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“There is no law other than the law that there is
no law”-John Archibald Wheeler (Science and ul-
timate reality, Cambridge university press (2005)).

“Goal of life is not to follow the laws of na-
ture, but to break them and go beyond”-Swami
Vivekananda (Complete works).

“Dissatisfaction with the first view of things
is the mother of all metaphysics (physics). While
common sense accepts the surface phenomenon
as real, reflection asks whether the first view is
to be regarded as the final one.”-S Radhakrish-
nan (Indian Philosophy, Oxford university press
(2010)).
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ABSTRACT

Research into quantum information and quantum computation has raised many funda-

mental questions. To make progress, a critical understanding of the fundamental aspects

has become inevitable. Here we investigate, both experimentally and theoretically, some

of the fundamental aspects of quantum mechanics viz., quantum contextuality, quan-

tum measurement, quantum Fisher information, no-signaling principle, and quantum

nonlocality.

Using a three qubit NMR register, we show that, quantum harmonic oscillator states

exhibits quantum contextuality (i.e., no reality before measurement; in other words,

we cannot assign values to observables even before measurement; measurement creates

reality). Using a four qubit NMR register, we show that, NMR spectrometer is a

Luders measuring device (which preserves superposition in the degenerate subspace

corresponding to a degenerate observable being measured). Using a four qubit NMR star

topology register (i.e., one central target qubit surrounded by three ancillary qubits),

we show that, ancillary qubits pre-correlated with central target qubit, can amplify

quantum Fisher information corresponding to the central target qubit (i.e., increases

precision in unknown parameter estimation corresponding to the central target qubit).

Density matrix description is based on Kolmogorov’s modern axiomatic probability mea-

sure theory of quantum random phenomena. However, in Kolmogorov’s schema, a priori

assumption of a constant value for the probability of a single random event is a purely

mathematical quantity which is not motivated by experiment. Consequently, motivated

by what we actually observe in experiments, we propose an alternative mathematical

model wherein a priori probability measure is dropped completely and instead a posteri-

ori limit-supremum of relative frequency is considered. We call the resulting theoretical

model as the frequentist-inspired quantum mechanics wherein we consider the unknown

x



quantum states path by path. Then we show that within the frequentist-inspired quan-

tum mechanics, physically different ensembles described by the same density matrix are

distinguishable via content dependent fluctuations.

Finally we show that, it is possible to violate Bell’s inequality beyond Tsirelson bound

by introducing context dependent unitary evolutions. Correct context dependency can

be achieved by either post-selection or signaling. This leads to a more efficient quantum

key distribution protocol.

xi
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5.1 Comparing the frequentist predictions for two preparation procedures
A and B. We consider here the θ1 = θ2 case. We wish to compare
F (S(A,M = 1) = +1) with F (S(B,M = 1) = +1). We set θ1 =
θ2 = π/4. We have four independent random variables viz., κ(X1 =
+1), κ(X1 = 0), κ(Xθ1

1 = +1,+1(X1)), and κ(Xπ−θ1
1 = +1, 0(X1)). We

present a “front view” i.e., looking along the normal to the (κ(X1 =
+1), F (S(A/B,M = 1) = +1))-plane. Hence, plot for F (S(B,M =
1) = +1) is the simple black straight line. However the bounds of
F (S(A,M = 1) = +1) are surfaces in the corresponding five-dimensional
space. For given values of κ(Xπ−θ1

1 = +1, 0(X1)) and κ(X1 = 0), the same
are surfaces in the corresponding three-dimensional space. κ(Xπ−θ1

1 =
+1, 0(X1)) and κ(X1 = 0) can take both positive and negative values.
Consider, first, an exemplary situation where κ(Xπ−θ1

1 = +1, 0(X1)) =
−0.13 and κ(X1 = 0) = −0.13. This leads to the blue surface at
the bottom for the bound of F (S(A,M = 1) = +1) in ineq. (5.8).
F (S(A,M = 1) = +1|κ(Xπ−θ1

1 = +1, 0(X1)) = −0.13,κ(X1 = 0) =
−0.13) can only be below the blue surface, and so must be different from
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Chapter 1

Introduction

1.0.1 Why research into quantum foundations?

Research into quantum information and quantum computation has raised many funda-

mental questions viz., is it possible to copy an unknown quantum state? How is the

superposition broken when we move to the classical domain from the quantum domain?

Is the density matrix description complete i.e., does it carry all the information which an

observer has about a given quantum system/ensemble? Even though entangled parti-

cles can somehow communicate superluminally (see [Pop14] in this regard; also the Refs.

[STZG00, SBB+08] puts a lower bound of 2× 104c on the speed where c is the speed of

light in vacuum), why cannot we use it for superluminal communication, what prohibits

us from doing so? Can we exploit quantum correlations to go beyond shot-noise limit

in estimating an unknown parameter? Why does an observer plays a dynamical role in

the quantum world (e.g., outcomes of measurement depends on the way he measures

i.e., quantum contextuality; Wheeler’s delayed choice experiment etc.) which is unlike

in classical world? etc. Further we get access to new resources present in the nature,

only when we question the domain of validity of so called well established facts/laws.

Attitude of ‘shut up and do calculation’ cannot take us much forward. ‘There is no

law other than the law that there is no law’ -J A Wheeler [bJDBDJ05]. ‘Law without

law’-J A Wheeler [WZ83, Sto15]. This is evident from the history of physics. When we

questioned the domain of validity of Newtonian and classical mechanics, we were able

to explore relativistic and quantum domains, thereby we got access to new resources.
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Is density matrix 
description 
complete? 
(Chapter-5) 

Reality before       ? 
       (Chapter-2) 

Measuring 
device:  
Luders/ von 
Neumann? 
(Chapter-3) 

Measurement 
precision: QFI 
(Chapter-4) 

Can post-selection 
lead to much  
stronger violation of 
Bell inequality ? 
(Chapter-6) 

In our opinion, fundamental aspects of quantum mechanics is the most fundamental

physical theory, currently. Nowhere else in physics, observer plays such a dynamical

role: Wheeler’s delayed choice experiment (Wheeler’s ‘participatory universe’, ‘it from

bit’) [WZ83, Sto15], there is no reality before measurement but observer creates real-

ity which in turn depends on the way he measures (quantum contextuality [Per90]),

consciousness induced collapse of the state vector [vN55, WZ83, Hom97, Lal04]. Im-

portance of the role of observer can be further justified by Penrose’s assertion (which is

based on Goedel’s incompleteness theorem) that human mind has non-algorithmic/non-

computational/non-mechanistic powers in its nature/functioning [Pen06]. Further quan-

tum nonlocality implies that separation in space and time is only a classical notion but

not a fundamental one: Two entangled particles can somehow communicate instan-

taneously/superluminally [Pop14] (Refs. [STZG00, SBB+08] puts a lower bound at

2×104c on the speed); Observer can affect, by traveling backward in time, the past his-

tory of a photon (Wheeler’s delayed choice experiment on astronomical scale: Wheeler’s

participatory universe) [WZ83, Sto15]. By researching into quantum foundations, we
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may get access to new resources like nonlinear evolution, signaling, cloning etc., and

also it may bridge the gap in our understanding of the connection between mind and

matter, and how they affect each other [Pen06].

In this thesis, we explore the foundations of quantum mechanics, both experimentally

and theoretically. We use nuclear magnetic resonance (NMR) architecture as our exper-

imental test bed to investigate quantum contextuality, Luders and von Neumann mea-

surements, and exploiting quantum correlation to achieve better precision in quantum

metrological tasks. Theoretically we investigate, distinguishing between two differently

prepared and physically different ensembles described by the same density matrix, and

violation of Bell’s inequality beyond Tsirelson bound via post-selection. In the following

we briefly introduce the basic concepts of quantum information and NMR.

1.1 Basics of quantum information and quantum com-

puting

1.1.1 State vector description without a probability measure

The basic building block of classical information is bit, which can take only two values

viz., 0 or 1. Whereas the basic building block of quantum information is qubit (quantum

bit), which can exist not only in the state |0� = [1 0]T (T stands for matrix transpose)

or |1� = [0 1]T, but it can also exist in an arbitrary superposition of |0� and |1� i.e.,

|θ,φ� = cos(θ/2)|0�+ eiφ sin(θ/2)|1� (1.1)

which is the Bloch sphere representation (SU(2) to SO(3) homomorphism [AW01])

[NC10]. |θ,φ� belongs to the Hilbert space which is a linear complex vector space
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spanned by state vectors [CTDL05, Aud07]. This quantum superposition is the new

resource which can be used to speed up computations (Shor’s prime factorization al-

gorithm [NC10, PMA+19]), speed up unsorted data search (Grover’s search algorithm

[NC10]), teleport a quantum state (via entanglement which is also nothing but superpo-

sition in an higher dimensional Hilbert space) [NC10], unconditionally secure cryptog-

raphy [Paw10] etc. Linear nature of quantum mechanical operators (unitary evolution

operator) is the one which makes possible the superposition of states to exist. But this

very linear nature prohibits cloning/copying an unknown quantum state [WZ82].

Standard text book quantum mechanics is based on existence of a state vector corre-

sponding to a given physical system and a priori assumption of a probability measure

to describe quantum random phenomena. However it is possible to make predictions

(stochastically but not deterministically) even without assuming a priori a probability

measure. This approach is known as pathwise approach [Son06] or individualist ap-

proach [GLTZ19] or frequentist-inspired approach [SKBSS20]. In fact state vector with

a probability measure is equivalent to/nothing but density matrix description which is

described in the next section.

1.1.2 Density matrix description

We cannot predict deterministically the outcome of measuring, say σz (Pauli-z observ-

able) on |θ,φ�. The non-linear collapse dynamics (i.e., quantum measurement problem)

is not yet understood [Hom97]. This results in quantum randomness. Mathemati-

cal model of random phenomena used in all standard quantum mechanics books is A N

Kolmogorov’s modern axiomatic, probability measure theoretic approach (see Appendix

8.1). It assumes a priori existence of a probability measure i.e., it assigns a priori a

real number between 0 and 1 for the probability of a single random event which is a

subjective measure of how likely the event occurs. E.g., it assigns probability 1/2 to a
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single outcome +1 in a measurement of σz on (|0�+ |1�)/
√
2 where |0�, |1� are eigenkets

of σz with eigenvalue +1,−1 respectively (it is based on intuitive/subjective notion of

“equally likely” events). Important point to be noted here is, it is assigning a priori

a constant value for the probability of a single random event (no ensemble here) i.e.,

it predicts probabilistically (but not deterministically) the outcome of a single random

event. Probability measure is a purely mathematical assumption which is not based

on experiment (i.e., relative frequency). However strong law of large numbers tries to

connect, in some sense, the theoretical probability with experiment [Gut05, Ros10].

According to Born’s statistical/probabilistic interpretation of |θ,φ� [Gri95] (which uses

Kolmogorov’s model), upon measuring σz on |θ,φ�, the state vector collapses to |0�(|1�)

with probability cos2(θ/2)(sin2(θ/2)). This in turn gives rise to the density matrix

description, according to which the state of a single qubit is described by the density

matrix

ρ = |θ,φ��θ,φ|. (1.2)

Note that in |θ,φ� there are no probabilities and hence quantum randomness has not yet

come into picture. Whereas in ρ, diagonal elements are probabilities of measurement

outcomes, and off-diagonal elements are coherences (a measure of superposition prop-

erty), and hence quantum randomness/probabilistic nature of measurement outcomes

has been built into it. Hence the theory of random phenomena which we have used (i.e.,

Kolmogorov’s model) plays a crucial role in judging the completeness/incompleteness

of density matrix description. This observation is relevant in the light of the following

works [PSCWH00, LZJ+06, Pop18, SKBSS20, GLTZ19], p16 of [Aud07]. Now we can
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generalize the concept of density matrix to mixtures of many quantum states as follows

ρ� =
�

j

pj|θj,φj��θj,φj| (1.3)

where pj is the probability/weight corresponding to |θj,φj�, and
�

j pj = 1 [vN55] (also

see Appendix 8.2 in this regard). Note that even mixtures of quantum states can be

described by state vectors [LZJ+06, SKBSS20]. Density matrices belong to Liouville

space which is a linear complex vector space whose elements are linear operators acting

on a Hilbert space. These linear operators satisfy the axioms of a linear vector space

like existence of basis, scalar/inner product, norm, incoherent superposition (because

(|0��0| + |1��1|)/2 exhibits no interference) etc. [Aud07]. The dyadic decomposition of

an operator in Liouville space is the following [Aud07]:

A =
�

i,j

Aij|i��j| (1.4)

where Aij = �i|A|j�, and {|i��j|} is a basis in Liouville space. As Aij are complex num-

bers in general, Liouville space is also complex. It is important to note that, according

to the basic postulate of quantum mechanics, state of any physical system (including

mixtures of many quantum states) is described by a set of state vectors or a single

state vector/ket with unknown parameters in it (but not density matrix) belonging to

the Hilbert space [CTDL05, Sha08, LZJ+06]. E.g., in quantum teleportation, nocloning

theorem, BB84 etc. (see Sec. 5.4 for more details).

1.1.3 No unique decomposition of a mixed density matrix

An interesting and controversial consequence of density matrix description is the follow-

ing. A given density matrix (which is mixed i.e., Tr(ρ�2) < 1 where Tr(.) is the trace
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operator) can be decomposed in infinitely many ways. E.g.,




0.7 0

0 0.3


 = 0.7




1 0

0 0


+ 0.3




0 0

0 1




= 0.4




1 0

0 0


+ 0.3




0.64 0.48

0.48 0.36


+ 0.3




0.36 −0.48

−0.48 0.64


 (1.5)

where, in the second line, middle density matrix is the outer product of the state

[0.8 0.6]T and the last density matrix is the outer product of the state [0.6 − 0.8]T

[Per95]. Another simple example is the following. (|0��0| + |1��1|)/2 = (|+��+| +

|−��−|)/2 = �2 where |±� = (|0� + |1�)/
√
2 and �n is the n × n identity matrix. Con-

sequently, according to density matrix description, one cannot distinguish between two

different ensemble/single quantum state preparation procedures, both of which are de-

scribed by the same density matrix. This in turn prohibits superluminal communication

via entangled qubits. We will take up this issue in chapter 5.

As qubits are distinguishable (by their spatial location or chemical shift in NMR etc.),

we can ignore symmetrizing or anti-symmetrizing the total state vector describing the

state of the physical system (bunch of qubits) under consideration [Sha08].

There are many ways of quantifying quantum information viz., quantum Fisher informa-

tion (metrology) [TA14], von Neumann entropy as a measure of quantum information

(entanglement measure) [Aud07], Wigner-Yanase skew information [TA14], quantum

mutual information (quantum discord measure) [MSKB17, KLKW18] etc. All these are

interrelated i.e., we can usually express one in terms of the other for a given quantum

system [Fri99, KLKW18].
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H  S 
Hadamard gate 

T 

Phase gate  𝜋/8 gate 

U 
C-NOT gate 

Toffoli gate C-U gate 

Fig. 1.1: Circuit symbols of various quantum gates

1.1.4 Quantum gates

An arbitrary unitary operator acting on d-dimensional Hilbert space, can be approx-

imated to arbitrary precision in terms of a set of universal gates i.e., C-NOT gate,

Hadamard gate, π/8 gate, and phase gate [NC10]. C-NOT gate, Hadamard gate, Tof-

foli gate, and phase gate is also a universal set but the proof showing that this set is

universal is not as appealing as that of the previous set [NC10].

Hadamard gate: H = (σz + σx)/
√
2. Phase gate: S = |0��0| + i|1��1|. π/8 gate:

T = |0��0|+ eiπ/4|1��1|. C-NOT (controlled NOT) gate: |0��0|⊗�2+ |1��1|⊗σx. Toffoli

gate: (�4−|11��11|)⊗�2+|11��11|⊗σx. C-U (controlled U) gate: |0��0|⊗�2+|1��1|⊗U .

[NC10]. The circuit symbols of these gates has been shown in Fig. 1.1.
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1.2 Basics of nuclear magnetic resonance (NMR)

Consider the 1H nuclei present in water, benzene etc. It is a spin-1/2 particle (proton).

It has three quarks, and quark is a spin-1/2 particle. Then the total spin quantum

number of proton, using addition of angular momentum algebra, turns out to be 1/2

(other combinations are rare) [Lev08].

1.2.1 Spin temperature and thermodynamic/ordinary/bath/kinetic

temperature

Absolute temperature T is a dimensionless parameter defined as

1/T =
∂S

∂E
(1.6)

where entropy S = kB lnΩ(E), Ω(E) is the number of states whose energy lies between

E and E + δE, kB is the Boltzmann constant [Rei85]. For all ordinary systems where

one takes into account the kinetic energy of the particles, there is no upper bound on

the possible energy of the system (a lower bound, of course, exists, namely the quantum

mechanical ground state energy). In such ordinary cases Ω(E) ∝ Ef where f is the

number of degrees of freedom of the system, and hence Ω(E) increases monotonically

with E. Hence from the definition (1.6) we get T > 0 [Rei85]. Let us call this thermody-

namic/ordinary/bath/kinetic temperature. Note that here we are considering f of the

order of Avogadro number and the relation Ω(E) ∝ Ef is only an order of magnitude

estimate and hence not precise [Rei85].

However if we are not interested in the translational degrees of freedom (i.e., position

and momentum), but interested only in spin degrees of freedom (like in NMR), then the

system has an upper bound to its possible energy (e.g., all spins polarized anti-parallel

9



to the static magnetic field) and also a lower bound to its possible energy (e.g., all spins

polarized parallel to the static magnetic field). Correspondingly the total number of

states (irrespective of energy) available to the system is finite. In this case Ωspin(E)

increases as E increases, reaches a maximum, and then starts decreasing with further

increase in energy. Hence from the definition (1.6) we see that, spin temperature Tspin

can be both positive as well as negative [Rei85, AP58].

The third law of thermodynamics i.e., “The entropy S of a system has the limiting

property that as T → 0+, S → S0 where S0 is a constant independent of all parameters

of the particular system.” [Rei85], applies to both spin temperature as well as ordinary

temperature. Note that S0 is independent of all parameters of the particular system in

the widest sense i.e., independent of spatial arrangement of its atoms or of the interaction

between them [Rei85].

1.2.2 Zeeman splitting

In the absence of external magnetic field, Hamiltonian of 1H is 0×�2 (null matrix) whose

eigenvalue zero is two fold degenerate. Any state (Eq. (1.1)) is an eigenstate of 0× �2

and hence no time evolution. Degeneracy is a consequence of symmetry [OP09]. When

we switch on the uniform external magnetic field (z-axis or quantization axis is taken

to be along this field), symmetry is broken by introducing a preferred spatial direction

which in turn fixes the basis in the degenerate subspace. Consequently the Hamiltonian

is given by

H = −�µ. �Bloc ≈ ω0Iz (1.7)

where �Bloc ≈ B0(1 + δ)ẑ (using secular approximation in isotropic liquids) is the local

magnetic field at the site of the nuclei, B0 is the external magnetic field, δ is the chemical
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Fig. 1.2: Thermal equilibrium state of the nuclear spins in the presence of Zeeman field.

shift, �µ = γ(Ixx̂+Iyŷ+Iz ẑ) is the magnetic dipole moment vector operator, Ix = σx/2 is

the x-component of the spin angular momentum vector operator, γ is the gyromagnetic

ratio, and ω0 = −γB0(1 + δ) is the chemically shifted Larmor precession frequency of

the nuclei in radians per second [Lev08]. Consequently the degeneracy is broken, and

from Eq. (1.7) we see that the energy levels are split by ω0/2− (−ω0/2) = ω0 (in units

of �, the ‘natural unit’; scalars and operators corresponding to angular momentum and

energy, in ‘natural units’ has to be multiplied by � to obtain the corresponding quantities

in SI units [Lev08]).

