness of the Dis-

crete Time Crystalline (DTC) behaviour under gradual removal of the dipolar interactions

by selective decoupling of the spins and by Magic Angle Spinning (MAS).

Partially reported in

Soham Pal, Naveen Nishad, T S Mahesh, and G J Sreejith , Temporal Order in Periodically

Driven Spins in Star-Shaped Clusters, Phys. Rev. Lett. 120, 180602 (2018).

5.1 Introduction

Spontaneous symmetry-breaking is a central notion in many body physics, allowing us to explain

several natural phenomena such as formation of a magnet or ice crystals. While there are many
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5.2 DTC behaviour in liquids

systems in which the underlying spatial symmetries are broken resulting in various crystalline

phases, and a few classical systems that exhibit spontaneous temporal oscillations, it was only

recently that the possibility of spontaneous breaking of time translation symmetry in quantum

systems was considered. The initial proposals [167] for realizing a spontaneous breaking of

continuous time translation symmetry were later shown to be forbidden in static equilibrium

systems [168, 169]. However, in the attempt to understand quantum thermodynamics of driven

systems, it was realized that an externally driven, disordered, interacting spin system can stabilize

a phase which spontaneously breaks the discrete time translation (Z) symmetry of the system

to a subgroup nZ [170–173]. The phenomenon was soon experimentally realized in trapped

cold-atom systems that mimic a long range interacting disordered spin-half chain [174], and in

dense collections of randomly interacting nitrogen vacancy spin impurities embedded in diamond

[175, 176]. While this work was under review, similar observations were also realized in other

solid NMR experiments[177].

In this work, we report on the observation of robust period two oscillations of magnetization in

a cluster of nuclear spins in a star-shaped geometry in liquid samples and highly disordered solid

state NMR spin system cluster. For the case of liquids we use three different spin clusters, with

varying number of satellite spins. The central spin interacts with N = 3, 9 and 36 surrounding

satellite spins via Ising interactions mediated by the electron cloud in the molecule. The satellite

spins do not interact with each other. Where as in the case of solids we use a highly disordered

spin cluster sample with a huge range of dipolar couplings (inter as well as intra-molecular). Spins

in each molecule show magnetization oscillations of period-two, as expected, when subjected to

a sequence of transverse π-pulses (pulses that rotate every up/down spin by π radians). However

the interactions within the cluster result in the period rigidly locking on to two, even under a

sequence of inexact π pulses (pulses that rotate by an amount π − e). Simulations of an isolated

cluster show that the period is robust even in the presence of small perturbations and disorder

that break the symmetries of the model. In what follows we describe the liquid and solid state

systems, the experiments performed and the results in details.
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Figure 5.1: Molecules used in the experiments - acetonitrile (a), trimethyl phosphite (TMP) (b) and
tetrakis(trimethylsilyl)silane (c) with the 4, 10 and 37 NMR active nuclei encircled. (d) Experimentally
measured magnetization 〈Szi 〉 of satellite spins of TMP for the pulse sequence in Eq. 5.1 with JT/~ = 6.5
and θ = π − 0.1. Red/green dots show the magnetization at odd/even time steps. For visibility in the
plot, the y axis has been rescaled at every 100th time step. (e) Blue line shows experimentally measured
magnetization oscillations of free/non-interacting spins of protons in acetonitrile which contain a spinless
C− 12 central spin, at a pulse angle θ = π−0.27. Gray lines indicate the expected response in the absence
of a bath.

80



5.2 DTC behaviour in liquids

5.2 DTC behaviour in liquids

For the present work we perform nuclear magnetic resonance (NMR) experiments on acetoni-

trile, trimethyl phosphite (TMP) and tetrakis(trimethylsilyl) silane (TTSS) containing 4, 10 and

37 spins [Fig 5.1 (a-c)] [178]. The experiments are performed on ensembles of ∼ 1015 molecules

with a distribution of initial states, described by a direct product density matrix. High precision

ensemble average magnetization measurements of central/satellite spins can be performed using

free-induction decay signals. Period-two oscillation of individual spins result in corresponding

oscillations of the ensemble average magnetization. Control experiments performed on molecules

that contain a spinless isotope at the center show oscillations with frequencies that linearly vary

with the deviation e, showing that the robustness of the period originates from interaction with

the central spin. In the following, unless units are made explicit, frequencies are in units where

the time period T = 1.

5.2.1 Model and numerical results

The unitary operator evolving the state of the cluster between successive steps is given by

U (J, θ; t) = exp

[
− ıJt

~
Sz0
∑N−1

i=1 S
z
i

]
for t ∈ [0, T )

U (J, θ;T ) = exp
[
−ıθ
∑N−1

i=1 S
x
i

]
exp

[
− ıJT

~
Sz0
∑N−1

i=1 S
z
i

]
(5.1)

where J , T and θ are the Ising interaction strength, time period and the rotation angle character-

izing the pulse. Sµi are spin operators. Site index i = 0 labels the central spin (See Ref [37],and

Ch. ?? for a description of liquid-state NMR which realizes the unitary)

We will label the deviation from π pulse by e = π − θ. To simplify the discussion below,

it is useful to temporarily switch to a toggling frame of reference in which the basis of every

spin rotates by an angle π about the x-axis after each pulse. On account of the Z2 symmetry

of the model, the unitary operator in the rotating basis retains the same form as in Eq. 5.1 but

with a reduced pulse angle e = π − θ, i.e., the spins in the rotating basis see a unitary operator

U(J,−e; t). A constant z-magnetization of all spins in the rotating basis picture corresponds to

a period-two oscillation of all physical spins. Numerical simulations indeed show that a finite

magnetization is maintained under a sequence of weak pulses (pulse angle −e). Presented below
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Figure 5.2: Numerical simulations of spins in the rotating basis. (a-b) Time dependence of the expectation
values of the three spin components of a satellite (a) and central (b) spin for a system with N = 8 spins,
JT
~ = 4 and pulse angle θ = e = 0.4. Initial state is the fully z-polarized state. (c) Entanglement entropy of

the central spin. (d) Bloch sphere representing the spin components of a central spin (of a 6 spin cluster) at
times t = 0, T+, 2T− and 2T+; +/− labels the time just after/before the pulse. Sequence of intermediate
dots track the evolution between time t = T and 2T . (e) Same as (d) but for a satellite spin. (f) Bloch
vectors for a single isolated spin at successive time steps.

is a semiclassical picture inferred from numerical simulations (Fig 5.2).

For simplicity, we will consider the time evolution starting from a fully polarized initial state

under a sequence of small pulses θ = −e (corresponding to θ = π − e experienced by the

physical spins). During 0 < t < T , the spins do not evolve as the state is an eigenstate of the

unitary evolution (Eq. 5.1). At time t = T , the pulse rotates every spin by an angle e away from

z-axis as shown on the Bloch sphere (see Fig-5.2). During T < t < 2T , the central spin which is

tilted away from the z-axis evolves under the Hamiltonian H ≈ −J 〈Ms〉Sz0 where Ms is the net

z magnetization of the satellite spins resulting in a Larmor-like precession as shown in Fig-5.2(d).

The orientation of the central spin at t = 2T− depends on the amount of precession JT 〈Ms〉
~ . The e

pulse at t = 2T now brings the spin vector to a polar angle 0 < θ < 2e. Owing to the precession,

the successive e pulses can now cancel each other. In contrast, in a set of non-interacting spins

the angles always add constructively leading to a steady increase in the polar angle (ne after n

pulses - Fig-5.2(f)). Thus the randomizing effect of the interaction induced Larmor precession,

causes the polarization of the central spin to survive longer than that of an isolated spin. We

expect the same effect to be seen also on the surrounding spins except that they precess under
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5.2 DTC behaviour in liquids