1.2.3 Thermal equilibrium state

In a typical NMR sample of one qubit registers, there will be approximately 1015 nonin-

teracting, randomly polarized spin-1/2 particles (see Fig. 1.2). As NMR qubits at room

temperature are distinguishable (via spatial location of well separated wave packets),
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we can use Boltzmann distribution to know their statistical properties. Hence their

thermal equilibrium state in Zeeman basis, is described by the density matrix

ρeq =
e−H/(kBT )

Tr(e−H/(kBT ))
≈ �2

2
+ �Iz =

1 + �

2
|0��0|+ 1− �

2
|1��1| = (1− �)

�2

2
+ �|0��0|

=
�

i

pi|θi,φi��θi,φi| (1.8)

where the approximation corresponds to high temperature, and secular approximation,

�(= −�ω0/(2kBT )) ∼ 10−5 is the purity factor [Cav96, Lev08], and
�

i pi = 1. Note

that ground state |0� is slightly more populated than the excited state |1�. Hence we get

net magnetization even in thermal equilibrium state. Even though spins are randomly

oriented, there is no coherence (off diagonal terms). This is explained by the second

line in the above equation i.e., no unique decomposition of a mixed density matrix (Eq.

(1.5)).

Let H = ω0Iz, whose eigenvectors are |0�, |1�. Then ρeq is diagonal in {|0�, |1�} basis.

Hence according to density matrix description, we should not get any signal without

using radio frequency (rf) pulse to tilt the net magnetization (which is lying along z-

axis) away from the z-axis. However, we do obtain a weak signal (spin noise) due to

incomplete statistical cancellation (which persists even in the limit of number of qubits

going to infinity [SKBSS20]), as predicted by Bloch [Blo46, FHLD15, SHHC87]. Does

it demonstrate the incompleteness of density matrix description?

1.2.4 Resonance condition

Using rf pulse, we rotate/tilt the net magnetization, initially lying along z-axis (Fig.

1.2), onto x-y plane (Fig. 1.3). Then due to Larmor precession, an emf is induced in

the coils, which in turn is amplified and detected as NMR signal. It is interesting to

note that, even though the amplitude of oscillating magnetic field in the rf pulse is much
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Fig. 1.3: Emf induced by precessing net magnetization, and NMR signal.

smaller than the Zeeman field (B0), still we can move the net magnetization from z-axis

onto the x-y plane. This is made possible by the resonance condition. Hamiltonian

corresponding to the rf field acts as perturbation to the Zeeman Hamiltonian, and it

connects the two Zeeman states |0� and |1�. When the frequency of the rf is equal to

the Larmor precession frequency of the nucleus, resonance is achieved and the transition

probability (from |0� to |1�) becomes one after certain time (see Fig. 1.4) [CTDL05].

This effect is same as that in a child’s swing, wherein if the driving frequency is same

as the natural frequency of oscillation of the swing, then due to resonance, amplitude

of oscillation gets larger and larger with time [Lev08].

1.2.5 Nuclear spin interactions

The nuclear spin Hamiltonian Hspin contains only terms that depend on polarization

direction of nuclear spin. The electronic motions are very rapid and hence nuclear

spins sense only the average electric and magnetic fields produced by electrons. This

approximation is known as spin Hamiltonian hypothesis [Lev08]. Consequently we have
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Fig. 1.4: Transition probability (y-axis) corresponding to off-resonance (left figure) and
on-resonance (right figure) conditions. x-axis is time.

Hspin = Helec + Hmag where Helec is due to the electric charge carried by the nucleus

placed in the electric field produced by the surrounding electrons, and Hmag is due to

the interaction of magnetic dipole moment of the nuclear spin (which is proportional

to spin angular momentum) with the net magnetic field (at the site of a given nucleus)

produced by surrounding electrons, other nuclear spins, and externally applied magnetic

field. Helec = 0 for nuclear spin quantum number = 1/2. Only for nuclear spin quantum

number ≥ 1, Helec = Hquadrupole
elec [Lev08].

Hmag = Hext
mag +H int

mag. H
ext
mag = Hstatic+Hgrad+Hrf where Hstatic is due to the externally

applied strong Zeeman uniform magnetic field B0, Hgrad is due to the externally applied

gradient (non uniform) magnetic field (i.e., pulse field gradient), and Hrf is due to the

oscillating magnetic field of the radio frequency pulse.

H int
mag = HCS+Hrot+HJ+HDD where HCS is due to the magnetic field produced by the

revolving electrons at the site of the nucleus, Hrot is due the magnetic field generated at

the site of the nucleus due to the rotation of the molecule, HJ is due to the interaction
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between two nuclear spins assisted by the surrounding electrons, and HDD is due to the

direct magnetic dipole-dipole interaction between two nuclear spins. Depending on the

experimental context, further details on the Hamiltonian terms are provided in later

chapters wherever necessary.

1.2.6 Quantum control

Suppose we want to simulate quantum mechanically the evolution of a quantum state

|ψact� under the unitary operator Uact. Then we can encode |ψact� onto NMR spin state

|ψencode� and decompose Uact =
�

j U
j
act. Note that there is no unique decomposition of

Uact. Then U j
act can be realized using the spin Hamiltonian as follows U j

act ≈ U j
encode =

exp(−iHspin(aj, bj, ...)Δtj) where aj, bj, ... are control parameters [BAM16]. Then the

gate fidelity is defined as Fgate := |Tr(U †
act

�
j U

j
encode)/d|2 where d is the dimension of

the Hilbert space [BAM16]. Let ρ�act = |ψ�
act��ψ�

act|, and ρ�encode = |ψ�
encode��ψ�

encode| where

|ψ�
act� = Uact|ψact�, and |ψ�

encode� =
�

j U
j
encode|ψencode�. Then the state fidelity is defined

as Fstate := |Tr(ρ�actρ�encode)|/
�

Tr(ρ�2act)Tr(ρ
�2
encode) [BAM16]. One can easily generalize

the above concepts for mixed states as well.

Various numerical algorithms have been developed to implement the above quantum

simulation procedure in an optimal way. They include: Strongly modulating pulses

[FPB+02, BBA08, MMK08], GRAPE [Kt05], Krotov [EMT11, RTB+16], and Bang-

Bang [BAM16] quantum control algorithms.

1.2.7 Quantum state tomography

Consider an unknown nuclear spin state ρ. To know ρ one has to extract expectation

value of certain set of noncommuting observables from the state ρ. Those expectation

values will be a function of unknown parameters in ρ. By solving a set of simultaneous
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linear constraint equations, we can know the unknown parameters in ρ. This procedure

of knowing ρ is known as quantum state tomography [NC10, SRM13]. The state fidelity

or correlation of experimentally determined state ρexp with the desired target state ρtar

is defined as Fstate := |Tr(ρexpρtar)|/
�

Tr(ρ2exp)Tr(ρ
2
tar).

1.2.8 PPS and POPS

Pseudo pure state (PPS)

In thermal equilibrium, ensemble of nuclear spins are unequally distributed (according to

Boltzmann distribution) across various energy levels. Through unitary and nonunitary

operations, population of nuclear spins can be redistributed in such a fashion that all

energy levels (except ground state) are equally populated and ground state is slightly

(one in 105) more populated than rest of the energy levels. That is

ρeq → ρPPS = (1− ��)�2N/2
N + ��|0��0|⊗N (1.9)

where N is the number of qubits, �� < � = −�ω0/(2
NkBT ) ∼ 10−5. Hence ρPPS is

isomorphic to the pure state |0��0|⊗N (because �2N/2
N will not contribute to NMR

signal) [CFH97, SHC00, PZF+01].

Pair of pseudo pure states (POPS)

When N is large, preparing ρPPS is difficult as it requires elaborate pulse sequence.

Instead, one can easily prepare POPS corresponding to arbitrary N as follows: 1. De-

pending on which pair of PPS is to be prepared, selective π-pulse is applied on the

corresponding peak of the NMR spectrum of the spin system under study. 2. A nons-

elective read out pulse is applied and free induction decay (FID) acquired. 3. Another
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experiment is performed with only step-2. 4. The FID’s of the two experiments are

subtracted and then Fourier transformed to obtain the spectrum corresponding to the

desired POPS.

The peak selected in step-1 is a consequence of transition of spins between two energy

levels, say, |1� and |2�. Then the POPS we obtain will be the following |1��1| − |2��2|

[Fun01]. Further, as electronic noise is common to both the preceding two FID’s, noise

goes away when we subtract the two FID’s.
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Chapter 2

NMR investigation of contextuality
in a quantum harmonic oscillator
via pseudospin mapping

“Is the moon there when nobody looks ?”- Albert Einstein [Mer85]

2.1 Abstract

Physical potentials are routinely approximated to harmonic potentials. Hence it is

important to know when a quantum harmonic oscillator (QHO) behaves quantum me-

chanically and when classically. Recently Su et al. [Phys. Rev. A 85, 052126 (2012)]

have theoretically shown that QHO exhibits quantum contextuality (QC) for a certain

set of pseudospin observables. Here we encode the four energy eigenstates of a QHO

onto four Zeeman product states of a pair of spin-1/2 nuclei. Using the techniques

of NMR quantum information processing, we then demonstrate the violation of both

state-dependent and state-independent inequalities arising from the noncontextual hid-

den variable model [KKM16].
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2.2 Introduction

Quantum contextuality (QC) states that the outcome of the measurement depends not

only on the system and the observable but also on the context of the measurement, i.e.,

on other compatible observables which are measured along with [KS67, Per90, Per91,

Per95].

Let us consider a pair of space-like separated entangled particles, with local observables

A and C belonging to the first particle, and B and D to the second. We assume

that these observables are dichotomic (i.e., can take values ±1) and that the pairs

(A,B), (B,C), (C,D), and (D,A) commute.

Classically, one assigns objective properties to the particles such that D behaves identi-

cally on the state of the system irrespective of whether it is measured in the context of A

or in the context of C [EPR35, Mer90]. (Note that corresponding quantum mechanical

A and C are not compatible.) Such measurements are said to be context independent.

Classically, one can pre-assign values (a, c) to (A,C) of the first particle independent of

the measurement carried out on the second particle. Similarly, for the second particle

one can pre-assign values (b, d) to (B,D) independent of the measurement carried out on

the first particle. In these pre-assignments, implicit is the assumption of noncontextual

hidden variables, which predict definite measurement outcomes independent of the mea-

suring arrangement. If we pre-assign values to observables such that A,B,C,D = ±1,

it follows that AB + CB + CD − AD = ±2 and the expectation value,

I = �AB + CB + CD − AD�

= �AB�+ �CB�+ �CD� − �AD� ≤ 2 (2.1)

[NC10]. This inequality often known as CHSH inequality arises from noncontextual
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hidden variable (NCHV) model and must be satisfied by all classical particles.

Now let us see the implication of the quantum theory. Let Alice and Bob share a large

number of singlet states: (|01�− |10�)/
√
2 = −(|+−�− |−+�)/

√
2, where |0� and |1� are

eigenstates of Pauli-z operator (σz) and |±� = (|0� ± |1�)/
√
2. Alice measures on her

qubit either σA
x or σA

z , while Bob always measures σB
x . Let us compare the results of only

those measurements in which Alice has obtained the outcome +1. If Alice measures σA
z ,

then Bob’s qubit collapse to |1� = (|+� − |−�)/
√
2. In this context (i.e., σA

z ), Bob will

get both outcomes ±1 with equal probability. On the other hand, if Alice measures σA
x

on her qubit, then Bob’s qubit collapses to |−� and in this context (i.e., σA
x ), Bob will

always get the outcome −1 (σA
x and σB

x are perfectly anticorrelated). Hence the context

dependency. This shows that, quantum nonlocality is only a special case of quantum

contextuality [GHH+14, Cav18]. That is when we have two entangled particles which

are space-like separated, quantum contextuality manifests itself as quantum nonlocality.

This can be further justified by the fact that quantum contextuality can be observed

even in a single three level quantum system (qutrit) [KS67, KSS+12, DDA16]. Violation

of NCHV inequality in the case of a qutrit, violates classical notion of noncontextuality

(which says, outcomes of the observables are pre-assigned even before performing the

measurement, and measurement just reveals them, and hence outcomes are indepen-

dent of the measurement context), but it may not violate the classical notion of realism

(which says “each individual outcome of a measurement is causally determined by sup-

plementary variables (the so-called hidden variables) that together with ψ completely

specify the state of an individual quantum entity (deterministic realist ingredient).”

[Hom97]; realism also means that there exists an objective external world independent

of the observer.). When we have two entangled particles which are space-like separated,

QC manifests itself as quantum nonlocality, and we observe violation of Bell’s inequality.

Locality is a consequence of noncontextuality, but the converse is not true, e.g., Bohmian
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mechanics which is a contextual hidden variable model (in which value obtained by a

measurement is a function of the pre-measurement value as well as the measurement con-

text (i.e., nonlocal hidden variable)) can satisfy the locality condition (at the statistical

level but not at the level of individual measurement outcomes) [Hom97]. Hence vio-

lation of classical notion of noncontextuality implies/manifests as violation of Einstein

locality/separability in the context of entangled particles (i.e., Bell inequality violation),

and rules out local hidden variable description of quantum mechanics (but it does not

rule out nonlocal hidden variable description of quantum mechanics e.g., Bohmian me-

chanics is a nonlocal realistic (hidden variable) description of quantum mechanics).

Applications of quantum contextuality: Quantum contextuality based quantum cryp-

tographic protocols [SBA17]; quantum nonlocality (a special case of quantum contex-

tuality) has wide applications in quantum communication like teleportation [NC10],

cryptography [Eke91]; measurement based quantum computation [FRB18] etc.

Here we experimentally investigate QC of a quantum harmonic oscillator (QHO). There

are a variety of quantum systems whose potentials are approximated by QHO. Consider

for example the quantized electromagnetic field used to manipulate a qubit in cavity

quantum electrodynamics [WVEB06]. Recently, QC in QHO has been theoretically

studied by Su et al. [SCW+12] by mapping four lowermost QHO energy eigenstates

onto four pseudospin states. Such states can be encoded onto qubit states, and QC

can be studied by realizing the measurements of appropriate observables. In this work,

we realize this study using a nuclear magnetic resonance (NMR) quantum simulator

[CFH97].

In the following section 2.3 we shall revisit the formulation of Su et. al., and in sec-

tion 2.4, we describe the experimental demonstration of state-dependent and state-

independent QC using an NMR system. Finally we conclude in section 2.5.
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2.3 Theory

Su et.al. [SCW+12] have theoretically studied QC of energy eigenstates of 1D-QHO by

introducing two sets of pseudo-spin operators,

Γ = (Γx,Γy,Γz), Γ� = (Γ�
x,Γ

�
y,Γ

�
z)

with components,

Γx = σx ⊗ �2,Γy = σz ⊗ σy,Γz = −σy ⊗ σy,

Γ�
x = σx ⊗ σz,Γ

�
y = �2 ⊗ σy,Γ

�
z = −σx ⊗ σx, (2.2)

where �2 is 2 × 2 identity matrix. Energy eigenstates of QHO satisfy the following

relations [CTDL05]

H|n� = (n+ 1/2)�ω|n�, a†|n� =
√
n+ 1|n+ 1�, a|n� = √

n|n− 1�, a|0� = 0, (2.3)

where H is the Hamiltonian, a and a† are annihilation and creation operators respec-

tively, and n = 0, 1, 2, .... Further we can rewrite [SCW+12]

Γx = |0��2|+ |1��3|+ |2��0|+ |3��1|. (2.4)

Substituting Eqs. (2.3) into Eq. (2.4) one can express Γx in terms a, a† i.e.,

Γx = |0��0|a2/
√
2 + a†|0��0|a3/

√
6 + a†2|0��0|/

√
2 + a†3|0��0|a/

√
6. (2.5)

Similarly one can express other observables in Eqs. (2.2) in terms of a, a†.

Using these operators they defined the following observables which are unitary, Hermi-

22



tian and nonlocal (in general):

A = Γx = σx ⊗ �2,

B = Γ�
x cos β + Γ�

z sin β = σx ⊗ (σz cos β − σx sin β),

C = Γz = −σy ⊗ σy,

D = Γ�
x cos η + Γ�

z sin η = σx ⊗ (σz cos η − σx sin η). (2.6)

Note that before mapping QHO energy eigenstates onto NMR two qubit states, it does

not make sense to call the operators in Eq. (2.6) nonlocal. However it does make

sense after the mapping. This is because the two spin-1/2 nuclei are separated in space,

and hence the notion of nonlocal/global operations acting on the global space of two

qubit system, makes sense. As the spatial separation between nuclei is very small, one

can realize nonlocal gates, measurements etc. in NMR. The products which form the

inequality expression (2.1) are

AB = �2 ⊗ (cos β σz − sin β σx),

BC = −σz ⊗ (cos β σx + sin β σz),

CD = −σz ⊗ (cos η σx + sin η σz),

DA = �2 ⊗ (cos η σz − sin η σx). (2.7)

Here the following commutation relations hold: [Γi,Γ
�
j] = 0 (i, j = x, y, z), [Γx,Γy] =

2iΓz, [Γ�
x,Γ

�
y] = 2iΓ�

z, and similar relations with cyclic permutations of x, y, z. The

observables A,B,C,D have degenerate eigenvalues ±1, with (A,B), (B,C), (C,D),
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and (D,A) forming compatible pairs. Su et.al. [SCW+12] have shown that,

IQM
|l�QHO

= 2
√
2 > 2, when, (β, η)l =





(−π/4,−3π/4)0

(3π/4, π/4)1

(π/4, 3π/4)2

(−3π/4,−π/4)3

(2.8)

where, IQM
|l�QHO

is the expression on LHS of inequality (2.1) for l = 0, 1, 2 and 3, and,

|0�QHO, |1�QHO, |2�QHO and |3�QHO are the first four energy eigenstates of 1D-QHO.

Thus QHO violates the inequality (2.1) for certain observables and thereby exhibits

QC.

It is well known that only certain two-particle states violate the CHSH inequality (2.1).

As shown in [Hom97, CFS73] factorable states always satisfy inequality (2.1) for local

observables, which are of the form P ⊗ �2 or �2 ⊗ Q [Aud07]. With maximally mixed

state (�2/2 ⊗ �2/2) the inequality (2.1) is satisfied even with nonlocal observables in

eq. (2.6), which are of the form P ⊗ Q measured nonlocally/jointly [Aud07], which is

obvious from the fact that all the products in eq. (2.7) are traceless. However, if the

initial state is nonfactorable, we can always find observables such that inequality (2.1) is

violated [Hom97]. Although the pseudospin states {|00�, |01�, |10�, |11�}, are factorable,

they still violate ineq. (2.1) since the observables in eq. (2.6) are nonlocal. Thus, we

observe that even when a system is in an unentangled/separable state, measurements

of nonlocal observables may lead to violation of noncontextuality inequality [GKC+10].

State independent QC: There exist stronger inequalities obtained from NCHVmodels

which is violated by all states, including separable or maximally mixed states. If the

initial state is maximally mixed, entanglement cannot be created by measuring whatever

observable (local or nonlocal). This shows that entanglement is not necessary in general
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even in a bipartite system, to exhibit QC. In this sense, it can be argued that, QC is

more fundamental or general than entanglement. Any system whose Hilbert space has

dimension > 2 exhibits QC [KS67]. Even a single spin-1 particle (where entanglement

has no meaning as far as spin degree of freedom is concerned) also exhibits QC [KSS+12,

DDA16].