Figure 5.3: (a,b) Time dependence of cross correlation (multiplied by (−1)t) between the central spin
Sz0 and a satellite spin Szi from simulations of systems of different sizes (JT/~ = 4, e = 0.05, ψ =
Rx(π/8) |↑↑ . . . 〉, Rx(π/8) being the rotation of all spins by π/8 about x). Disorder strengths are 0 (a,c)
and 0.5 (b,d). (c,d): Entanglement entropy of the central spin. Disorder averaging has been performed in
(b,d).

the magnetization of the central spin alone resulting in a slower precession of the satellite spins

compared to the central spin (Fig-5.2(f)). Constant sign of the Bloch-vector component 〈Sz〉 in

the rotating basis implies a period two oscillation of the physical spin orientation (Fig-5.2(a,b)).

Such a semiclassical picture assumes that the central spin is not maximally entangled with the

surrounding spins, as otherwise the Bloch vector may vanish in length even when the polar angle

is conserved. As shown in Fig-5.2(c), the von Neumann entropy of the central spin stays below

maximum ensuring finite Bloch vectors. Simulations of the small systems at much longer time

scales using exact diagonalization indicate that entanglement of the system does not rise for time

scales that increase exponentially with system size (Fig-5.3(c,d)).

In the following, we will use the physical spin basis and to explore the stability of the period to

perturbations other than e, we numerically simulated a pure spin system with a time independent

perturbation to the Hamiltonian of the form
∑

i h
x
i S

x
i + hziS

z
i . The quenched disorder hxi and hzi

were picked uniformly from [−δ/2, δ/2] and [0, δ] (in units where T/~ = 1). To compare the
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response of different system sizes, we fix the average magnetization per spin. We found that in

all cases, the time scale in which there was a dominant period-two oscillation appeared to grow

exponentially with system size (Fig-5.3). Similar increase in time scales were also observed in

simulations with disorder free perturbations of the form hz
∑
Szi and Jx

∑
Sxi S

x
i+1. The time

scales with stable period are higher when the initial state of the spin cluster had a larger total

magnetization. Slow heating and stability in this disorder free system is likely to be associated

with a prethermal regime similar to that in Ref [[179],[180]]. However, unlike the high frequency

case discussed there, the experiments here are performed at low frequencies (JT > 1). Cross

correlation between the central and satellite spins (Fig-5.3(a,b)) show that different spins oscillate

in synchrony suggesting that the robustness of the period is a collective behaviour of all spins.

For small e and the Z2 symmetric unitary (Eq-5.1), origin of the period-two oscillations at

finite deviation e can be understood in a manner similar to that described in Ref [171]. The

Floquet unitary describing the periodic drive commutes with the parity operator P =
∏

2Sxi

and therefore the quasienergy eigenstates have a parity quantum number ±1. The quasienergy

states of the system at θ = 0 occur in degenerate quasienergy pairs of opposite parity ψ± =

|σ0,m〉 ± |−σ0,−m〉, where |σ0,m〉 is a state with central and satellite spins in an eigenstate of

Sz0 and
∑N−1

i=1 Szi with eigenvalues σ0 and m. At small finite pulse angle θ = e, the quasienergy-

degeneracy is broken in a manner that depends on the magnetization |m| as ∼ e2|m|+1. In the

presence of a sequence of inexact π pulses θ = π−e, the unitary isU(J, π−e;T ) = PU(J,−e;T )

for which the states ψ± have quasienergies separated by π + O(e2|m|+1). A polarized direct

product initial state |σ0,m〉 is a symmetric or antisymmetric linear combination of the states ψ±.