2.4 Experiment

2.4.1 State dependent contextuality

To experimentally study the inequality (2.1), we need to realize the following processes:

(i) To physically map various energy eigenstates of 1D-QHO: We encode the first

four energy eigenstates {|0�QHO, |1�QHO, |2�QHO, |3�QHO} onto the four Zee-

man energy eigenstates {|00�, |01�, |10�, |11�} of a pair of spin-1/2 nuclei (i.e., two

qubits) precessing in external static magnetic field. In fact any four arbitrarily

chosen energy eigenstates of 1D-QHO and also their superposition states exhibit

QC [SCW+12].

(ii) To extract the joint expectation values for operators AB, BC, CD, and DA:

The Moussa circuit shown in Fig. 2.1 [MRCL10, JSK+14], is used to extract

the expectation values of observables in a joint measurement. Since this protocol

needs an ancillary qubit, in all we need to have three qubits with sufficiently long

coherence times.

The three qubits for this experiment were provided by the three 19F nuclear spins of

trifluoroiodoethylene (Fig. 2.2(a)) dissolved in acetone-D6. The Hamiltonian parame-

ters of the spin system are given in Fig. 2.2(b). The effective 19F spin-spin (T∗
2) and
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Fig. 2.1: Moussa Protocol for extracting expectation value of the joint observable
X1X2X3 i.e. �X1X2X3�. Here Xi’s are mutually commuting unitary observables.
�σx ⊗ �2 ⊗ �2�ρasfinal = �X1X2X3�ρ where ρasfinal is the ancilla-system final state after ap-
plying all the unitary gates [MRCL10]. Note that �σx ⊗ �2 ⊗ �2�ρasfinal = �σx�ρafinal where
ρafinal = Trsystem(ρ

as
final) [CTDL05].

spin-lattice (T1) relaxation time constants were about 0.8 and 6.3 s respectively. The

experiments were carried out at an ambient temperature of 290 K on a 500 MHz Bruker

UltraShield NMR spectrometer.

The thermal equilibrium state for the three spin system, under high temperature and

high field approximation [Lev08], is

ρeq =
�8

8
+ �

3�

i=1

Iiz (2.9)

where, �8 is an 8×8 identity matrix, Iiz = �2i−1⊗σz/2⊗�23−i are spin angular momentum

operators, and the purity factor � = �γB0/(8kBT ) is the ratio of the Zeeman energy

gap to the thermal energy [Cav96]. Note that under high magnetic field approximation

we neglect chemical shifts. Unitary operation has no effect on the identity part, but

modifies only the traceless deviation part. By applying a series of unitary and nonunitary

operators (pulse sequence shown in Fig. 2.2 [MMK08]), it is possible to transform the

equilibrium state to a pseudopure state

ρpps = (1− ��)
�8

8
+ ��|000��000| = �8

8
+ ��Δρ|000� (2.10)
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Fig. 2.2: (a) Molecular Structure, (b) resonance off-sets (diagonal elements) and J-
couplings (off-diagonal elements) in Hz of trifluoroiodoethylene, and (c) pulse sequence
for pseudo-pure state preparation. In (c), 180x pulses are represented by unshaded rect-
angles, and other pulses by shaded rectangles with tilt-angles and phases as indicated.
Lowest row consists of Pulsed Field Gradients (PFG) used to destroy the transverse
magnetization.
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which is isomorphic to the pure state |000� [CFH97] up to some purity �� < �. In the

pseudopure state, the traceless deviation part has the form

Δρ|000� =
1

4
(I1z + I2z + I3z + 2I1zI2z

+2I2zI3z + 2I1zI3z + 4I1zI2zI3z). (2.11)

The first spin, F1, is used as an ancilla qubit, and the other spins, F2 and F3, as the

system qubits (see fig. 2.1). The initial Hadamard gate on the first spin prepares ρ|+00�.

To measure �AB�|00�, we apply the controlled operations corresponding to A and B as

indicated in the circuit in Fig. 2.1. The transverse magnetization of the ancilla qubit

will be proportional to the expectation value �AB�|00� [MRCL10]. The absolute value of

�AB�|00� is estimated by normalizing the value obtained in the above experiment with

that obtained from a reference experiment having no controlled operations. Similarly we

can measure other expectation values �BC�|00�, �CD�|00�, and �AD�|00�, and determine

the value of I0. Other values Il are obtained by preparing the corresponding pseudopure

states ρ|+01�, ρ|+10�, and ρ|+11� and applying the circuit in Fig. 2.1, in each case.

In our experiments, all the controlled operations were realized by numerically optimized

radio frequency (RF) pulses obtained using GRAPE technique [Kt05]. Each pair of

controlled operations in the circuit in Fig. 2.1 was realized by a GRAPE sequence

with a duration of about 23 ms (having RF segments of duration 5 µs) and an average

Hilbert-Schmidt fidelity better than 0.99 over 10% variation in the RF amplitude.

We estimated the values for Il (2.1), for all the four eigenstates and independently

varied both β and η over the range [−π, π] with increments of π/4. The results are

shown in Fig. 2.3. The maximum experimental values for I0, I1, I2, and I3 are 2.40 ±

0.02, 2.45± 0.02, 2.39± 0.02, and 2.42± 0.03 respectively. These values being greater

than 2 clearly violate the classical bounds and hence prove QC of QHO. However, values
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Fig. 2.3: I0, I1, I2, and I3 represent evaluation of expression (2.1) for eigenstates
|0�QHO, |1�QHO, |2�QHO, and |3�QHO respectively. The experimental values are shown
by red dots and theoretical surfaces are shown for reference. The flat planes at 2 and
−2 correspond to classical bounds.

lower than the maximum theoretical violation (i.e., 2
√
2 ≈ 2.83) are presumably due to

the decoherence intrinsic to the quantum system and other experimental imperfections.

2.4.2 State independent contextuality

Su et.al. have also studied the state independent contextuality [SCW+12, Cab08] by

considering the inequality (arising from NCHV model)

�P11P12P13�+ �P21P22P23�+ �P31P32P33�

+�P11P21P31�+ �P12P22P32� − �P13P23P33� ≤ 4 (2.12)
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where Pij are the elements of the matrix P,

P =




Γz Γ�
z ΓzΓ

�
z

Γ�
x Γx ΓxΓ

�
x

ΓzΓ
�
x ΓxΓ

�
z ΓyΓ

�
y




. (2.13)

Here, in each row (column) of the matrix P , every observable commutes with every

other. Pij are dichotomic observables with measurement outcomes ±1. We can verify

the inequality (2.12) by preassigning the values ±1 to each of the observables Pij’s.

Now introducing the operators from expressions (2.2), we find that the product of each

row of the matrix P is identity (i.e., Pj1Pj2Pj3 = �2). Similarly, the products along

each of the first two columns again become identity. However, the product along the

last column, i.e., P13P23P33 = −�2. No preassignment of ±1 to the various elements

of P can satisfy the condition that, product along each row and along the first two

columns be +1 and that along the last column be −1. This shows that quantum theory

is not compatible with NCHV model. Further, the expectation values for the first five

operators in expression (2.12) are all +1 while that of the last term is −1. Therefore,

for an arbitrary state, the quantum upper bound for left hand side of expression (2.12)

is 6, while the classical upper bound is 4 [SCW+12].

To investigate state-independent QC, we need to measure joint expectation values of

three observables. We again use the circuit in Fig. 2.1 for this purpose. Taking ad-

vantage of the state independent property of the above mentioned inequality (2.12), we

choose thermal equilibrium state (2.9) as the initial state. A (π/2)y pulse was applied

on the first spin to prepare the ancilla in a superposition state. Then the state (2.9)

transforms to: (1−4�)�8/8+�(|+��+|⊗�2⊗�2)+�(I2z+I3z). Note that here the terms

(1− 4�)�8/8 and �(I2z + I3z) will not contribute to the expectation value of the ancilla,
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because the ancilla (first qubit) is in a maximally mixed state in these terms (only the

|+��+| state of the ancilla contributes), and we measure the ancilla only [MRCL10].

All the controlled Pij operations were realized using the GRAPE sequences having

average fidelities better than 0.99 where average was taken over 10% variation in RF

amplitude. The total duration of the RF sequences for each term in inequality (2.12)

were about 40 ms. Experimentally obtained value of left hand side of inequality (2.12)

is 4.81± 0.02. Thus we observed a clear violation of the classical bound. However it is

still lower than 6, the quantum limit. The reduced violation can again be attributed to

decoherence and other experimental imperfections.

2.5 Conclusions

We have experimentally demonstrated the quantum contextuality exhibited by first

four energy-eigenstates of a one dimensional quantum harmonic oscillator by mapping

them to Zeeman energy-eigenstates of a pair of NMR-qubits. The observables (with

continuous parameter (but with discrete spectra)) of the harmonic oscillator are then

mapped onto certain pseudospin observables measured on the qubits. We have used

Moussa protocol to retrieve the joint expectation values of the observables using an

ancillary qubit. Thus our quantum register was based on three mutually interacting

spin-1/2 nuclei controlled by NMR techniques. The experimental results clearly violate

the classical bound proving contextuality in the quantum harmonic oscillator.

We also studied a state-independent quantum contextuality by measuring a set of ex-

pectation values on the thermal equilibrium states of the nuclear spins. Experiments

again revealed a clear violation of the classical bound. These results not only establish

the validity of quantum theoretical calculations, but also highlight the success of NMR

systems as quantum simulators.
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Chapter 3

Discriminating between Lüders and
von Neumann measuring devices:
An NMR investigation

“...whereas the ansatz of von Neumann yields a most complicated mixture. The extreme

case is provided by ‘measurement’ of the unit operator. Nothing is revealed about the

system, which should survive the ‘measurement process’ uninfluenced.”-G.Lüders [L0̈6].

3.1 Abstract

Different proposals exist to describe the quantum state after measuring a degenerate

observable viz., Lüders and von Neumann state update rules. While the former preserves

superpositions in the degenerate subspaces, the latter does not. Even though both

rules are valid and realizable, which rule a given measuring device (“Black Box”) obeys,

depends on its internal details. Recently Hegerfeldt and Mayato [Phys. Rev. A 85,

032116 (2012)] had formulated a protocol to discriminate between the two kinds of

measuring devices. Here we have reformulated this protocol for system and measuring

qubits. We then experimentally investigated this protocol on an NMR spectrometer,

and found that Lüders rule is favored [KSM16].
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3.2 Introduction

Quantum measurement paradox lies at the heart of foundations of quantum mechanics

[Hom97]. It’s an experimental fact that, upon measurement, a quantum state collapses

into an eigenstate of the observable being measured. However there is no collapse in the

unitary evolution described by Schrödinger equation, and therefore, the collapse has to

be imposed from outside the formalism.

Let us assume an observable AN with discrete and nondegenerate eigenspectrum. In

that case, the measurement leads to a collapse of the state to one of the eigenstates of

AN (see Fig. 3.1). On the other hand, if we consider an observable A with a degenerate

eigenspectrum, there are two extreme rules to update the state after the measurement.

The most commonly used rule was postulated by Gerhart Lüders in 1951 [Lüd51, L0̈6].

According to it, a system existing in a superposition of eigenstates corresponding to

the degenerate eigenvalue of A, is unaffected by the measurement such that the super-

position in the degenerate subspace is preserved. However, an earlier postulate by von

Neumann, proposed in 1932 [vN55], does not preserve such a superposition. In the latter

postulate, the measuring device refines the observable A into another commuting ob-

servable A� (actual system observable) having a nondegenerate spectrum. The resulting

measurement collapses the state to an eigenstate of A�, and the original superposition

is not preserved under the measurement as if the degeneracy has been lifted [HSM12].

Although, one generally assumes Lüders state update rule implicitly in quantum physics,

occasionally one encounters applications of the von Neumann state update rule. One

example is in the context of Leggett-Garg inequality in multilevel quantum systems

[BE14]. In principle, measurements which are intermediate between Lüders and von

Neumann can also be conceived [HSM12, BE14].

Recently, Hegerfeldt and Mayato have proposed a general protocol (HM protocol) to
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Fig. 3.1: Comparison between Lüders and von Neumann measurement postulates.

discriminate between Lüders and von Neumann kind of measuring devices [HSM12]. To

explain this protocol we consider an observable A, having two-fold degenerate eigenval-

ues, say +1 and −1 (see Fig. 3.2). The HM protocol involves the following steps: (i)

prepare an eigenstate |ξin� of A in its degenerate subspace, (ii) let the device measure

A, and (iii) characterize the output state. In step (ii) a Lüders measurement will pre-

serve the state, while a von Neumann measurement may not. The last step is simply to

determine if the step (ii) has changed the state or not. If the state has changed, we con-

clude that the device is von Neumann. Else, either the device is of Lüders type, or the

chosen initial state |ξin� happens to be a nondegenerate eigenstate of the actual system

observable A�. To rule out the latter possibility, one may change the initial state and

repeat the above steps (Fig. 3.2). This way one can attempt to discriminate between

the Lüders and von Neumann measurement devices.

In this work, we reformulate the HM protocol for a quantum register and try to in-

vestigate it using experiments. Nuclear spin ensembles in liquid, liquid-crystalline, or

solid-state systems have often been chosen as convenient testbeds for studying founda-

tions of quantum physics [SMP88, MRCL10, ARM11, KKM16]. Their main advantages

34



Prepare  in   
s.t. A in  = + in  

A’ is nondegenerate 

Eigenvalue = +1 

out = in  

Intended system observable 
A = ( 0 + 1)( 2 + 3)

Actual system observable A’ 
s.t. [A,A’] = 0; f(A’) = A

Eigenvalue = +1 

out     in  

A and A’ have same  
degenerate subspaces 

Lüders 

Measurement 

Post measurement  
state obtained by  

tomography  

in  could be a  
nondegenerate 
eigenstate of A’.  
So change  in  

von Neumann 

Fig. 3.2: HM protocol for discriminating between Lüders and von Neumann measure-
ments.

35



are long coherence times and excellent control over quantum dynamics via highly devel-

oped nuclear magnetic resonance (NMR) techniques.

In section 3.3, we briefly explain the HM protocol as adapted to an NMR setup. The

experimental details to discriminate between the Lüders and von Neumann measuring

devices are described in section 3.4. Finally we conclude in section 3.5.

3.3 Theory

For the sake of clarity, and also to match the experimental details described in the

next section, we consider a system of two qubits. Since the system is to be measured

projectively, dimension of the pointer basis should be greater than or equal to that of the

system, and hence we need at least two ancillary qubits. We refer to the ancillary qubits

as (1,2) and system qubits as (3,4). We use Zeeman product basis as our computational

basis and denote eigenkets of σz, the Pauli z-operator, by |0� and |1�. We denote the

basis vectors of system qubits as

|φ0� = |00�, |φ1� = |01�, |φ2� = |10�, |φ3� = |11�. (3.1)

Let us assume a two-fold degenerate system-observable with spectral decomposition

A = (Π0 + Π1)− (Π2 + Π3), (3.2)

where the projectors are defined as Πj = |χj��χj|, |χ0� = α0|φ0�+β0|φ1�, |χ1� = α1|φ0�+

β1|φ1�, |χ2� = α2|φ2� + β2|φ3�, |χ3� = α3|φ2� + β3|φ3� are eigenvectors of A. The

projectors have the property ΠkΠl = δklΠk where δkl is the Kronecker delta function.

We note that A has no unique spectral decomposition due to the degeneracy.
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We consider a measurement model, wherein a quantum system being measured under-

goes a joint evolution with the measuring device, ultimately forming an entangled state.

When the measuring device collapses to a particular pointer state, the system also col-

lapses to the corresponding eigenstate. Let Q be the observable corresponding to the

ancilla (measuring device) and g be the system-ancilla interaction strength. The joint

evolution is then of the form

Uint = exp(−iHintτ), (3.3)

where Hint = g Q⊗ A is the interaction Hamiltonian in units of angular frequency.

To fix the basis inside a degenerate subspace, we should choose a nondegenerate ob-

servable A� which commutes with A, so that they are simultaneously diagonalizable and

hence we can find a common eigenbasis. For simplicity we choose the computational

basis {|φj�} as the common eigenbasis. Then the observable A� must have the following

spectral decomposition

A� =
3�

j=0

a�jPj, (3.4)

where Pj = |φj��φj| and the nondegenerate eigenvalues a�j are yet to be determined.

Let us assume the device to be von Neumann which refines the degenerate observable A

that is being measured, into a nondegenerate observable A�, via a mapping f(A�) = A.

As the refined observable A� has nondegenerate eigenvalues and commutes with A,

it fixes the basis inside the degenerate subspace. However, the choice of A� is not

unique, i.e., any orthonormal basis inside the degenerate subspace can be nondegenerate

eigenkets of A�, and the von Neumann device has the freedom to choose among them

[vN55].
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The measurement outcome is passed via the refining function f , such that f(a�0) =

f(a�1) = +1 and f(a�2) = f(a�3) = −1. Hence the outcome is same as if A is being

measured. To projectively measure the observable A�, the measuring device has to

jointly evolve with the system under the interaction Hamiltonian,

H�
int = g Q⊗ A�. (3.5)

For instance, we choose Q = q1σ1z + q2σ2z, where σ1z = σz ⊗ �2, σ2z = �2 ⊗ σz and �2

is 2× 2 identity operator. The joint evolution between the measuring device (ancillary

qubits) and the system is described by the unitary operator

U �
int = exp(−iH�

intτ), (3.6)

where τ is duration of the evolution.

If each of the quantum register is initially prepared in |Φ0� = |++++�, with |+� =

a'
-3 -2 -1 0 1 2 3

a

-3

-2

-1

0

1

2

3

Fig. 3.3: An interpolating function a = f(a�) = (−a�3 + 7a�)/6 mapping the nondegen-
erate eigenvalues a� of A� onto degenerate eigenvalues a of A.
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(|0�+ |1�)/
√
2, the state after the joint evolution is given by

U �
int|Φ0� =

1

2

�
e−iga�0Qτ |++�|φ0�+ e−iga�1Qτ |++�|φ1�+

e−iga�2Qτ |++�|φ2�+ e−iga�3Qτ |++�|φ3�
�

=
1

2

3�

j=0

|ψj�|φj�, (3.7)

where |φj� are as defined in Eqs. (3.1) and |ψj� = exp(−iga�jQτ)|++� represent states

of the ancillary qubits. To realize the projective measurement, the pointer basis {|ψj�}

must be orthonormal. Imposing the mutual orthogonality condition results in trigono-

metric constraint equations leading to a set of possible solutions. One such possible

solution is

a�0 = −a�2 = −3 q1 = π/(4gτ)

a�1 = −a�3 = 1 q2 = −q1/2.
(3.8)

Again, the von Neumann measuring device has the freedom to choose a particular

pointer basis among several possible ones. Substituting the above values in Eq. (3.4),

we obtain,

A� = −3P0 + P1 + 3P2 − P3, (3.9)

which is obviously nondegenerate in the computational basis. The refining function f

can now be setup by interpolating the eigenvalue distribution (see Fig. 3.3). For the

above example, we find a possible map to be f(A�) = (−A�3 + 7A�)/6 = A.

The quantum circuit for discriminating Lüders and von Neumann devices, illustrated

in Fig. 3.4, involves four qubits each of which is initialized in state |+�. If the device

is Lüders, the system undergoes a joint evolution Uint with the ancilla, resulting in the
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Fig. 3.4: (a) Quantum circuit to discriminate Lüders and von Neumann devices. (b)
The NMR pulse-scheme to implement the circuit in (a).

state

Uint|Φ0� =
1√
2

�
e−igQτ |++�d0|χ0�+ d1|χ1�√

2
+

eigQτ |++�d2|χ2�+ d3|χ3�√
2

�

=
1√
2

�
|ψ1�

|φ0�+ |φ1�√
2

+ |ψ3�
|φ2�+ |φ3�√

2

�
, (3.10)

where the coefficients dj depend on the choice of |χj� (defined after Eq. (3.2)). Note that

the Lüders device may also map A to A� which is of the form A� = a�1(Π0+Π1)+a�2(Π2+

Π3). Here A
� has same degenerate subspaces as that of A, but arbitrary eigenvalues a�j.

After the joint evolution of system and ancilla, a selective measurement of ancilla qubits

is carried out. Generally in a quantum measurement the measuring device collapses

to its pointer basis. In our scheme, we perform the projective measurement in the
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computational basis after transforming the ancilla qubits onto the computational basis

using a similarity transformation U †
a , such that

Ua|00� = |ψ0�, Ua|01� = |ψ1�,

Ua|10� = |ψ2�, Ua|11� = |ψ3�. (3.11)

By substituting the explicit forms of |ψj�, we obtain

Ua =
1

2




z3 z−1 z−3 z

z9 z−3 z−9 z3

z−9 z3 z9 z−3

z−3 z z3 z−1



, (3.12)

where z = exp(iπ/8).

Finally, the ancilla is traced-out and the state of system qubits is characterized with the

help of quantum state tomography.

According to the Lüders state update rule, if a degenerate observable A (as in Eq. (3.2))

is measured on a system in state ρ0, then the postmeasurement state of the ensemble is

described by

ρL =
�

l=±1

Plρ0Pl, (3.13)

where P+1 = Π0 + Π1, P−1 = Π2 + Π3. For the initial state ρ0 = |Φ0��Φ0|, we obtain

ρL = (�4 + �2 ⊗ σx)/4. (3.14)

However according to von Neumann’s degeneracy breaking state update rule, the post-
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measurement state of the ensemble is given by

ρN =
3�

j=0

Πjρ0Πj, (3.15)

where, Πj’s are fixed by the refining observable A�. Therefore, for the initial state

ρ0 = |Φ0��Φ0| and the observable A� (Eq. (3.4)), the postmeasurement state collapses

to a maximally mixed state, i.e.,

ρN = �4/4. (3.16)

In both the cases, the probabilities of obtaining the eigenvalues ±1 are identical, i.e.,

p+1 = Tr(P+1ρ0P+1) =
�

j=0,1

Tr(Πjρ0Πj) and,

p−1 = Tr(P−1ρ0P−1) =
�

j=2,3

Tr(Πjρ0Πj). (3.17)

Thus although, the measurement outcomes (eigenvalues) and their probabilities are

identical, the postmeasurement states ρL and ρN are different [L0̈6, vN55, HSM12,

BE14]. In fact, the Uhlmann fidelity between ρL and ρN turns out to be F (ρL, ρN) =

Tr
�√

ρNρL
√
ρN = 1/

√
2 [NC10]. Therefore, it is possible to discriminate between the

Lüders and von Neumann devices by simply characterizing the final state of the system

as shown by the circuit in Fig. 3.4.

3.4 Experiment

We utilize the four spin-1/2 nuclei of 1,2-dibromo-3,5-difluorobenzene (DBDF) as our

quantum register. About 12 mg of DBDF was partially oriented in 600 µl of liquid crystal
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H1  H2  F3  F4  Hz  T2* (s) 

37.7  2.8, 
72.5 

1.8, 
550.0 

8.3, 
447.0 

H1  0.87 

0.0  9.2, 
53.5 

9, 
307.0 

H2  0.87 

3262.2  7.6, 
84.0 

F3  0.55 

3262.2  F4  0.55 

Fig. 3.5: Molecular structure of 1,2-Dibromo-3,5-difluorobenzene, Hamiltonian parame-
ters, and the relaxation parameters. In the table, the diagonal values indicate resonance
offsets (ωj/2π); off-diagonal values (Jij, Dij) indicate the indirect and the residual di-
rect spin-spin coupling constants respectively (in Hz); the last column lists approximate
effective transverse relaxation time constants (T ∗

2 ).

MBBA. The molecular structure of DBDF and its NMR Hamiltonian parameters are

shown in Fig. 3.5. The experiments were performed at 300 K on a 500 MHz Bruker

Ultra-shield NMR spectrometer.

The secular part of the spin-Hamiltonian is of the form [Cav96],

H0 = −
4�

j=1

ωjIjz + 2π
�

j,k>j

(Jjk + 2Djk)IjzIkz

+2π(J12 −D12)(I1xI2x + I1yI2y), (3.18)

where ωj, Jij, and Dij are the resonance off-sets, indirect scalar coupling constants, and

direct dipole-dipole coupling constants (Fig. 3.5). The strong-coupling term (i.e., the

last term) is relevant only for (H1, H2) spins since |ω1 − ω2| < 2π|D12|. We choose H1,

H2 as ancilla (qubits 1, 2) and F3, F4 as the system (qubits 3, 4).

The NMR pulse diagram to implement the quantum circuit in Fig. 3.4(a) is shown in
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Fig. 3.4(b). It begins with the initial state preparation. The thermal equilibrium state

of the NMR system in the Zeeman eigenbasis under high-field, high-temperature, and

secular approximation is given by [Lev08, Cav96],

ρeq = �16/16 +
4�

j=1

�jIzj, (3.19)

where �j ∼ 10−5 are the purity factors and the second term in the right hand side corre-

sponds to the traceless deviation density matrix. The identity part is invariant under the

unitary transformations and does not give rise to observable signal. Therefore only the

deviation part is generally considered for both state preparation and characterization

[CPH98].

The initial state of the quantum register assumed in the theory section, i.e., |Φ0� can

be prepared by applying an Hadamard operator on each of the four qubits in a pure |0�

state. However, in NMR, the preparation of such pure states is difficult and instead a

pseudopure state is used [CPH98]. In our work, we utilize a technique based on preparing

a pair of pseudopure states (POPS) [Fun01]. It involves inverting a single transition and

subtracting the resulting spectrum from that of the thermal equilibrium. By inverting

the transition |0000� to |0001� transition using a transition selective π pulse, followed

by Hadamard gates (H) on all the spins we obtain the POPS deviation density matrix:

ρPOPS =
�
|++++��++++|− |+++−��+++−|

�
.

We then implemented the quantum circuit shown in Fig. 3.4 (a) using the pulse sequence

in Fig. 3.4 (b). As evident from circuit in Fig. 3.4, controls are designed to implement

Uint (Eq. (3.10)) since we intend to measure A. Whether to map it to A� or not is left

to the device. The unitary operators Uint and U †
a were realized by bang-bang optimal
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control [BAM16]. Hadamard and tomography operations were only few hundred micro

seconds long and had a simulated fidelity of about 0.99, when averaged over ±10%

inhomogeneous RF fields. The combined operation of Uint and U †
a was about 17 ms in

duration and had an average fidelity over 0.933.

The intermediate measurement on ancilla was realized by applying strong pulse-field-

gradients (PFG). By applying a πx pulse on the system spins in between two symmetri-

cally spaced PFG pulses, we realize the selective dephasing of the ancilla spins (Fig. 3.4

(b)). The central πx also refocuses all the system-ancilla coherent evolutions during the

ancilla measurement. When averaged over the sample volume this process retains only

the diagonal terms in the density matrix of the ancilla spins and thus simulates a projec-

tive measurement of ancilla. Setting the total duration of this process to 1/(J34+2D34)

also ensures refocusing of (F3, F4) interactions.

Finally, the density matrix of the system qubits was characterized using quantum state

tomography. It involved nine independent measurements with different tomography

pulses (T) (Fig. 3.4 (b)) [CGKL98, RM10].

The results of the quantum circuit (Fig. 3.4) on |++++��++++| state by Lüders and

von Neumann devices are described in Eqs. (3.14) and (3.16) respectively. For Lüders

measurement with the POPS input state |++++��++++|− |+++−��+++−|, the

final deviation density matrix (in circuit 3.4) is expected to be

ρ�L = �2 ⊗ σx/2. (3.20)

On the other hand, for von Neumann measurement, the POPS input state leads to a

maximally mixed final state with a null deviation density matrix (ρ�N).

Fig. 3.6 compares the experimental results with the theoretically expected deviation
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Fig. 3.6: Real (a) and imaginary (b) parts of the theoretically expected deviation density
matrix for a Lüders device (ρ�L); real (c) and imaginary (d) parts of the experimental
deviation density matrix (ρ�exp).
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density matrices. The correlation [FPB+02]

C =
Tr[ρ�Lρ

�
exp]�

Tr[ρ�2L ]Tr[ρ
�2
exp]

(3.21)

between the theoretical (ρ�L, Eq. (3.20)) and the experimental (ρ�exp) deviation density

matrices was 0.923. The reduction in the correlation is mainly due to coherent errors

caused by imperfect unitary operators, fluctuations in the dipolar coupling constants

due to temperature gradients over the sample volume, inhomogeneous RF fields, as well

as due to decoherence.

The correlation expression in Eq. (3.21) is not directly applicable for the null-matrix

ρ�N . Therefore, we replace ρ�N with random traceless diagonal matrices, and obtained

0.28 as the upper bound for the correlation of ρ�exp with ρ�N . Therefore we conclude

that the experimental deviation density matrix is much closer to ρ�L (Eq. (3.20)), and

strongly favors the Lüders update rule.

3.5 Conclusions

Quantum measurements, involving probabilistic state collapse and corresponding mea-

surement outcomes, has always been mysterious. There have been attempts to deduce

rules based on phenomenological observations. According to one of the earliest reduc-

tion rules, given by von Neumann, superposition in a degenerate subspace is destroyed

by the measurement of the respective degenerate observable. This rule was later sub-

stantially modified by Gerhart Lüders. The modified rule, which is most commonly

used, implies that superpositions within the degenerate subspaces are preserved under

such a measurement.

A protocol to determine whether a given measuring device is Lüders or von Neumann was
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recently formulated by Hegerfeldt and Mayato [HSM12]. In this work, we have adapted

this protocol for quantum information systems, and utilize ancilla qubits for performing

a desired measurement on system qubits. Moreover, we describe an NMR experiment,

with two system qubits and two ancilla qubits, to discriminate between Lüders and von

Neumann devices. Within the limitations of experimental NMR techniques, we found

that the measurements are of Lüders type.

There is a possibility that the above measurement is still of von Neumann type, if

the chosen initial state happens to be a nondegenerate eigenstate of the actual system

observable (A�). One way to rule out this possibility is by changing the initial state

(Fig. 3.2). However, it is also possible that the actual system observable is dynamic, in

which case it is even more difficult to discriminate between Lüders and von Neumann

measurements. In this work we have not excluded these possibilities. Nevertheless,

the present work opens many interesting questions. For example, how can we build a

von Neumann measuring device, or even an intermediate measuring device that partly

breaks the degeneracy? More importantly, further research in this direction may throw

some light on fundamental aspects of quantum measurement itself.
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Chapter 4

Ancilla induced amplification of
quantum Fisher information

“Fisher information as a ‘mother’ information.”-B.R.Frieden [Fri99]

4.1 Abstract

Given a quantum state with an unknown parameter being measured with a suitable ob-

servable, Quantum Fisher Information (QFI) is a measure of the amount of information

that one can extract about the unknown parameter. QFI also quantifies the maximum

achievable precision in estimating the unknown parameter with a given amount of re-

source via quantum Cramer-Rao bound. In this work, we describe a protocol to amplify

QFI of a single target qubit precorrelated with a set of ancillary qubits. Using an NMR

system as an example, we show that a single quadrature NMR signal of only ancillary

qubits suffices to perform the quantum state tomography (QST) of target qubit’s de-

viation part of the density matrix. We experimentally demonstrate this protocol using

a star-topology spin-system consisting of a 13C nuclear spin as the target qubit and

three 1H nuclear spins as ancillary qubits. We prepare the target qubit in various ini-

tial states, perform experimental QST, and estimate the amplification of QFI in each

case. We also show that, at a high-temperature scenario like in the case of NMR, the

QFI-amplification scales linearly with the number of ancillary qubits and quadratically

with the Bloch radius [SKM18].
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4.2 Introduction

Quantum devices are expected to bring out a revolution in the way information is

stored, manipulated, and communicated [NC10]. An important criterion to achieve

this goal is the capability to efficiently measure two-level quantum systems, or qubits

[DiV]. Spin-based systems are among various architectures which are being pursued for

the physical realization of a quantum processor [LJL+10]. Nuclear spins in favorable

atomic or molecular systems have the capability to store quantum information for suffi-

ciently long duration and to allow precise implementation of desired quantum dynamics.

Accordingly, Nuclear Magnetic Resonance (NMR) is often considered as a convenient

testbed for quantum emulations [CFH97, CPH98, CLK+00]. In a conventional NMR

scheme, tiny nuclear polarizations demand a collective ensemble measurement of about

1015 identical spin-systems. There have been several proposals to increase the sensitivity

of nuclear spin detection. For example, dynamic nuclear polarization (DNP) transfers

polarization from electrons to nuclei, thereby enhancing the nuclear polarization up to

three orders of magnitude [MDB+08]. Optical polarization and detection often enables

single-spin measurements, such as in the case of nitrogen vacancy centers in diamond

[WGFVB97]. Further improvements in sensitivity are possible by using quantum metrol-

ogy which has recently attracted significant research interests [TA14]. Cappellaro et. al.

have proposed a metrology scheme by measuring a set of ancillary qubits after correlat-

ing them with the target qubit [CEB+05]. N -spin quantum metrology in the presence

of decoherence has been discussed by Knysh et. al. [KCD]. Quantum metrology in a

solid state NMR system exploiting spin-diffusion has been proposed by Negoro et. al.

[NTKK11].

The present work involves a single target qubit and a set of ancillary qubits. While

the methods described in the following can be suitably adopted for a quantum register
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with a general topology, we particularly focus on star-topology registers (STRs). An

STR consists of a central target qubit uniformly interacting with a set of identical an-

cillary qubits which have no effective interaction among themselves (see figs. 4.1(a) and

(b)). Recently STRs have been utilized for several interesting applications. The main

advantage of an STR is that it allows simultaneous implementation of C-NOT opera-

tions on the ancillary qubits controlled by the target qubit without requiring individual

control of ancillary qubits. Simmons et. al. exploited this property to prepare large

NOON states and used them to sense ultra-low magnetic fields [SJK+10]. Abhishek

et. al. proposed efficient measurement of translational diffusion in liquid ensembles of

STR molecules [SSM14]. Using a 37-qubit STR, Varad et. al. demonstrated a strong

algorithmic cooling of the target qubit by repeatedly releasing its entropy to ancillary

qubits [PBKM17]. Deepak et. al. transferred the large polarization of ancillary qubits

directly to the long-lived singlet-state of a central pair of qubits in an STR-like register

[KM17]. More recently, Soham et. al. have utilized STRs to investigate the rigidity of

temporal order in periodically driven systems [PNMS18].

In this work, we propose and experimentally demonstrate a protocol to perform quan-

tum state tomography (QST) of a target qubit in an STR. We find that a single-scan

quadrature NMR signal of ancillary qubits of an STR precorrelated with the central

target qubit is sufficient to tomograph the target qubit’s deviation part of the density

matrix. Moreover, this procedure leads to a strong amplification of Quantum Fisher

Information (QFI). QFI quantifies the amount of information that one can extract, by

measuring a given observable, about an unknown parameter corresponding to a quan-

tum state [TA14]. Moreover, QFI allows one to estimate the quantum Cramer-Rao

bound, which sets an upper-bound for the maximum achievable precision in estimating

an unknown parameter with a given amount of resource [KDD13]. Here we also find

that, at low quantum state purities, QFI scales linearly with the number of ancillary
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qubits and quadratically with the Bloch radius.

In sec. 4.3.1 we describe QST of the target qubit without using ancillary qubits. In

sec. 4.3.2 we describe QST of the target qubit after precorrelating it with ancillary

qubits. In sec. 4.3.3 we describe NMR aspects of QST and present the experimental

results. In sec. 4.4 we estimate the QFI of a single uncorrelated qubit as well as that of

a target qubit precorrelated with certain ancillary qubits in an STR using analytical or

numerical techniques. Finally we summarize and conclude in sec. 4.5.

4.3 QST of a single target qubit

4.3.1 QST of a target qubit without ancilla

Consider a single target qubit in a mixed state with Bloch radius εt,1 ∈ [0, 1]. In the

Bloch sphere, we can represent it as a convex sum of the maximally mixed state �2/2

and a pure state |ψθ0,φ0��ψθ0,φ0 |, where

|ψθ0,φ0� = cos(θ0/2)|0�+ eiφ0 sin(θ0/2)|1�. (4.1)

The corresponding density matrix is

�θ0,φ0 = (1− εt,1)�2/2 + εt,1|ψθ0,φ0��ψθ0,φ0 |

=
1

2




1 + εt,1 cos θ0 εt,1e
−iφ0 sin θ0

εt,1e
iφ0 sin θ0 1− εt,1 cos θ0


 ,

= �2/2 + εt,1σθ0,φ0/2, (4.2)
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where the traceless deviation part

σθ0,φ0 = sin θ0 cosφ0 σx + sin θ0 sinφ0 σy + cos θ0 σz = n̂0.�σ. (4.3)

Here σx, σy, σz are the Pauli matrices and εt,1n̂0 is the Bloch vector. Now we describe an

NMR protocol to perform the single-qubit QST. The uniform background represented

by the identity in eq. (4.2) does not lead to any NMR signal and hence is generally

ignored during QST [NC10]. The second-term in eq. (4.2) is the trace-less part and is

referred to as the deviation part of the density matrix. After applying suitable readout

pulse, the deviation part gives raise to an NMR signal. An NMR signal is recorded as

a collective emf induced by the spin ensemble precessing in the Zeeman field. Modern

spectrometers are equipped with the quadrature detection scheme which involves reading

of two orthogonal magnetization components simultaneously and independently [Lev08].

In other words, the quadrature detection allows the reading �Ix� + i�Iy�, where Ix/y =

(σx/y)/2 are the components of spin-angular momentum operators.