As a result, the unitary for inexact π pulses acts on such a polarized state to flip the orientation of

all the spins at each time step:

U |σ0,m〉 = U(ψ+ ± ψ−) ∼ ψ+ ± e−ıπ ψ− = |−σ0,−m〉

resulting in a period-two magnetization oscillation. Better degeneracies of the higher magnetiza-

tion initial states explains why initial states with larger magnetization shows stable periodicity for

longer time scales. Subleading ocillations of other frequencies originate from mixing of ψ± with

states of smaller magnetizations.
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5.2 DTC behaviour in liquids

5.2.2 NMR setup

The spin systems used for the experiments - Acetonitrile, TMP and TTSS are prepared in the

solvents dimethyl sulfoxide/deuterated chloroform. The experiments are carried out at 300 K in

a Bruker 400 MHz NMR-spectrometer equipped with an UltraShield superconducting magnet of

strength 9.39 T. The unitary of Eq-5.1 is realized in a doubly rotating frame [37, 181]. The θ

pulses are realized by simultaneous resonant, short duration radio-frequency pulses on all spins.

The pulse duration can be tuned to control θ. Interaction parameter JT/~ can be set by tuning the

time period T . After n pulses, any residual transverse magnetization is destroyed using a pulsed-

field-gradient (PFG) and the final magnetization 〈Sz〉 is rotated into the transverse direction with

the help of a π/2 detection pulse. The NMR signal is then detected as the oscillatory emf induced

in a probe coil due to the precessing transverse magnetization about the Zeeman field [32]. During

each period, the measurement was performed immediately after the pulse.

Initial states in the experimental ensemble of ∼ 1015 molecules can be described by mixed

state of the form ρ =
∏N−1

i=0 ⊗ρi, where ρi = 1
2
(I + εσzi ), and the purity ε ≈ 10−5, σz being

the Pauli matrix. The purity is inferred from the thermal equilibrium distribution at the magnetic

field strength inside the spectrometer. Note that while the ensemble average magnetization is

small, the ensemble contains sub-ensembles of all possible initial magnetizations −N/2 ≤M ≤

N/2, with a marginally higher fraction (parameterized by ε) with positive sign. Clusters with

finite magnetization |M | show stable periodic-two oscillations which collectively reflect in the

ensemble average measurements.

5.2.3 Results and Discussion

Fig-5.4 shows the measured satellite spin magnetizations in TMP and acetonitrile for an interac-

tion parameter JT~ = 20.7 (J/h = 11 Hz, T = 0.3 s). Magnetization oscillations on TMP (Fig-5.4

(a,b,c)) show a clear peak at frequency half (subharmonic peak), whose height decreases with in-

crease in the deviation e, vanishing at e ≈ 0.4π in agreement with the simulations. There are no

discernible peaks in the spectrum at frequencies π±e
2π

expected from non-interacting spins. Fourier

transforms were taken using standard FFT algorithms applied to the data from the chosen time

window. For comparability, magnetization data was normalized such that initial magnetization

was 1.
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Figure 5.4: Experimentally measured satellite spin magnetization
∑N−1

i=1 〈Szi 〉. (a,d): Magnitude of the
subharmonic peak upon varying e in TMP and Acetonitrile. Solid continuous lines show results from
simulations. Different markers indicate Fourier transforms of experimental measurements in different time
windows. (b): Waterfall plot of the Fourier spectrum (time-window 0 < t < 80T ) of the experimentally
observerd magnetization of TMP at different deviations e. Dashed blue lines indicate the location of peaks
expected for a free spin. (c): Variation of the decay time of the experimentally observerd magnetization
amplitude with e for TMP. (e,f): Same as (b) but for acetonitrile with a spinfull C-13 (e) and spinless C-12
(f) atom at the center.
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Figure 5.5: Experimental values of central spin magnetization 〈Sz0〉 in TTSS. (a): Subharmonic peak
strength as a function of the deviation e. Different markers indicate Fourier transforms in different time
windows. (b): Waterfall plot of the Fourier spectrum of the experimentally observed central spin magneti-
zation at different e. Blue dashed line shows the location of the Fourier peaks expected for free spins. (c):
Decay time scale as a function of e. Inset shows a semi log plot of the amplitude of magnetization as a
function of time.

The RF pulses have ±5% distribution of θ values around the nominal value, due to the spatial

inhomogeneity of the RF field over the volume of the sample. The experimental system suffers

from decoherence due to coupling to an external thermal bath. This could explain the decay of the

oscillation amplitudes with time [182]. Apart from this decay, the magnitude of the subharmonic

peaks in each time window match the simulations. Interestingly the decay time decreases steadily

with e (Fig 5.4 (c)).