As illustrated in fig. 4.1(c), QST of the single spin can be achieved using two inde-

pendent experiments [SRM13]: (i) estimating φ0 = tan−1(�Iy�/�Ix�) via a quadrature

measurement of �Ix� + i�Iy�; (ii) estimating θ0 via �Iz� measurement using a read-out

pulse after dephasing the off-diagonal terms using a pulsed field gradient (PFG). The

correlation [FPB+02] between the expected (σθ0,φ0), and the experimental (σ̃θ0,φ0) devi-

ation density matrices is calculated using

C =
Tr[σ̃θ0,φ0σθ0,φ0 ]�
Tr[σ̃2

θ0,φ0
]Tr[σ2

θ0,φ0
]
. (4.4)
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Fig. 4.1: (a) Schematic representation of an STR, (b) molecular structure of acetonitrile
corresponding to a 4-qubit STR and 1H spectrum showing the two satellite transitions
corresponding to the two Zeeman basis states of 13C (the central peak is suppressed
as explained in the text) (c) QST of a target qubit without ancilla, requiring two in-
dependent NMR experiments, (d) QST of a target qubit using three ancillary qubits,
requiring a single quadrature detection of ancillary qubits without decoupling the target
during acquisition. In (d), each RF pulse shown by a rectangle is labeled with two pa-
rameters - nutation angle and phase respectively (see Appendix 8.3). The tomography
parameters are optimized using a genetic algorithm subject to certain constraints such
as rank, condition number, and overall signal enhancement [SRM13].
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4.3.2 QST of a target qubit in an STR

Here we consider an N -qubit STR consisting of a single target qubit surrounded by a

set of N − 1 indistinguishable ancillary qubits (fig. 4.1(a)). Under the weak-coupling

approximation, Hamiltonian for the STR is of the form

H = �ωtI1z + �ωa

N�

j=2

Ijz + π�J
N�

j=2

2I1zIjz, (4.5)

where ωt = −γtB0(1 + δt) and ωa = −γaB0(1 + δa) are the Larmor precession frequen-

cies of the target and ancilla respectively, γt/a are gyromagnetic ratios, δt/a are chemical

shifts, B0 is the strong external magnetic field strength, and Ijz = �2j−1 ⊗ σz

2
⊗ �2N−j is

the spin angular momentum operator corresponding to the jth qubit [Lev08]. Because

of the magnetic-equivalence symmetry, the scalar couplings between the target and in-

distinguishable ancillary qubits are all same, and of magnitude J , while those among

the ancillary qubits become unobservable and ineffective (fig. 4.1 (a) and (b)). In the

following we describe (i) precorrelating a target qubit with ancillary qubits, (ii) imple-

menting an arbitrary transformation on the target qubit, and (iii) QST of the target

qubit’s deviation part of the density matrix by a single-shot quadrature measurement

of ancillary qubits (fig. 4.1(d)).

(i) In a strong Zeeman field B0, the thermal equilibrium state of STR is,

ρ0 =
e−H/(kBT )

Tr[e−H/(kBT )]

≈ �2N/2
N + εt,NI1z + εa,N

N�

i=2

Iiz (4.6)

where the latter form is known as the high-temperature and high field approximation
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[Cav96, Lev08] with

εt,N =
�γtB0

2NkBT
and εa,N =

�γaB0

2NkBT
(4.7)

are the generalized Bloch radii (each � 10−5) [ZSM+13]. Here kB is the Boltzmann

constant and T is the absolute temperature. Thus the thermal state is practically

an uncorrelated state. Quantum correlations can enhance precision in estimating an

unknown parameter. For example, in an ensemble of k non-interacting qubits, square

of the error in estimating the parameter, say, θ goes as 1/k i.e., (Δθ)2 ∼ 1/k (shot-

noise scaling) [TA14]. However if the qubits are interacting, then we can exploit the

entanglement between them to achieve Heisenberg scaling i.e., (Δθ)2 ∼ 1/k2 [TA14].

Motivated by this fact, here we utilize the standard NMR technique, namely INEPT

[Cav96] to prepare a correlated state of the form

ρ1 = �2N/2
N + εa,N2I1z

N�

i=2

Iiz. (4.8)

We are going to show that this leads to a linear amplification in QFI, and hence we can

achieve better precision in estimating an unknown parameter. The corresponding pulse

sequence is shown in fig. 4.1(d). For a large STR with εa,N > εt,N , the above state

corresponds to a large anti-phase spin-order and accordingly leads to a strong NMR

signal after applying a suitable read-out pulse.

(ii) The target is now ready for an arbitrary local transformation

ρ1

↓ e−iθ0{cos(φ0+π/2)I1x+sin(φ0+π/2)I1y}

ρθ0,φ0 = �2N/2
N + εa,N(σθ0,φ0 ⊗ �2N−1)

N�

i=2

Iiz. (4.9)
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(iii) The problem we consider now is: If STR is originally prepared in the state described

in eq. (4.9) without revealing θ0 and φ0, can we perform the QST with only a single

quadrature NMR signal of the ancillary qubits to extract the unknown parameters θ0

and φ0?

The answer is affirmative, and to this end, we first apply the QST pulses (UT ) as shown

in fig. 4.1(d) and read the signal from ancillary qubits. In general, we obtain two

spectral lines from the ancillary qubits corresponding to |q = 0� and |q = 1� Zeeman

basis states of the target qubit (fig. 4.1(b)). We denote the observables corresponding

to the ancilla magnetization along α ∈ {x, y} directions conditional to the target qubit’s

basis states as

IAqα =

�
(|q��q|⊗ �2N−1)

N�

j=2

Ijα

�
. (4.10)

Following Abhishek et. al. [SRM13], we first setup the 4 × 3 dimensional constraint

matrix Z with elements

Z1j = Tr(BjI
A
0x), Z2j = Tr(BjI

A
0y),

Z3j = Tr(BjI
A
1x), Z4j = Tr(BjI

A
1y), (4.11)

where Bj =
�N

i=2 UT2I1αj
IizU

†
T and α1 = x, α2 = y, α3 = z, and UT is the QST

propagator (see fig. 4.1(d) and Appendix 8.3). While the tomography sequence UT is not

unique, the pulse-sequence in fig. 4.1(d) was obtained after numerically maximizing the

column-wise norm of the constraint matrix Z while simultaneously minimizing its overall

condition number (Appendix 8.4). Maximizing the column-wise norm is to uniformly

maximize the weights corresponding to all αj. The condition number is a measure of

invertibility of the constraint matrix Z. Lower the condition number, higher is the

precision in determining the unknowns in the presence of noise [BKW05], [AMHR13].
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The tomography problem then reduces to solving the following set of independent linear

constraint equations,

Z




sin θ0 cosφ0

sin θ0 sinφ0

cos θ0



=




�IA0x�

�IA0y�

�IA1x�

�IA1y�



, (4.12)

where elements of the right hand side correspond to intensities of NMR signal. Thus,

a single-shot quadrature read-out of ancillary qubits provides four real constraints suf-

ficient to determine the two unknowns θ0 and φ0, and hence achieve QST of the target

qubit [SRM13]. In addition, as we are going to show in sec. 4.4, we achieve at least 6

times amplification of QFI in this process.

4.3.3 Experiments

The experiments were carried out on a Bruker 500 MHz high-resolution NMR spectrom-

eter using a liquid sample containing 300 µl of acetonitrile (H3C2N) dissolved in 400 µl

of deuterated acetonitrile (D3C2N) at 300 K. We used the spin-1/2 nuclei of naturally

abundant 13C nucleus as the target qubit and three spin-1/2 hydrogen nuclei of the

methyl group as ancillary qubits (qubits 2, 3, and 4) (see fig. 4.1(b)). The 1H NMR

spectrum of acetonitrile shown in fig. 4.1(b) displays two satellite peaks corresponding

to the two Zeeman basis states of 13C (abundance 1.1 %). Here the central peak arising

from 1H spins of 12C molecules (abundance 98.9 %) is suppressed by using an initial

transition-selective 90 degree pulse followed by a PFG. In this spin-system, the indirect

spin-spin C-H couplings are J1i = 136.2 Hz (i = 2, 3, 4) while the H-H couplings are

ineffective due to magnetic equivalence [Lev08]. We had chosen on-resonance carrier
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frequencies for both the nuclear species. Experimental steps for preparing correlated

STR, transformation of the target qubit into σθ0,φ0 , and finally applying QST pulses

(UT ) and measurements are described in fig. 4.1 (d). First we prepared a target-ancilla

correlated state of the form ρ1 (eq. (4.8)). Then using a rotation by θ0 about a unit

vector cos(φ0 + π/2)x̂ + sin(φ0 + π/2)ŷ we rotate the target state σ0,0 into σθ0,φ0 (see

eq. (4.9)). We have arbitrarily chosen five distinct states of the target qubit and for

each of them we experimentally performed QST using a single quadrature NMR signal

of ancillary qubits as explained in sec. 4.3.2. High correlations C (eq. (4.4)) obtained

for various states tabulated in Table 4.1 indicate highly robust QST performance.

σθ0,φ0 C
σ0,φ0 0.994
σπ/2,0 0.984
σπ/2,π/2 0.998
σπ/4,0 0.999
σπ/4,π/2 0.999

Table 4.1: Experimental Correlations C for various unknown states.

4.4 Estimation of QFI in an STR

Consider a quantum system prepared in a state in the neighborhood of ρθ0,φ0 andM be a

given observable with spectral decomposition M =
�

i mi|mi��mi|. Let us first assume

that the polar angle θ has a distribution around θ0, while φ0 is precisely known. Now

we may calculate the probability fθ,φ0(mi) = Tr(ρθ,φ0 |mi��mi|) corresponding to the

eigenvalue mi. QFI is defined in terms of non-zero probability distributions as [TA14]

Fθ(ρθ0,φ0 ,M) =
�

i,f �=0

1

fθ0,φ0(mi)

�
∂fθ,φ0(mi)

∂θ

����
θ0

�2

. (4.13)
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Here ∂fθ,φ0(mi)/∂θ|θ0 quantifies the sensitivity of the observableM to small fluctuations

in θ around θ0. Similarly, if the polar angle is held fixed at θ0, while distributing

azimuthal angle φ around φ0, QFI is then given by

Fφ(ρθ0,φ0 ,M) =
�

i,f �=0

1

fθ0,φ0(mi)

�
∂fθ0,φ(mi)

∂φ

����
φ0

�2

. (4.14)

In the following we consider the specific cases of a single-qubit and an N -qubit STR

and estimate the QFI corresponding to polar, azimuthal, and dual-parameters.

4.4.1 QFI of a single-qubit

Consider a single target qubit prepared in the state

�θ,φ0 = �2/2 + εt,1σθ,φ0/2, (4.15)

where θ is in the neighborhood of θ0 (see eq. (4.2)).

Since QFI depends on the observable M , it is natural to ask which observable maxi-

mizes QFI. Such an optimal observable that maximizes QFI is known as the unbiased

observable M←→
θ0 ,φ0

and it satisfies the flow equation

∂�θ,φ0

∂θ

����
θ0

=
1

2

�
M←→

θ0 φ0
�θ0,φ0 + �θ0,φ0M←→

θ0 φ0

�
(4.16)

[KDD13]. The solution of this equation leads to the unbiased observable in the form of
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a symmetric logarithmic derivative (SLD),

M←→
θ0 ,φ0

=
�

i,j,λi+λj �=0

2

�
λi

����
∂�θ,φ0
∂θ

���
θ0

����λj

�

λi + λj

|λi��λj|, (4.17)

= εt,1
∂n̂

∂θ

����
θ0

.�σ (4.18)

where λi and |λi� are the eigenvalues and eigenvectors respectively of �θ0,φ0 (see [KDD13]

and Appendix 8.5.1). Since n̂0.
∂n̂
∂θ

��
θ0

= 0, the unbiased observable corresponds to a

direction orthogonal to the target state �θ0,φ0 [TA14].

For the optimal case, we obtain the upper bound for the mixed state QFI (see Appendix

8.5.1),

Fθ(�θ0,φ0 ,M←→
θ0 ,φ0

) = ε2t,1 = Tr

�
�θ0,φ0

�
M←→

θ0 ,φ0

�2
�
, (4.19)

since
�
M←→

θ0 ,φ0

�2

= ε2t,1�2 [ZSM+13].

As a specific example, for the state ρ0,0 = |0��0|, we obtain M←→
0 ,0

= σx as the unbiased

observable, and the maximum QFI, Fθ(ρ0,0, σx) = 1.

An important application of QFI is that it provides a bound to the variance (Δθ)2, via

quantum Cramer-Rao bound

(Δθ)2 ≥ 1

kFθ(�θ0,φ0 ,M←→
θ0 ,φ0

)
=

1

kε2t,1
, (4.20)

where k is the number of independent measurements on identically prepared states in

the neighborhood of �θ0,φ0 [KDD13]. In the NMR case, the number of independent

measurements k ∼ 1015, same as the number of molecules in the experimental sample.

Taking εt,1 ∼ 10−5, we obtain Fθ ∼ 10−10. Nevertheless, Δθ < 10−2 radians, which
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represents a reasonably high precision. In practice however, the precision is also limited

by the experimental errors such as mis-calibrations, incoherence and decoherence.

Similarly, for the azimuthal parameter we obtain SLD

M
θ0,

←→
φ0

= 2
∂�θ0,φ
∂φ

����
φ0

= εt,1
∂n̂

∂φ

����
φ0

.�σ. (4.21)

Since n̂0.
∂n̂
∂φ

���
φ0

= 0, to achieve optimal measurement one has to measure in a direction

orthogonal to the state �θ0,φ0 . With unbiased observable (SLD) we obtain (see Appendix

8.5.2),

Fφ(�θ0,φ0 ,Mθ0,
←→
φ0
) = ε2t,1 sin

2 θ0 = Tr

�
�θ0,φ0

�
M

θ0,
←→
φ0

�2
�

(4.22)

[ZSM+13]. The quantum Cramer-Rao bound in this case is therefore

(Δφ)2 ≥ 1

kFφ(�θ0,φ0 ,Mθ0,
←→
φ0
)
=

1

kε2t,1 sin
2 θ0

. (4.23)

We now seek an effective dual parameter QFI, denoted by �(�θ0,φ0), which quantifies the

maximum overall information. To this end, we utilize two-parameter quantum Cramer-

Rao bound given by [YNSA17]

(Δθ)2 + (Δφ)2 ≥ 1

(2k)�(�θ0,φ0)
, (4.24)

where the total number of measurements is now 2k owing to the individual measurement

of θ,φ (see Appendix 8.6). Here the effective dual-parameter QFI is related to the single-
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parameter QFIs via

1

�(�θ0,φ0)
=

2

Fθ(�θ0,φ0 ,M←→
θ0 ,φ0

)
+

2

Fφ(�θ0,φ0 ,Mθ0,
←→
φ0
)
=

2(1 + sin2 θ0)

ε2t,1 sin
2 θ0

. (4.25)

4.4.2 QFI of an N-qubit STR

Polar parameter

Let us first consider an N-qubit STR prepared in a precorrelated initial state in the

neighborhood of ρθ0,φ0 described in eq. (4.9). In this case, maximum QFI corresponding

to an unbiased observable M←→
θ0 ,φ0

(SLD) is given by (see eq. (4.19))

Fθ(ρθ0,φ0 ,M←→
θ0 ,φ0

) = Tr

�
ρθ0,φ0

�
M←→

θ0 ,φ0

�2
�

(4.26)

[KDD13]. Using the form of M←→
θ0 ,φ0

as given in eq. (4.17), we obtain

Fθ(ρθ0,φ0 ,M←→
θ0 ,φ0

) =
�

i,j,λi+λj �=0

4

����
�
λi

����
∂ρθ,φ0
∂θ

���
θ0

����λj

�����
2

(λi + λj)2
λi.

(4.27)

In general, QFI depends on the size of STR as well as its initial purity as illustrated

in Fig. 4.2 (a). For high purities, there seems to be little enhancement in QFI. On the

other hand for low purities, we find empirically that the maximum QFI has the form

Fθ(ρθ0,φ0 ,M←→
θ0 ,φ0

) ≈ ε2a,1(N − 1), (4.28)

where N ≥ 2. Thus in the case of small purity, in an STR with the target qubit pre-

correlated with ancillary qubits, QFI grows linearly with the number of ancillary qubits
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Fig. 4.2: (a) QFI Fθ(ρθ0,φ0 ,M↔
θ 0,φ0

) versus purity Tr[ρ20] at various values of N , (b)

Normalized QFI Fθ(ρθ0,φ0 ,M↔
θ 0,φ0

)/ε2a,1 versus number of ancillary spins (N − 1) at

various bath temperature values T , and (c) discord versus purity and QFI for N = 2.

and quadratically with the generalized Bloch radius εa,1. The corresponding normalized

QFI plotted in Fig. 4.2 (b) shows linear dependence at high temperatures (low purities)

and sublinear dependence at low temperatures (high purities). The origin of such an

enhancement is interesting. It seems to emerge from quantum correlations between the

central target qubit and ancillary qubits established by the precorrelation step followed

by the rotation of the central qubit. To illustrate this fact, we considered the N = 2

case, and calculated quantum discord [LMXW11, MBC+12, KRMP12] between the cen-

tral qubit and the single ancillary qubit, as well as QFI at various purity values. The

results are shown in Fig. 4.2 (c). As expected, both discord and QFI rapidly raise at low

purities but saturate at high purities, indicating that discord might be the origin of QFI

amplification. A detailed analysis of the relation between QFI and quantum discord

has been carried out by Sunho Kim et. al [KLKW18]. Note that in NMR systems at

room temperature, there can be no entanglement at any stage of the evolution due to

low purity [BCJ+99]. However also see [LZJ+06] in this regard.

Since QFI is increasing linearly with the size of STR as in eq. (4.28), the quantum
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Cramer-Rao bound for the variance (Δθ)2 in this case is

(Δθ)2 ≥ 1

kε2a,1(N − 1)
. (4.29)

It can be noted that a similar precorrelation between probe and ancillary qubits in the

presence of noise also leads to the enhancement in QFI [HMM16].

However consider the uncorrelated state at a high-temperature limit,

ρucθ0,φ0
≈ �2N/2

N + εt,N(σθ0,φ0 ⊗ �2N−1)/2 + εa,N

N�

i=2

Iiz

(4.30)

(see eq. (4.6)). In this case, again using the numerical approach, we found that

Fθ(ρ
uc
θ0,φ0

,M←→
θ0 ,φ0

) ≈ ε2t,1(1 + Fθ(ρθ0,φ0 ,M←→
θ0 ,φ0

)) ≈ ε2t,1,

since Fθ(ρθ0,φ0 ,M←→
θ0 ,φ0

) � 1 in small purity states, which is no better than the single

qubit case described in eq. (4.19). Thus ancillary qubits offer no advantage unless they

are precorrelated with the target. This implies that ρucθ0,φ0
is equivalent to �θ0,φ0 with

respect to QFI.

Azimuthal parameter

Again we consider an N-qubit STR prepared in the neighborhood of a precorrelated

initial state described by eq. (4.9). Using similar methods applied for obtaining eq.

(4.28), we found

Fφ(ρθ0,φ0 ,Mθ0,
←→
φ0
) ≈ rε2a,1(N − 1), (4.31)
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where the factor r ∈ [0, 1] depends on θ0 and φ0, and N ≥ 2. The corresponding

quantum Cramer-Rao bound for the variance (Δφ)2 is

(Δφ)2 ≥ 1

krε2a,1(N − 1)
. (4.32)

However consider the uncorrelated state ρucθ0,φ0
described in eq. (4.30). In this case,

using the numerical approach we found that

Fφ(ρ
uc
θ0,φ0

,M
θ0,

←→
φ0
) ≈ ε2t,1 sin

2 θ0. (4.33)

Comparing the above equation with eq. (4.22), we find no advantage of ancillary qubits

unless they are precorrelated with the target and that, �θ0,φ0 and ρucθ0,φ0
are equivalent

with respect to QFI.