Acetonitrile sample contains a mixture with 99% of the molecules carrying a spinless C-12

and 1% of the molecules containing spinful C-13 atom in the methyl group. Although NMR signal

has contributions from the satellite spins of both isomers, their contributions can be separated in

the frequency domain of the induced emf oscillations during the final measurement process thanks

to the presence or absence of interaction with the central spin, and thus they can be analysed

separately. Experiments on acetonitrile were performed at the parameter JT
~ ≈ 17.1 (J/h =

136Hz, T = .02s). Figure 5.4(e) shows the Fourier transforms of magnetization of the satellite

spins in acetonitrile that contain a spinfull C-13 central atom. Figure 5.4(f) shows the Fourier

transform of the magnetization of the satellite spins in molecules containing a spinless C-12

central atom. In the absence of a central spin with which the satellites can interact, they oscillate

like isolated spins with a frequency that varies linearly with e. Absence of stable period in this non

interacting system clearly shows that the stability of period observed in other clusters arise from

interactions. Fig-5.5 shows the results for magnetization measurements of the central Si-29 spin
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of the TTSS molecule which has N = 36 satellite spins around the central atom. Experiments

were performed at JT/~ ≈ 4 (J/h = 2.5Hz, T = 0.25s).

5.3 DTC behaviour in Solids

For this, we choose the molecule Di-tert-butyl-phosphine oxide in powdered solid state with

interacting spins in the molecules. The predominant interaction (inter as well as intra-molecular)

in this amorphous solid sample is dipole-dipole interaction. The molecules in the sample contain

two species of spin-1/2 nuclei, 13C and 1H, of our interest. The topology of the molecule is such

that 13C nuclei are surrounded by 1H nuclei. Due to the restricted motion of the molecules in

solids unlike liquids, the dipolar interactions don’t average out [32, 37]. As a result the central

and satellite spins interact with spins of other molecules in the sample as well (inter-molecular

dipolar interaction). The form of the dipolar interaction Hamiltonian between ith and jth spin,

under secular approximation [37], for homonuclear and heteronuclear case can be written as,

Hdip
ij = dij

(
3S zi S

z
j − Ŝi.Ŝj

)
Hdip
ij = d̄ij2S

z
i S

z
j , (5.2)

respectively, where dij = d̄ij
1
2
(3 cos2 Θij − 1) is the secular dipolar coupling and d̄ij = µ0

4π

γiγj~
rij3

is the dipole coupling constant [37]. The γi and γj are the gyromagnetic ratios of the two spins

and µ0 = 4π × 10−7Hm−1 is the magnetic constant. rij and Θij are the distance between the two

spins and the angle between the vector joining the two spins and the static magnetic field, B0 (see

Fig. 5.10). The total dipolar Hamiltonian can then be written as

Hdip =
∑
i>j

Hdip
ij . (5.3)

Solid state NMR provides a 3D spin network with plethora of disorder and interactions be-

tween the spins. Thus, it’s a natural test bed for observing DTC behaviour. In what follows we

drive the 13C and 1H nuclear spins in this 3D spin network under a periodic Hamiltonian, consist-

ing of evolution under interactions (Eq. 5.3) for a duration of τ followed by a θ = π − ε angle

pulse on nuclei about x-axis. Here ε is the error introduced in radians. The pulse sequence for the
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Figure 5.6: Molecular structure- Di-tert-butyl-phosphine oxide (a). The pulse sequence for observing DTC
behaviour is shown in (b). The green box (CP) indicates the cross-polarization technique used transfer
polarization from 1H to 13C nuclei.

same is is shown in Fig. 5.6(b). The unitary operator for such an evolution is shown below.