Dual parameters - θ and φ

Just like the one-qubit case (see eqs. (4.24) and (4.25)), the dual-parameter quantum

Cramer-Rao bound in the N-qubit STR is given by [YNSA17]

(Δθ)2 + (Δφ)2 ≥ 1

2k�(ρθ0,φ0)
, (4.34)

where

�(ρθ0,φ0) ≈
ε2a,1(N − 1)r

2(1 + r)
(4.35)

is the effective dual-parameter QFI.
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σθ0,φ0

QFI
With QST-based observables With optimal observables (SLD)

�Q(�θ0,φ0)/ε
2
a,1 �Q(ρθ0,φ0)/ε

2
a,1 A �(�θ0,φ0)/ε

2
a,1 �(ρθ0,φ0)/ε

2
a,1 A

(Uncorrelated) (Correlated STR) (Uncorrelated) (Correlated STR)
σ0,φ0 0 0 - 0 0 -
σπ/2,0 0.008 0.049 6 0.016 0.75 47
σπ/2,π/2 0.008 0.056 7 0.016 0.75 47
σπ/4,0 0.004 0.028 7 0.010 0.5 50
σπ/4,π/2 0.004 0.033 8 0.010 0.5 50

Table 4.2: Estimated QFIs for a set of states and corresponding QFI-amplification
factors (A) under various scenarios. STR corresponds to N = 4, and εa,1/εt,1 ≈ 4. Note
that corresponding to θ0 = 0, the azimuthal parameter φ0 is indeterminate and therefore
dual parameter QFI’s vanish. Hence the corresponding state is σ0,φ0 .

4.4.3 QFI of a single qubit for quadrature observable

As explained in sec. 4.3.1 and in fig. 4.1(c), the first step of QST involves the direct

quadrature detection of �θ0,φ0 to determine φ0. Since the quadrature detection involves

partitioning the original signal into real and imaginary parts (using a reference wave

with 0 and π/2 phase-shifts [Lev08]), and as the data from each spectral line is ana-

lyzed independently, we may use the additivity property of QFI [Fri99] to obtain dual

parameter quadrature QFI �Q(�θ0,φ0) (see Appendix 8.7)

1

�Q(�θ0,φ0)
= inf

�
4

Fθ(��θ0,φ0
, Iα)

�
+ inf

�
4

Fφ(�θ0,φ0 , Iα)

�
, (4.36)

where the infimum is taken over α ∈ {x, y}. Table 4.2 lists the values of QFI �Q(�θ0,φ0)

for various initial states. However, if the target qubit is known to be in the neighborhood

of �θ0,φ0 (QST does not require this information), one can perform optimal (unbiased)

measurements to obtain �(�θ0,φ0) using eq. (4.25). The estimated values are also listed

in Table 4.2.
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4.4.4 QFI of an N-qubit STR for quadrature observable

The four observables used in eq. (4.12) together with the QST propagator UT (see fig.

4.1(d)) are equivalent to the effective observables (in Heisenberg picture)

Mqα = U †
T I

A
qαUT (4.37)

where q ∈ {0, 1} and α ∈ {x, y} and IAqα are defined as in eq. (4.10). As described in

Appendix 8.7, dual parameter quadrature QFI �Q(ρθ0,φ0) is

1

�Q(ρθ0,φ0)
= inf

�
4

Fθ(ρθ0,φ0 ,Mqα)

�
+ inf

�
4

Fφ(ρθ0,φ0 ,Mqα)

�
, (4.38)

where infimum is over q ∈ {0, 1} and α ∈ {x, y}. The estimated values of QFI �Q(ρθ0,φ0)

with QST observables and that of the QFI �(ρθ0,φ0) with optimal measurements (i.e.,

as in eq. (4.35)) are also listed in Table 4.2. We find that the QFI �Q(ρθ0,φ0) corre-

sponding to the quadrature measurement of the correlated target qubit is amplified by

at least 6 times compared to the isolated (uncorrelated) qubit’s QFI �Q(�θ0,φ0). Even

the QFIs corresponding to the optimal measurements on the correlated target qubit are

also amplified by a factor of at least 47 compared to that of the isolated qubit. In-

terestingly, it can be related to the polarization enhancement factor, which in the case

of N -spin STR happens to be (εa,1/εt,1)
√
N − 1 = (γa/γt)

√
N − 1 [EBW04]. For ace-

tonitrile this factor is about 6.93. Since QFI grows quadratically with the generalized

Bloch radius and linearly with number of ancillary qubits, one can expect 6.932 � 48

to be the amplification factor as evident from Table 4.2. However �Q(ρθ0,φ0) is much

less than the maximum QFI corresponding to SLD i.e., �(ρθ0,φ0), this is because the

former is obtained by QST-based observables with no prior information about the state

of the target qubit, while the latter is obtained with optimized observables setup using

the prior information that the target state is in the neighborhood of ρθ0,φ0 .
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4.5 Summary and conclusion

Quantum Fisher information (QFI) is a measure of sensitivity of an observable to small

fluctuations in the value of a parameter corresponding to a given quantum state. It

is an important tool to quantify the maximum achievable precision in measuring an

unknown parameter with a given amount of resource. In this work, we worked with a

star topology register (STR), which consists of a central target qubit surrounded by a set

of identical ancillary qubits. While an STR does not allow any individual control on the

ancillary qubits, it allows the target qubit to efficiently correlate with all the ancillary

qubits, leading to several interesting applications. We showed that, if the target qubit

is precorrelated with the ancillary qubits, it is possible to achieve a full QST of the

target qubit by a single quadrature measurement of only ancillary qubits. We studied

QFI of the target qubit that is precorrelated with ancillary qubits and compared it with

QFI of the uncorrelated target qubit. In each case, we estimated QFI corresponding to

(i) the observables used for QST (i.e., quadrature detection) with no prior information

about the state of the target qubit and (ii) the optimal observables obtained given the

state of the target qubit to be in the neighborhood of ρθ0,φ0 . We showed that if the

target qubit is initially precorrelated with ancillary qubits, we can achieve upto 8 times

amplification in QFI compared to the uncorrelated case even with QST observables. We

further showed that, with optimal observables, the QFI amplification is not only higher,

but also scales linearly with the size of the STR, i.e., with the number of ancillary

qubits and quadratically with the generalized Bloch radius εa,1 of ancillary qubits (for

εa,1 � 1). We believe that this protocol is a step towards realizing efficient quantum

measurements applicable for a variety of quantum architectures including spin-based
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architectures.
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Chapter 5

Frequentist-approach inspired
theory of quantum random
phenomena: A theoretical
exploration

“There is no law other than the law that there is no law.”-J A Wheeler [bJDBDJ05].

5.1 Abstract

Different ensembles of the same density matrix are indistinguishable within the modern

Kolmogorov probability measure theory of quantum random phenomena. We find that

changing the framework from the Kolmogorov one to a frequentist-inspired theory of

quantum random phenomena – à la von Mises – would lift the indistinguishability, and

potentially cost us the no-signaling principle (i.e., lead to superluminal communication).

We believe that this adds to the recent works on the search for a suitable representation

of the state of a quantum system. While erstwhile arguments for potential modifications

in the representation of the quantum state were restricted to possible variations in the

formalism of the quantum theory, we indicate a possible fallout of altering the underlying

theory of random processes.

71



5.2 Introduction

In this work we revisit the mathematical description of unknown state of a given quan-

tum system and propose an approach which is alternative to the standard one. Born’s

statistical interpretation of the state vector in quantum mechanics (QM) and hence the

density matrix description is based on Kolmogorov’s modern axiomatic, probability-

measure theoretic approach to random phenomena [Gut05, ST05, Ros10, Bil95, Wil10].

We refer to this as Kolmogorov QM (KQM) [Per02, CTDL05, MV10, Sha08, Gri95].

It is important to note that the convergence shown by strong law of large numbers

(LLN) (which tries to justify the a priori assumed probability measure) is not pointwise

but in terms of the very notion of probability [ST05, Spa13]. The parallel and earlier

approach by von Mises employs a limiting relative frequency definition of probability,

which assumes existence of the limit [VM81, Cra53, Haj12], while it (the limit) does not

exist in a strict mathematical sense [Ros10, ST05, Spa13]. Here we take an approach to

quantum random phenomena which is inspired by the frequentist one, but different. We

refer to it as frequentist-inspired QM (FQM). Conceptually, FQM is same as pathwise

or model-free approach to stochastic processes in mathematical finance, wherein a prob-

ability measure is not assumed a priori [Son06, Kar95, AC17, Rig16, Hob11]. We then

show that such a frequentist-inspired approach leads to violation of the no-signaling

principle [PT04, KB13, PR94, Per02] (i.e., leads to superluminal communication), by

distinguishing between two different ensemble preparation procedures, which are in-

distinguishable in KQM, while still remaining within the Hilbert space formalism of

quantum mechanics.

The main differences between KQM and FQM are the following: 1. KQM assumes

a priori a constant value (i.e., a real number between 0 and 1) for the probability of

even a single random event [Gut05]. Whereas in FQM, a priori probability measure is
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dropped completely and instead an a posteriori limit-supremum of relative frequency

(LRF) is considered [SKBSS20]. 2. Consequently in KQM, an average state (i.e., mixed

density matrix), corresponding to the unknown state of a given quantum system, is

considered [CTDL05, NC10]. Whereas in FQM, all possible states (i.e., state vectors)

corresponding to the unknown state of a given quantum system, are considered path by

path [SKBSS20].

This work is organized as follows. In Sec. 5.3, we introduce the FQM and show that

two ensembles described by the same density matrix can be distinguished via content-

dependent relative fluctuations. In Sec. 5.4 we show how, for practical purposes, one

can use KQM along with FQM in a consistent way. In Sec. 5.5, we discuss the possibility

of signaling within FQM. In Sec. 5.6, we discuss about the likely connection between

Boltzmann’s H-theorem and FQM. In Sec. 5.7, we briefly discuss about perfect anti-

correlation of singlet even within FQM, and the case of finite number of trials. And we

conclude in Sec. 5.8.

5.3 A frequentist-inspired approach to quantum ran-

dom phenomena

Consider a random variable X which is the outcome of projectively measuring |0��0|

on |+� where |±� = (|0� ± |1�)/
√
2, and |0� (|1�) is the eigenstate of the Pauli-z ob-

servable, σz, with eigenvalue +1 (−1). X has the sample space {+1, 0}. Assume that

the measurement can be repeated indefinitely, under exactly the same conditions, on

identical copies of |+�, independently. KQM assumes, a priori, a constant value for

the probability of a single random event X = +1, based on the subjective notion of

“equally likely” events, which is P (X = +1) = 1/2 (Born’s statistical interpretation of
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|+� [Gri95]) [Ros10, ST05, Gut05, Bil95, Wil10]. However in FQM, we suppose that

the objective LRF of the event X = +1, denoted as F (X = +1) (this plays the role of

P (X = +1)), is obtained a posteriori via experiment as follows. Let Xi be the outcome

of the ith trial of X. Then the number of +1 outcomes in N independent trials of X is

given by N+1(X,N) =
�N

i=1 Xi. An operationally motivated definition of LRF of the

event X = +1 is

F (X = +1) = lim sup
N→∞

N+1(X,N)

N

≡ lim
N→∞

�
sup
M≥N

N+1(X,M)

M

�
:=

1

2
+ κ(X = +1) (5.1)

[Soh06, Roy68, Rud76, Mun07, Apo85, Gup16], where κ(X = +1) is a random variable

which takes values in [−�, δ] (� > 0, δ > 0), depending on the outcomes in a given

experiment. Note that in Eq. (5.1), 1/2 cannot be preferred over 1/2+ c, |c| > 0, due to

fundamental indeterminacy. Only relative fluctuation matters. (See Appendix 8.8 for

details.) κ(X = +1) represents an intrinsic or fundamental fluctuation in F (X = +1).

κ(X = +1) is a consequence of Knightian type of ‘true’ uncertainty [Kni21, BHD16,

Hob11, Rig16]. It is important to note that this fluctuation in F (X = +1) is due to

an intrinsic random nature of outcomes of the trials, and not due to varying conditions

from one experiment to another, including imperfections in preparing a quantum state

which are unavoidable in the real world.

We also note that in the real world, we can realize 1 � N < ∞ only, and noise in

the state preparation and other type of noises like thermal, electronic etc., are unavoid-

able. Consequently it will add up with true/intrinsic fluctuation of κN(X = +1) where

lim supN→∞ κN(X = +1) = κ(X = +1). And hence we have to device some experimen-

tal techniques to get rid of or subtract out these noises (like in NMR) and obtain the

true fluctuation of κN(X = +1). Also noise may make discrimination between the two
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different ensemble preparation procedures A and B (discussed below) difficult. However

as the effect of noise is common to both the procedures A and B, and as we are interested

only in the relative fluctuation, some kind of subtraction among the two fluctuations

corresponding to the procedures A and B, may cancel the effect of noise.

Similarly, we also define F (X = 0) = 1/2 + κ(X = 0). Further, we define the

limit-infimum of relative frequency of the event X = +1 as follows: F �(X = +1) =

1/2+ κ�(X = +1). Note that as F (X = +1) and F (X = 0) are independent, they need

not sum to unity, unlike in F �(X = +1) + F (X = 0) = 1. However for N < ∞, as

there is no need of supremum and infimum, we have FN(X = +1) + FN(X = 0) = 1

where lim supN→∞ FN(.) = F (.), and lim infN→∞ FN(.) = F �(.). Note that F (X = +1)

is a random variable, whereas P (X = +1) is a constant. It is important to note that

limN→∞ N+1(X,N)/N cannot always converge pointwise (in event space) [Rud76] to

1/2, unlike, say, limN→∞ 1/N = 0 and limN→∞ N+1(X,N)/N2 ≤ limN→∞ 1/N = 0

[ST05], Appendix 8.9. This is because N+1(X,N) is a random variable. The fundamen-

tal fluctuation in LRF can be considered as a resource within the frequentist-inspired

theory of quantum random phenomena, in particular, as we show now, for distinguish-

ing between two different ensemble preparation procedures of the same density matrix.

This cannot be obtained within KQM due to a priori assuming constant values for the

corresponding probabilities.

5.3.1 Distinguishing between two different ensemble prepara-

tion procedures for the same density matrix

Consider the two following preparation procedures.

Procedure A: In a trial of X, if the outcome is +1 (0), then Alice prepares a qubit in

the state |0� (|1�). She repeats the preceding step M times independently. She gives
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this bunch – call it EA – of M qubits to Bob.

Procedure B: This is the same as procedure A, except that |0� (|1�) is replaced by |+�

(|−�). Again, Alice hands over this bunch – call it EB – of M qubits to Bob.

Bob is aware of the two preparation procedures but unaware of the outcomes of trials

of X. Further, Bob is allowed to choose the number M as large as he decides, carry

out any unitary operation on the states, and measure any observable. The question

is whether Bob can distinguish between the procedures A and B. The answer, within

standard KQM, is in the negative, as the density matrix corresponding to both the

procedures is the same, viz., (1
2
|0��0|+ 1

2
|1��1|)⊗M. We now consider the solution within

FQM.

Instead of representing the states of the bunches, EA and EB, in terms of density matrices,

one may choose to represent them path by path as

|ψA
j � =

M�

i=1

|Xi ⊕ 1�,

|ψB
j � =

M�

i=1

|Zi�, (5.2)

where⊕ is addition modulo 2, Zi = +(−) ifXi = +1(0), and j ∈ {1, 2, ..., 2M} [LZJ+06].

Particles in a bunch are noninteracting. Also, as particles in a bunch are distinguishable,

Bob can ignore symmetrizing or anti-symmetrizing the total wave function representing

the state of EA/B [Sha08, TH06].

The state |ψA(B)
j � has all the information which Bob has about the given EA(B). It may be

noted that |�ψA
j |ψB

k �| = 1
2M/2 �= 1, ∀j, k. See [Pop18] and Appendix 8.10 in this respect.

It may also be interesting to consider Refs. [Per96, AUČ+05, Pal12] and references

therein, where “superactivation of nonlocality” is considered within KQM.
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Bob applies

Rx(X
Θ) = exp(−iXΘσx/2) (5.3)

to each of the qubits, where XΘ is a random variable which outputs θi with LRF

F (XΘ = θi) = 1/2 + κ(XΘ = θi), i = 1, 2. Then he measures σz on the qubit state.

Suppose, unknown to Bob, the bunch that he obtained was created by procedure A. Now,

Rx(X
Θ = θn)|0� = |θn,−π/2�, and Rx(X

Θ = θn)|1� = −i|π − θn, π/2�, for n = 1, 2,

where |θ,φ� = cos θ
2
|0� + eiφ sin θ

2
|1� in the usual Bloch sphere representation. Let Xθ

be the outcome of measuring σz on |θ,φ�. Then,

F (Xθ = +1) = cos2(θ/2) + κ(Xθ = +1), (5.4)

which is the modified Born’s statistical interpretation of |θ,φ�. Note that here we have

assumed that the fluctuation term i.e., κ(.) will depend on content/state i.e, θ. See

Appendix 8.11 for its justification. And F (Xθ = −1) = sin2(θ/2) + κ(Xθ = −1),

θ �= 0, π. Define sample mean as

S(A,M) =
1

M

M�

i=1

Xθ
i , (5.5)

where A = {X,XΘ, Xθ1 , Xθ2 , Xπ−θ1 , Xπ−θ2}, Xθ
i ∈ {Xθ1

i , Xθ2
i , Xπ−θ1

i , Xπ−θ2
i }. Let M =

1. Then

F (S(A,M = 1) = +1) = lim sup
N→∞

N+1(S(A,M = 1), N)

N
.

(5.6)

The LRF, as defined in Eq. (5.1) or Eq. (5.6), is the only experimental or operational

way to characterize or gain information about a given random variable. Hence, any
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function we define should be expressible in terms of LRFs. The sample mean, as defined

in Eq. (5.5) is one such function, as it can be rewritten as lim supN→∞ S(A, N) =

2F (S(A,M = 1) = +1)− 1. It is the average of Bob’s final σz measurement outcomes.

(See Appendix 8.12 for details.)

We first consider the situation where θ2 = θ1. In this case, N+1(S(A,M = 1), N) =

N+1(X
θ1
1 , N+1(X1, N))+N+1(X

π−θ1
1 , N0(X1, N)), where N0(X1, N) = N −N+1(X1, N).

We have

lim sup
N→∞

N+1(X
θ1
1 , N+1(X1, N))

N+1(X1, N)

N+1(X1, N)

N

≤ lim sup
N→∞

N+1(X
θ1
1 , N+1(X1, N))

N+1(X1, N)
lim sup
N→∞

N+1(X1, N)

N

= (cos2
θ1
2
+ κ(Xθ1

1 = +1,+1(X1)))(
1

2
+ κ(X1 = +1)), (5.7)

for N+1(X1, N → ∞) > 0 [Soh06, KN00]. In Eq. (5.6), using lim supN→∞(xN +

yN) ≤ lim supN→∞ xN+lim supN→∞ yN where {xN}, {yN} are sequences of real numbers

[Roy68], and then substituting ineq. (5.7) and a similar result for

lim supN→∞ N+1(X
π−θ1
1 , N0(X1, N))/N , we get

F (S(A,M = 1) = +1) ≤ 1

2

+κ(X1 = +1)
�
cos2(θ1/2) + κ(Xθ1

1 = +1,+1(X1))
�

+κ(X1 = 0)
�
sin2(θ1/2) + κ(Xπ−θ1

1 = +1, 0(X1))
�

+
1

2

�
κ(Xθ1

1 = +1,+1(X1)) + κ(Xπ−θ1
1 = +1, 0(X1))

�
. (5.8)

(See Appendix 8.13 for details.) And F (S(A,M = 1) = −1) will have a similar expres-

sion.

We note here that if we modify the KQM initial density matrix into ρA = (1/2 +
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κ(X = +1))|0��0| + (1/2 + κ(X = 0))|1��1|, then one can easily verify that Rx(X
Θ =

θ1)ρ
ARx(X

Θ = θ1)
† along with the usual KQM Born rule for the subsequent σz-

measurement do not reproduce the required result consistent with ineq. (5.8).