U (Dij, θ; t) = exp
[
−itHdip

]
for t ∈ [0, τ)

U (Dij, θ; τ) = exp [−iθ
∑

iS
x
i ] exp

[
−itHdip

]
(5.4)

It will be seen that the system breaks the symmetry of the underlying Hamiltonian and oscil-

lates with half its frequency. We test the robustness of such a DTC order by varying the time of

free evolution, τ . To see the explicit dependence of DTC order on interaction we further remove

the effect of strong interaction in the system by decoupling the 1H nuclear spins. As mentioned

previously, dipolar interactions are orientation dependent. For a particular orientation of the spins

with the magnetic field, dipolar interaction completely vanish. This orientation angle is preferably

known as the ‘Magic angle’ in NMR literature [33, 183]. As will be seen, we use this procedure

to study the DTC order by spinning the sample at different spinning rates along this orientation

to gradually get rid of interactions in the system.

5.3.1 Experimental Results

In this section we present the experimental results of the above mentioned periodically driven

system. We observe the dynamics of 13C z-magnetization in the highly disordered 3D-spin cluster

subjected to a periodic drivings of form shown in Eq. 5.4. Starting from an initial thermal state,

owing to the low natural abundance of 13C, we first transfer polarization from 1H to 13C employing

a Cross-Polarization (CP) pulse sequence, which uses a Hartmann-Hann kind of matching for

polarization transfer [33, 184]. After the transfer, starting from a z-polarized 1H and 13C state, we
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Figure 5.7: Experimentally measured z-magnetization, Mz =
∑

iC
〈SziC 〉, and its Fourier transform for

13C nuclear spins in di-tert-butyl-phosphine oxide for the pulse sequence in Eq. 5.4 for different values of
evolution time, τ . The number of pulses and τ are presented in the x-axis is and the y-axis respectively.
The blue and red lines correspond to θ = π and θ = π − 0.2π pulses respectively. The corresponding
height of the Fourier transform peaks have been plotted in the yz-plane.
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Figure 5.8: Waterfall plot for Fourier transform of the z-magnetization oscillation of 13C, with θ = π (a)
and with θ = π−0.2π. The black dashed line represent the theoretical position of the peaks in the absence
of interactions in both cases.

repeatedly evolve the system under the unitary given in Eq. 5.4, consisting of free evolution under

the coupling Hamiltonian, followed by θ angle pulse about x-axis on both 13C and 1H nuclei for

different values of τ , with a fixed value of θ = π − ε, with ε = 0.2π.

5.3.1.1 Experiments without spinning

Figure. 5.7 shows the experimental results for the oscillations of normalized z-mag (Mz =∑
iC
〈SziC 〉) of 13C under the periodic driving (Eq. 5.4) for different values of evolution time,

τ (y-axis), and its corresponding Fourier transform. The blue line corresponds to θ = π pulses,

where as the red line corresponds to θ = π − ε pulse being applied on 13C and 1H spins. For

the intermediate values of τ it can be seen that the oscillations of both the blue (without error)

and red (with 20% error) lines are quite indistinguishable. Where as for lower values of τ , time

crystalline behaviour is hardly observed. But as we increase the interaction time, τ , we observe

emergence of DTC order. Also, we observe that there is an optimal value of τ for which DTC is

prominent, τ = 1ms being the best in our case. For clarity, peak height of the Fourier transform

have been plotted in the yz-plane.

Fig. 5.8(a) and (b) shows the waterfall plot for the Fourier transform of the signal for θ = π

91



Chapter 5

(a) (b)

n

C13

H1

Central 
Spin

Satellite 
Spin

CP

Detection

Decoupling

0 5 10 15 20 25 30
No. of pulses

-1

-0.5

0

0.5

1

M
z

No error in 
20% error in 

20% error in , 1H Dec.