Next suppose that the bunch of M states that Bob obtained from Alice was prepared

by procedure B. As before, Bob is oblivious of this choice of Alice. We have Rx(X
Θ =

θn)|±� = e∓iθn/2|±�, n = 1, 2. Therefore,

S(B,M) =
1

M

M�

i=1

X
π/2
i , (5.9)

where B = {Xπ/2}. Then

F (S(B,M = 1) = +1)

= lim sup
N→∞

N+1(S(B,M = 1), N)

N

=
1

2
+ κ(X1 = +1)

=
1

2
+ κ(XΘ

1 = θ1), (5.10)

since Xπ/2, X, and XΘ differ only in the value assigned to their outcomes (assuming

θ1 �= θ2; if θ1 = θ2 then XΘ is not a random variable at all). And F (S(B,M = 1) =

−1) = 1/2 + κ(X1 = 0).

For θ1 = 0, π/2, ineq. (5.8) reduces to F (S(A,M = 1) = +1) = 1/2 + κ(X1 =

+1), because N+1(X
θ1=0
1 , N+1(X1, N)) = N+1(X1, N). (See Appendix 8.14 for details.)

However, in general the fluctuation of F (S(A,M = 1) = +1) (ineq. (5.8)) relative to

that of F (S(B,M = 1) = +1) (Eq. (5.10)) is different. This is because, fluctuation of

κ(Y = y, Z) depends on both random variables Y and Z. And the expressions (5.8)

and (5.10) are different functions of κ(...)’s and it is impossible to reduce ineq. (5.8)

into Eq. (5.10). (Also see Fig. 5.1.) This is a necessary and sufficient condition for the
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discrimination. (See Appendix 8.16 for further justification.) Assuming that there are

no further physical restrictions on the observability of the fluctuations, we have therefore

shown that our frequentist-inspired approach distinguishes equal density matrices.

Further it is important to note that as relative fluctuation (which do not require quanti-

tatively precise prediction) is sufficient for discriminating between the two preparation

procedures, it is not really necessary to use KQM (which gives quantitatively precise pre-

diction) even in the later stages of the calculations as done in Appendix 8.20. Hence the

discrimination between the two preparation procedures is predicted completely within

FQM.

5.4 Using KQM along with FQM in a consistent way

If we use only FQM (KQM) then we obtain quantitatively imprecise (precise) predic-

tions. FQM’s prediction is quantitatively imprecise due to the fundamental fluctua-

tion associated with κ(...)’s. Hence, we should use KQM along with FQM, but in a

consistent way, to make predictions which are quantitatively precise as well. In fact,

FQM or the “pathwise” approach is already being used (without it being stressed) in

quantum teleportation [BBC+93, NC10], approximate quantum cloning [BcvH96], the

Bennett-Brassard 1984 quantum cryptography protocol [BB84], [NC10], discriminat-

ing between linearly independent [Che98] and dependent [BHW09] state vectors. In

[BBC+93], [BcvH96], [BB84], and [Che98, BHW09], the authors consider the unknown

states (|ψ�) to be teleported, cloned, cryptographed, and discriminated, respectively,

within a path by path approach, and without assuming a priori a probability measure

for Y , where a single copy of |ψ� has been prepared according to the outcome of a trial

of a random variable Y . However they assume a priori a probability measure for other

random variables. We note here that in pathwise approach of mathematical finance
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(S(A,M 1) 1)F    with 

(S(A,M 1) 1)F   
1

1 1 1(X 1,0(X )) 0.13, (X 0) 0.13         
with 

1 2 / 4   

1(S(B,M 1) 1) 1/ 2 (X 1)F       

1(X 1)   

0.1

1
1 1 1(X 1,0(X )) 0.13, (X 0) 0.13       

Fig. 5.1: Comparing the frequentist predictions for two preparation procedures A and
B. We consider here the θ1 = θ2 case. We wish to compare F (S(A,M = 1) = +1)
with F (S(B,M = 1) = +1). We set θ1 = θ2 = π/4. We have four indepen-
dent random variables viz., κ(X1 = +1), κ(X1 = 0), κ(Xθ1

1 = +1,+1(X1)), and
κ(Xπ−θ1

1 = +1, 0(X1)). We present a “front view” i.e., looking along the normal to the
(κ(X1 = +1), F (S(A/B,M = 1) = +1))-plane. Hence, plot for F (S(B,M = 1) = +1) is
the simple black straight line. However the bounds of F (S(A,M = 1) = +1) are surfaces
in the corresponding five-dimensional space. For given values of κ(Xπ−θ1

1 = +1, 0(X1))
and κ(X1 = 0), the same are surfaces in the corresponding three-dimensional space.
κ(Xπ−θ1

1 = +1, 0(X1)) and κ(X1 = 0) can take both positive and negative values.
Consider, first, an exemplary situation where κ(Xπ−θ1

1 = +1, 0(X1)) = −0.13 and
κ(X1 = 0) = −0.13. This leads to the blue surface at the bottom for the bound of
F (S(A,M = 1) = +1) in ineq. (5.8). F (S(A,M = 1) = +1|κ(Xπ−θ1

1 = +1, 0(X1)) =
−0.13,κ(X1 = 0) = −0.13) can only be below the blue surface, and so must be dif-
ferent from F (S(B,M = 1) = +1). The green surface, that is at the top for most of
the considered region on the (κ(X1 = +1), κ(Xθ1

1 = +1,+1(X1)))-plane, is the plot for
the bound of F (S(A,M = 1) = +1) in ineq. (5.8) with κ(Xπ−θ1

1 = +1, 0(X1)) = 0.13
and κ(X1 = 0) = 0.13. This time, F (S(A,M = 1) = +1|κ(Xπ−θ1

1 = +1, 0(X1)) =
0.13,κ(X1 = 0) = 0.13) can only be below the green surface, and again there are re-
gions where it is different from F (S(B,M = 1) = +1). Hence in procedure A, there
are points corresponding to LRF which are above, as well as below that corresponding
to end points of the line segment F (S(B,M = 1) = +1) = 1/2 + κ(X1 = +1). The
fluctuation of LRF, around 1/2, will therefore be different in the two procedures. For
ease of plotting, we have taken |κ(· · · )|’s to be large. All quantities are dimensionless.
Note that the surfaces in the above figure gives only the upper bounds. To know the
corresponding lower bounds, we need to evaluate limit infimum. (See Appendix 8.15 for
details.)
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[Son06], probability measure is also brought in at a later stage of the analysis to study

the interplay between all paths of a given stochastic process. We note that the two

notions, viz., assuming a priori a probability measure p|ψ(y)� for Y and path by path

consideration of |ψ�’s, cannot exist simultaneously. If we assume a priori a probability

measure then we are forced to consider the average mathematical state,
�
|ψ� dp|ψ�|ψ��ψ|,

instead of the actual physical states, |ψ� (see [BLSS09] in this regard).

5.5 Signaling

The distinguishing protocol discussed above can be used to provide instantaneous trans-

fer of information between two separated locations. See [Pop14, PR94, Paw10, LHFL14]

in this respect. Let Alice and Bob share M singlets |S0� = (|01� − |10�)/
√
2, and be

space-like separated. If Alice measures σz(σx) on her qubits, then on Bob’s side EA(B)

is produced. As Bob can distinguish (at least in principle) between EA and EB, he can

know Alice’s measurement choice superluminally. Note that we are not using nonlinear

evolution to achieve signaling, like in [BHW09, LHFL14].

5.6 Connection to H-theorem

The Boltzmann entropy of a non-equilibrium physical system, increases with time, as

per the H-theorem. However, the Gibbs-von Neumann entropy of the same system, is

constant in time (consequence of Liouville’s theorem). The two definitions of entropy

agree in equilibrium systems [GLTZ19]. The Boltzmann entropy is defined within an

approach where we consider the actual state of the given physical system (i.e., path

by path approach [Son06, Kar95, AC17, Rig16, Hob11]) without assuming, a priori, a

probability measure. Whereas, the Gibbs-von Neumann entropy is based on the density
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matrix approach wherein we assume, a priori, a probability measure to obtain the

average state of the system under consideration. The proof of the H-theorem depends

on the definition of Boltzmann entropy, and crucially uses the hypothesis of “molecular

chaos” or “past-hypothesis” or “typicality” [GLTZ19, Hua87, HPS+06], along with the

Hamiltonian dynamics, while the constancy of the Gibbs-von Neumann entropy uses the

Hamiltonian dynamics only. It seems that the additional assumption akin to molecular

chaos cannot be employed within the density matrix formalism of state description. See

[GLTZ19, Kac56] in this regard. Assuming that to be true, this implies that averaging

via a probability measure to obtain a density matrix, used in the Gibbs-von Neumann

entropy, erases some information relevant to the dynamics of non-equilibrium systems.

5.7 Further aspects

Consider S(σA
z σ

B
z ,M) = (1/M)

�M
i=1 σ

A
ziσ

B
zi where the random variable σ

A(B)
zi is the out-

come of Alice (Bob) measuring σz on her (his) ith qubit in the state α|01�+β|10�, |α|2+

|β|2 = 1. Then in FQM, one can easily show that limN→∞ S(σA
z σ

B
z , N) = −1. (See

Appendix 8.17 for details.) Hence, even though one may feel that the randomness of

κ(· · · ) terms will get canceled by an extra randomness in the anti-correlation of the sin-

glet and prevent signaling, such a thing does not happen, simply because such an extra

randomness does not exist. Further, one may also feel that the randomness of κ(· · · )

terms will get constrained by constraining the extra randomness in the anti-correlation

of the singlet. This also does not happen for the same reason.

For 1 � N < ∞, we obtain expressions which are same as the expressions (5.8), (5.10),

but with κ(· · · )’s replaced by the corresponding κN(· · · )’s (which represent fluctuation

corresponding to 1 � N < ∞ such that lim supN→∞ κN(· · · ) = κ(· · · )), inequalities

replaced by equalities, κN(X = +1) + κN(X = 0) = 0 and with similar constraint for
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other κN(· · · ) terms. This is because, when we take the limit N → ∞, it turns out that

the limit may not exist. Hence we have to consider limit supremum or limit infimum

which always exists, and they give rise to inequalities. (See Appendix 8.18 for details.)

Hence Bob can distinguish even when 1 � N < ∞.

The case when θ1 �= θ2 and the concept of using KQM in the later stages of calcula-

tions for practical purposes are considered in the Appendix 8.19 and Appendix 8.20

respectively.

Note that if we set κ(· · · )’s to 0 in expressions (5.8), (5.10), we obtain the numerical

values corresponding to the predictions of KQM. In this sense, KQM can be seen as a

special case of FQM.

5.8 Conclusion

In summary, we found that a frequentist-inspired theory of quantum random phe-

nomena leads to distinguishing between different ensembles of the same density ma-

trix, which in turn leads to signaling (i.e., superluminal communication). This may

be seen in the light of previous comments about the possible incompleteness of the

density matrix representation, within modern Kolmogorov probability measure theory

of quantum random phenomena, of a situation (state) of a physical system in Refs.

[PSCWH00, LZJ+06, TH06, SK17, Pop18, Bel89, CM10]. To our knowledge, preced-

ing discussions on possible modifications of the density matrix representation confined

themselves to revisions of the description of the state within the Hilbert space formalism

of quantum mechanics. We showed that remaining within the Hilbert space formalism

but looking out for possible implications of variations of the underlying theory of random

processes may cost us the no-signaling principle.
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Chapter 6

Violation of space-time Bell-CHSH
inequality beyond Tsirelson bound
and quantum cryptography

“The failure of Einstein separability violates, not the letter, but the spirit of special

relativity...”-Popescu and Rohrlich [PR94]. (Quantum nonlocality has challenged Ein-

stein’s notion of separation in space and time.)

6.1 Abstract

Here we show that, if we insert context dependent local unitary evolutions into spa-

tial (i.e., normal) Bell-CHSH test, then it is possible to violate space-time Bell-CHSH

inequality maximally (i.e., up to 4). Correct context dependency can be achieved via

post-selection. However this does not contradict Tsirelson quantum bound (2
√
2), be-

cause the latter has been derived without taking into consideration context dependent

unitary evolutions and/or post-selection. As an important application, this leads to a

more efficient (in terms of resource (singlets) and classical communication required) and

more sensitive (to eavesdropping) quantum key distribution (QKD) protocol, compared

to Ekert’s and Wigner’s QKD protocols [SK19].
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6.2 Introduction

“Correlations cry out for explanation” - J S Bell [Bel89]. Assuming super-quantum

correlations (PR box) and no-signaling (i.e., superluminal communication not possi-

ble), Popescu and Rohrlich have shown that one can violate Bell’s inequality [Bel64,

CHSH69, NC10] upto its algebraic bound (i.e., 4) [PR94]. Cabello has also proposed a

post-selection (on GHZ state) based Bell test to achieve the algebraic bound [Cab02].

Here we propose yet another scheme to achieve the same. In the spatial (i.e., nor-

mal) Bell-CHSH test, there is no unitary evolution. Alice and Bob randomly choose

their observables and directly measure them locally on their respective entangled qubit

states. As entangled particles are correlated over space in spite of measurement events

being space-like separated (nonlocal correlation), correlation between Alice’s and Bob’s

measurement outcomes can go up to 2
√
2, there by violating local realistic bound 2

[NC10].

Here we show that it is possible to boost the correlation over space (which led to 2
√
2)

further, via context dependent local unitary evolutions. But this requires for Bob to

know what Alice has measured (i.e., Alice’s choice of her observable only, but not her

outcome of measuring the corresponding observable), which is not possible unless Alice

can signal Bob (because they are space-like separated) [SKBSS20]. We showed in chapter

5 that, in frequentist-inspired quantum mechanics, signaling is possible. However here

we also provide a scheme wherein need for signaling can be bypassed as follows. Bob

applies local unitary operations randomly, and then measures his observables. After all

the measurements are performed, Alice and Bob post-select correct context dependent

local unitarily evolved states via classical communication. By this procedure, Alice

and Bob can achieve maximum possible correlation (i.e., 4) between their observables.

However, this does not contradict Tsirelson quantum bound (2
√
2), as the latter has been
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derived without taking into consideration context dependent local unitary evolutions

and/or post-selection [Cir80, NC10].

As an important application, our new scheme leads to a more efficient and more sensi-

tive (to eavesdropping) quantum key distribution (QKD) protocol. QKD or quantum

cryptography is a provably secure protocol using which private key bits can be gener-

ated between two parties over a public channel [NC10]. Security of QKD protocols is

based on the fact that, eavesdropper cannot steal the information without disturbing

the quantum state [HPS17, Paw10, BBB+06, BF02, LM05, May01, SP00, LC99, IH05,

WTY06, Kra16, SR08, Ral00, YLC+10, BKH+16, AAP11]. Suppose Alice wants to send

Bob a secret message ‘Hi’. They some how have shared a secret key ‘qw’ (e.g., they met

personally in the past and shared (but this is not always feasible) or via QKD). Alice

mixes her secret message with the secret key (encryption) and obtains ‘Hi+qw=rd’.

Alice sends ‘rd’ to Bob over public channel. Then Bob decrypts the message to retrieve

original secret message: ‘rd-qw=Hi’.

There are many types of QKD protocols, chief among them are as follows. BB84 [BB84]

and it’s variants (not based on Bell’s theorem for security) [NC10, JSW+00, Ben92,

Kak00]. Ekert’s QKD protocol [Eke91] and its variants [BBM92, GRTZ02], and device

independent QKD protocols which use entanglement and/or violation of Bell’s inequal-

ity for their security [BKH+16, MPA11, BCK12, VV14, YCY+16, HPS17]. QKD via

orthogonal states [GV95, ABD+10]. (Semi)Counterfactual QKD protocols ([SSS13])

[Noh09, SW10, HPS17]. Continuous variable QKD protocols [Ral99, Hil00, GG02,

Rei00, HPS17, DUF16]. Doing QKD considering noise in the channel [STP+16, TPB17].

Our space-time (ST) QKD protocol exploits violation of Bell’s inequality for security.

In our ST QKD protocol half of the total resource (singlets) corresponds to correct

context dependent unitarily evolved states. A small randomly chosen subset of this is

utilized to test for eavesdropping, and the remaining large portion is utilized for secret
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key bits generation. We are going to show that our ST QKD protocol is more efficient

(in terms of resource (singlets), and classical communication (CC) required to generate

a given amount of secret key bits), and more sensitive (to eavesdropping) than Ekert’s

and Wigner’s QKD protocols. QKD has become important, because the security of

public key distribution protocols, like RSA, is under threat with the advent of quantum

computers, which can find the prime factors of large numbers in polynomial time (Shor’s

algorithm) [NC10, PMA+19].

In Sec. 6.3 we describe ST Bell-CHSH test using post-selection. In Sec. 6.4 we propose

our ST QKD protocol and compare it with other existing QKD protocols, and finally

we summarize and conclude in Sec. 6.6.

6.3 Space-time Bell-CHSH test

Let Alice and Bob share N number of singlets:

|S0� = (|01� − |10�)/
√
2 = −(|+−� − |−+�)/

√
2,

where |0�, |1� are eigenkets of Pauli-z matrix σz with eigenvalues +1,−1 respectively, and

|±� = (|0�± |1�)/
√
2. Alice’s and Bob’s clocks are synchronized and their measurement

events are space-like separated. At time t = tAj , Alice measures locally the observable

A = σz ⊗ I or C = σx ⊗ I

on her jth qubit state (i.e., she measures σz or σx on her qubit state), according to

the outcome of an unbiased coin toss, j = 1, 2, ..., N , I is the 2 × 2 identity matrix.
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Immediately after Alice’s measurement, Bob applies unitary operator

U±y = exp
�
∓ i

π

4

σy

2

�
(6.1)

to his jth qubit state where Uk is chosen randomly from the set {U+y, U−y} with proba-

bility {1/2, 1/2} respectively, j = 1, 2, ..., N . Then at time t = tBj (> tAj ), Bob measures

locally the observable

B = −I ⊗ (σz + σx)/
√
2 or D = I ⊗ (σz − σx)/

√
2

on his jth qubit state, according to the outcome of an unbiased coin toss, j = 1, 2, ..., N

[NC10].

Bob knows each of the N number of tAj s. As collapse is instantaneous (which is evident

from violation of spatial Bell-CHSH inequality [GBNP01, HBD+15]), Bob can carry

out his operations immediately after Alice measures. We have the following eigenvalue

equations:

σz|0� = |0�, σz|1� = −|1�, σx|±� = ±|±�,
−(σz + σx)√

2
|±�B = ±|±�B,

σz − σx√
2

|±�D = ±|±�D (6.2)

where

|+�B = cos(θ1/2)|0�+ eiπ sin(θ1/2)|1�,

|−�B = cos(θ2/2)|0�+ sin(θ2/2)|1�,

|+�D = cos(θ2/2)|0�+ eiπ sin(θ2/2)|1�,

|−�D = cos(θ1/2)|0�+ sin(θ1/2)|1�, (6.3)
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θ1 = π − π/4, θ2 = π/4. Quantum mechanically the values of measurement outcomes

a, c, b, d (= ±1, the eigenvalues) of observables A,C,B,D respectively, are not preas-

signed before the measurement process. b, d depends on Alice’s choice of observable,

even though their measurement events are space-like separated. Measurement creates

reality [Per91, KS67, Mer90, EPR35, GHH+14, Cav18].

When Alice measures A locally, if her qubit collapses to |0� or |1�, then Bob’s qubit

always collapses instantaneously to |1� or |0� respectively (spatial correlation due to

entanglement). Similarly when Alice measures C locally, if her qubit collapses to |±�,

then Bob’s qubit collapses to |∓�.