Figure 5.9: (a) The pulse sequence for experiment with 1H decoupling. (b) Experimental data of z-
Magnetization oscillations for: θ = π (blue) without 1H decoupling, θ = π− 0.2π without decoupling 1H
nuclei (red) and with 1H decoupled (yellow).

and θ = π − 0.2π, respectively. It is clearly seen that the peak height increases with the increase

in τ and there are no prominent peaks at±ε/2π for these values of τ , expected for non-interacting

spins. The black dashed lines Fig. 5.8 represent the position of such peaks in the case of non-

interacting spins. One point to note here is that, even though the red line corresponds to no error

in the pulse, it still decays away like the one with error, the blue line. This can be explained by

the fact that for solid state pulse sequences the hard π pulses are far from perfect due to the effect

of chemical shift anisotropy and homonuclear dipolar coupling in the solid sample.

To make the fact clear that the DTC signature is coming into the picture due to the interac-

tions present in the sample, we perform a control experiment in which we selectively decouple

the 1H nuclei by combination of pulses on them and then observe the z-magnetization of 13C.

Figure.5.9(a) and (b), respectively, show the pulse sequence and corresponding experimental sig-

nal. Both dotted red line and broken yellow lines have 20% error in them but the later is with 1H

nuclei (partially) decouple. One can see the stark contrast in the period two oscillations of the

blue and green line. This clearly indicates that interaction is a key ingredient for robust period

two oscillation (DTC).

5.3.1.2 Experiments with spinning

In this set of experiments we avoid decoupling 1H, as done in the previous case. Instead we

use Magic Angle Spinning (MAS) to get rid of the strong dipolar interactions. From Eq. 5.2 it
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Figure 5.10: Schematic diagram for Magic Angle Spinning (MAS). B0 is the static magnetic field applied
along z-axis. The shaded cylinder is the capsule containing the sample. It is oriented at the indicated angle
and rotated at varying spinning rates.

is evident that the dipolar interaction strength depends upon the orientation of the sample w.r.t

the static magnetic field, B0. It can be shown that for Θ = 54.74° the secular dipolar interaction

term, dij , vanishes. Thus, we spin the solid sample rapidly about an axis oriented at 54.74° (Magic

Angle) w.r.t the static magnetic field in the spectrometer (see Fig. 5.10), at varying spinning rate

to gradually remove the dipolar interaction in the system as we drive the system under the pulse

sequence shown in Fig. 5.6(b). Spinning the solid sample fast enough removes the anisotropic

dipolar interactions and further orientation of the sample to ‘Magic angle’ gets rid of remaining

the dipolar coupling in the system.

Figure 5.11 shows the 13C z-magnetization oscillation for θ = π (blue line) and θ = π− 0.2π

(red line) pulses on both 1H and 13C nuclei, with delay τ = 1ms (see Eq. 5.4), for different magic

angle spinning rate. The x and y axis are no. of pulses and spinning rates respectively. The z-axis

is normalized z-magnetization. As the spinning rate increases it is clearly seen in Fig. 5.11 that the

period two z-magnetization oscillations progressively vanishes for the case of driving with 20%

error in the π pulse (dotted red line), as compared to the θ = π (blue line). Furthermore, as the

dipolar interaction vanishes with the increase in spinning rate, the z-magnetization oscillates like

that of isolated spins and one can observe the appearance of sub-harmonic peaks in the Fourier

transform plots. Appearance of such sub-harmonic peaks in this spinning case clearly shows that

the instability of period observed in the clusters arise from the absence of interactions.
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5.4 Summary

We have experimentally demonstrated that stable temporal order can be realized in liquid and

solid state NMR spin-clusters. In the liquid case, absence of a stable period in the control experi-

ment in C-12 acetonitrile shows that stability of the period requires interactions between the spins

(as in C-13 acetonitrile). Though bath effects and other perturbations in the experiment lead to a

magnetization decay with time, interestingly the period appears to be unaffected. Stability of the

period in the spin cluster improves with increase in total initial magnetization. Therefore large

systems with finite initial magnetization per spin, should show a stable temporal ordered phase,

as can be seen in the solid case. The stability of the oscillations in such systems can be interpreted

as an error-correction on the pulse sequence and may find potential applications towards robust

quantum information processing [185]. We also show that the gradual removal of interactions

from the system lead to destruction of the robust period two oscillations.
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