6.3.1 Post-selected perfectly (anti)correlated sub-ensembles

After N measurements, they select out (via classical communication) the following four

(out of eight) subensembles (Ei, i = 1, 2, 3, 4) which corresponds to applying correct

context dependent local unitary evolutions (U±y):

(E1) Alice had measured A, then Bob had evolved his qubit state under the unitary

U+y (i.e., counter clock wise rotation about y-axis by 45◦ on the Bloch sphere) to get

U+y|1� = |+�B or U+y|0� = |−�B, and then Bob had measured B. Then the product of

measurement outcomes becomes ab = +1×+1 = 1 or ab = −1×−1 = 1. Hence knowing

b, Bob can know a i.e., a = b (perfectly correlated). Hence �A(tA)B1(t
B)� = 1 = ab1

where Bi, Di represents association of B,D respectively with unitary evolution Uµi
, i =

1, 2, µ1 = +y, µ2 = −y, and bi, di are measurement outcomes corresponding to Bi, Di

respectively, i = 1, 2. More rigorously, joint probability of Alice getting outcome a in a

measurement of A and Bob, after applying U+y, getting outcome b in a measurement of
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B is given by

p(a, b|U+y) = Tr(B(2)
b U

(2)
+yA(1)

a ρ0A(1)
a (U

(2)
+y )

†) (6.4)

[L0̈6, BE14], where a, b = +1,−1, ρ0 = |S0��S0|,

A(1)
+1 = |0��0|⊗ I,A(1)

−1 = |1��1|⊗ I

B(2)
±1 = I ⊗ |±�B�±|B, U (2)

±y = I ⊗ U±y.

⇒ �A(tA)B1(t
B)� =

�

a,b

p(a, b|U+y) ab = 1 = ab1, (6.5)

where

p(a = +1, b = +1|U+y) = p(a = −1, b = −1|U+y) = 1/2,

p(a = +1, b = −1|U+y) = p(a = −1, b = +1|U+y) = 0.

(E2) Alice had measured A, then Bob had evolved his qubit state under the unitary U−y

(i.e., clock wise rotation about y-axis by 45◦ on the Bloch sphere) to get U−y|1� = |−�D
or U−y|0� = |+�D, and then he had measured D. Then the product of measurement

outcomes becomes ad = +1 × −1 = −1 or ad = −1 × +1 = −1. ⇒ a = −d (perfectly

anticorrelated). Hence �A(tA)D2(t
B)� = −1 = ad2. More rigorously, joint probability

of Alice getting outcome a in a measurement of A and Bob, after applying U−y, getting

outcome d in a measurement of D is given by

p(a, d|U−y) = Tr(D(2)
d U

(2)
−yA(1)

a ρ0A(1)
a (U

(2)
−y )

†) (6.6)
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where a, d = +1,−1, and D(2)
±1 = I ⊗ |±�D�±|D.

⇒ �A(tA)D2(t
B)� =

�

a,d

p(a, d|U−y) ad = −1 = ad2, (6.7)

where

p(a = +1, d = +1|U−y) = p(a = −1, d = −1|U−y) = 0

p(a = +1, d = −1|U−y) = p(a = −1, d = +1|U−y) = 1/2.

(E3) Alice had measured C, then Bob had evolved his qubit state under the unitary

U−y to get U−y|−� = |+�B or U−y|+� = |−�B, and then he had measured B. Then the

product of measurement outcomes becomes cb = +1 × +1 = 1 or cb = −1 × −1 = 1.

⇒ c = b (perfectly correlated). Hence �C(tA)B2(t
B)� = 1 = cb2. More rigorously, joint

probability of Alice getting outcome c in a measurement of C and Bob, after applying

U−y, getting outcome b in a measurement of B is given by

p(c, b|U−y) = Tr(B(2)
b U

(2)
−yC(1)

c ρ0C(1)
c (U

(2)
−y )

†) (6.8)

where c, b = +1,−1, and C(1)
±1 = |±��±|⊗ I.

⇒ �C(tA)B2(t
B)� =

�

c,b

p(c, b|U−y)cb = 1 = cb2, (6.9)

where

p(c = +1, b = +1|U−y) = p(c = −1, b = −1|U−y) = 1/2,

p(c = +1, b = −1|U−y) = p(c = −1, b = +1|U−y) = 0.
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(E4) Alice had measured C, then Bob had evolved his qubit state under the unitary

U+y to get U+y|−� = |+�D or U+y|+� = |−�D, and then he had measured D. Then the

product of measurement outcomes becomes cd = +1 × +1 = 1 or cd = −1 × −1 = 1.

⇒ c = d (perfectly correlated). Hence �C(tA)D1(t
B)� = 1 = cd1. More rigorously, joint

probability of Alice getting outcome c in a measurement of C and Bob, after applying

U+y, getting outcome d in a measurement of D is given by

p(c, d|U+y) = Tr(D(2)
d U

(2)
+yC(1)

c ρ0C(1)
c (U

(2)
+y )

†), (6.10)

where c, d = +1,−1.

⇒ �C(tA)D1(t
B)� =

�

c,d

p(c, d|U+y)cd = 1 = cd1, (6.11)

where

p(c = +1, d = +1|U+y) = p(c = −1, d = −1|U+y) = 1/2

p(c = +1, d = −1|U+y) = p(c = −1, d = +1|U+y) = 0.

Now substituting the above expectation values into the ST Bell-CHSH term we obtain

�IQ� = �A(tA)B1(t
B)�+ �C(tA)B2(t

B)�

+�C(tA)D1(t
B)� − �A(tA)D2(t

B)� = 4

= ab1 + cb2 + cd1 − ad2 = IQ, (6.12)

which is the maximum possible violation of classical (local) upper bound 2. IQ takes only

one value i.e., 4. Hence �IQ� = IQ = 4 (i.e., there is no variance/error in experimentally

evaluating the expectation value). �IQ� = 4 does not contradict Tsirelson bound (2
√
2)
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[Cir80, NC10], because there are local unitary evolutions involved, and Alice and Bob

are post-selecting the correct context dependent local unitarily evolved subensembles.

Both of these are not considered in deriving Tsirelson bound.

There are two context dependencies here: (1) Whether Bob measures B in the context

of A or in the context of C (A and C do not commute). This context dependency mani-

fests as nonlocal correlation over space, as measurement events are space-like separated

[Per91, KS67, GHH+14, Cav18]. Similar context dependency for D. This results in

2 < �IQ� ≤ 2
√
2. (2) The context dependent local unitary operations that Bob applies

to his qubit states, as described above. This boosts the nonlocal correlation over space

that is already present, to the maximum extent possible. If there was no nonlocal cor-

relation over space (like in classical scenario), then unitary evolution cannot boost the

correlation any further. Hence even though no entanglement during unitary evolution,

we are able to boost the correlation as there was entanglement (correlation) prior to

unitary evolution. State of Bob’s qubit gets maximally (anti)correlated (with respect

to measurement outcomes) with that of Alice’s, as Bob applies U±y. This results in

2
√
2 < �IQ� ≤ 4. In other words, during unitary evolution, Bob’s qubit evolves into

such a state that measurement outcomes of Alice and Bob gets perfectly (anti)correlated.

As the singlet state |S0� is Bell nonlocal, it is also EPR steerable. This is because Bell

nonlocality implies EPR steerability [QVC+15, TNA16, WJD07]. Further in our pro-

tocol, Alice and Bob use classical communication for post-selecting the correct context

dependent local unitarily evolved subensembles, and Bob uses local unitary operations

only. Hence the operations used by Alice and Bob (i.e., LOCC) are the natural free

operations of the resource theory of entanglement [GA15].

Further note that, if we calculate the expectation values without post selecting the

strongly correlated sub-ensembles, then we obtain �IQ� = 2. This is because the strong

correlation built up due to correct context dependent U±y, is destroyed by the wrong
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context dependent U±y. If we do not apply U±y at all, then we get �IQ� = 2
√
2 [NC10].

6.4 A more efficient and more sensitive ST QKD

protocol

In the above ST Bell-CHSH test, Alice and Bob use a small portion of subensembles E1 to

E4, to test for eavesdropping/noise in the quantum channel. Remaining large portion of

the subensembles E1 to E4 is used for secret key bits generation. Note that to separate

the subensembles E1 to E4 from E5 to E8 (which corresponds to states evolved under

wrong context dependent U±y), they need to publicly announce only their sequence of

random choice of observables, and Bob’s sequence of random choice of U+y, U−y, but

not their measurement outcomes.

6.4.1 Test for eavesdropping

Alice and Bob test for eavesdropping as follows: They publicly announce a few set of

measurement outcomes chosen from the subensembles E1 to E4 (they need not choose

it randomly because see Sec. 6.4.3), and look for their perfect correlation (a = b1, c =

b2, c = d1) and perfect anticorrelation (a = −d2). Perfect correlation/anticorrelation in

each set of measurement outcomes is possible if and only if particles were maximally

entangled in each set (which implies no eavesdropping). They can also look for �IQ� = 4,

as it does not require an ensemble (∵ �IQ� = IQ (Eq. (6.12)), and hence a minimum of

four sets of measurement outcomes are sufficient to calculate �IQ�), unlike in Ekert and

Wigner protocols which requires an ensemble of large number of set of measurement

outcomes (see Sec. 6.4.4 for justification; also see Table 6.1). If they obtain perfect

correlation/anticorrelation in more than, say, n (threshold value considering noise in
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the channel) sets of measurement outcomes, then they can safely conclude that there

was no eavesdropping, and hence they can generate secret key bits. Else they have to

discard the keys and start afresh.

6.4.2 Secret key bits generation

If there was no eavesdropping, then they can generate secret key bits using the remaining

large portion of subensembles E1 to E4 (whose outcomes are not publicly announced) as

follows: Bob knows whether B has been measured in the context of A or C. Similarly

D. Further a = b1, c = b2, c = d1 (perfectly correlated). Hence both Alice’s and Bob’s

measurement outcomes will be either +1 or −1. Hence they directly obtain the keys.

Whereas a = −d2 (perfectly anticorrelated). Hence if Alice’s outcome is ±1, then Bob’s

outcome will be ∓1. Hence one of them has to invert to obtain the keys.

6.4.3 Amount of classical communication required

Ekert QKD protocol: Alice and Bob use three observables each [JSW+00]. They assign

0, 1, 00 to their observables. Hence each require approximately N/3 + N/3 + 2N/3 =

4N/3 bits of classical communication (CC) to publicly announce their sequence of ran-

dom choice of observables. To test for eavesdropping, one of them has to announce their

measurement outcomes of 4 subensembles out of 9, which requires 4N/9 bits of classical

communication. Hence total CC required is 28N/9 = 14M bits (∵ N = M/K where K

and M are defined in Table 6.1).

Wigner QKD protocol: Alice and Bob use two observables each [JSW+00]. They assign

0, 1 to their observables. Hence each require approximately N/2 +N/2 = N bits of CC

to publicly announce their sequence of random choice of observables. To test for eaves-

dropping, one of them has to announce their measurement outcomes of 3 subensembles
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out of 4, which requires 3N/4 bits of classical communication. Hence total CC required

is 11N/4 = 11M bits.

ST QKD protocol: Alice and Bob use two observables each. Hence each require approxi-

mately N/2+N/2 = N bits of classical communication (CC) to publicly announce their

sequence of random choice of observables. Further Bob require N/2 + N/2 = N bits

of CC to publicly announce his sequence of random choice of U+y, U−y. They choose,

say, first or last or middle �N out of N/2 measurements which correspond to correct

context dependent unitarily evolved states, to test for eavesdropping. In fact they can

choose any consecutive �N out of N/2 measurements which correspond to correct con-

text dependent unitarily evolved states, to test for eavesdropping. Note that there is no

need to choose it randomly, because the N/2 measurements which correspond to correct

context dependent unitarily evolved states were themselves randomly distributed. That

is, the elements of subensembles E1 to E4 were themselves randomly distributed among

N singlets shared between Alice and Bob. Other four subensembles were discarded.

Hence Eve cannot know a priori which singlet is going to be an element of E1 to E4.

Hence she has to attack on each of the N singlets. Hence there is no need to further

randomly choose a small subset, from E1 to E4, to test for eavesdropping. Hence one of

them require �N bits of CC to announce the corresponding measurement outcomes, to

test for eavesdropping. Hence total CC required is N(3 + �) = 2M(3 + �)/(1− 2�) bits.

BB84� QKD protocol (a variant of BB84 with entangled photons (see Ref. [JSW+00])):

Alice and Bob use two observables each [JSW+00]. Hence each require approximately

N/2 + N/2 = N bits of classical communication (CC) to publicly announce their se-

quence of random choice of observables. To test for eavesdropping they require �N bits

of CC as in ST QKD protocol. Hence total CC required is N(2+�) = 2M(2+�)/(1−2�)

bits. These are tabulated in Table 6.1.
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6.4.4 Sensitivity to eavesdropping

Whatever the eavesdropping strategy, it is known that monogamy of entanglement pro-

vides/ensures security of QKD protocol even if the eavesdropper has access to signaling

resources [Paw10]. Hence here we define a sensitivity criterion which is independent of

the eavesdropping strategy. Consider Ekert QKD protocol [Eke91]. He uses Bell CHSH

expression with a global negative sign. Hence consider �AB�ρ0 where symbols are as

defined earlier. Strong LLN asserts that [Ros10]

P

�
lim
n→∞

F expt
n (�AB�ρ0) = �AB�ρ0

�
= 1. (6.13)

where F expt
n (�AB�ρ0) =

�n
i=1

AiBi

n
where Ai(Bi) is the outcome of i-th local measure-

ment of A(B) on ρ0. Variance Var(F expt
n (�AB�ρ0)) = Var(AB)/n where Var(AB) =

�(AB)2�ρ0 − �AB�2ρ0 . Define intrinsic error due to randomness in measurement out-

comes as,

Δintrinsic
n = |F expt

n (�AB�ρ0)− �AB�ρ0 | = c/
√
n (6.14)

where c is a constant which depends on Var(AB) and the confidence level required.

Define extrinsic error due to eavesdropping and noise in the channel

Δextrinsic
n = Δtotal

n −Δintrinsic
n ∝ amount of eavesdropping and noise in the channel.

(6.15)

Define sensitivity at a given m

Sm = (4Δextrinsic
n − 4Δintrinsic

n )/(4Δextrinsic
n ) (6.16)

98



where m = 4n, and we have assumed that there will always be nonzero noise in the

channel and hence Δextrinsic
n > 0. And factor 4 is because there are four terms in the Bell

expression and errors being random, they add up. Hence Sm ≤ 1. Hence in Ekert QKD

protocol, larger the m, better is the sensitivity of the protocol to eavesdropping. And

smaller the m, less sensitive is the protocol to eavesdropping. A similar result holds

for Wigner QKD protocol as well. However in ST-QKD protocol, Δintrinsic
n is zero for

arbitrary n. This is because every pair in E1 to E4 is either perfectly correlated or anti-

correlated. Hence A(tA)B1(t
B) = 1, C(tA)B2(t

B) = 1, C(tA)D1(t
B) = 1, A(tA)D2(t

B) =

−1 always. Hence for any given m, Sm = 1. This is also a consequence of achieving the

algebraic bound 4. Hence for any given value of n, ST-QKD protocol is more sensitive

to eavesdropping than Ekert and Wigner QKD protocols. Strictly speaking, this holds

even in the limit n → ∞ because intrinsic fluctuation never dies by virtue of κ(.) terms

(see chapter 5 for details).

Sensitivity and key rate

Let us fix n. One can verify that

Var(AB) = 1− Cov(A,B)2 (6.17)

where Cov(A,B) = �AB�ρ0 − �A�I/2�B�I/2 = �AB�ρ0 [Ros10]. Hence c in Eq. (6.14)

will decrease as the Cov(A,B) (and hence the amount of violation of Bell or Bell type

inequality) increases. Which in turn implies enhancement in Sm. Hence for a given m,

larger the violation of Bell inequality, more is the Sm.

Now to achieve a given value of Sm, we have to increase n and/or amount of violation

of Bell inequality. Hence it is possible to reduce n by increasing the amount of Bell

inequality violation. This in turn implies less wastage (T in Table 6.1) and hence an
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increase in key rate.

A comparison of our ST QKD protocol with other QKD protocols is given in Table 6.1.

It is evident from the table that ST QKD protocol is more efficient (in terms of resource

N and CC required to generate a given amount of secret key bits), and more sensitive

(to eavesdropping) than Ekert’s and Wigner’s QKD protocols. This is achieved at the

cost of introducing a simple local unitary evolution. ST is as efficient as BB84� in all

aspects except in the CC required (but BB84� belongs to a different group i.e., it is not

based on Bell’s theorem).

In Ekert’s and Wigner’s QKD protocols, the constraint T × N ≫ 1 (T,N defined in

Table 6.1) must be satisfied to kill the error/variance in calculating expectation values

corresponding to Bell’s inequality (hence large ensemble measurement is necessary).

But it is not required in ST QKD protocol as the products ab1 = +1, cb2 = +1, cd1 =

+1, ad2 = −1 (Eq. (6.12)) always (i.e., no variance in these products), unlike in Ekert’s

and Wigner’s QKD protocols. See Sec. 6.4.4 for details. Hence, when M is small (i.e.,

only a small amount of secret key bits are required), only ST and BB84� are economical.

Further we note that, if Bob can store his qubit states in quantum memory till Alice

publicly announces her sequence of random choice of measurement observables, then all

entries in discard (D) column (Table 6.1) can be made zero. This is because, discarding

of singlets corresponding to discard column is solely because Bob do not know a priori

Alice’s choice of her measurement observable. Hence if Bob stores his qubit states in

quantum memory until Alice announces her choice of measurement observable on a given

singlet, then Bob can subsequently apply the correct U±y and choose appropriate/correct

observable to be measured. By this, discarding of singlets can be completely eliminated.

By this eavesdropper will not gain any advantage. Consequently, more key bits can be

generated in Ekert, ST, and BB84�. But storing quantum states against decoherence is

a great challenge.
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Table 6.1: Ek, Wi, ST, and B� stands for Ekert, Wigner, space-time, and BB84� QKD
protocols respectively. Fraction of the total resource distributed for various purposes
(columns 2-5): Key (K):= For secret key bits generation, Test (T ):= To test for eaves-
dropping, Discard (D):= Not used for anything, Wastage (W = T +D):= Total amount
of wastage [JSW+00]. N is the number of singlets (|S0�s) required to generate M bits
of secret key (M = NK). CC:= Total amount of classical communication (in bits)
required to generate M bits of secret key (see Sec. 6.4.3). Sm is the sensitivity to eaves-
dropping (Eq. (6.16)). First three QKD protocols are based on Bell’s theorem. E:=
requires an ensemble of large number of |S0�s to test for eavesdropping (see Secs. 6.4.1,
6.4.4 for explanation). 0 < � � 1/2.

K T D W N CC Sm

Ek 2/9 4
9
(E) 3

9
7/9 9M

2
14M depends on m, and < 1

Wi 1/4 3
4
(E) 0 3/4 4M 11M depends on m, and < 1

ST 1
2
− � � 1

2
1
2
+ � 2M

1−2�
2M(3+�)
1−2�

1

B� 1
2
− � � 1

2
1
2
+ � 2M

1−2�
2M(2+�)
1−2�

-

Finally it is important to note that, one can also observe violation of Bell inequality

greater than 2, and even upto its algebraic bound 4, due to loopholes (such as local-

ity loophole, detection or fair-sampling loophole, using faked-state technique etc.) in

performing the Bell test as well [GLLL+11, PSS+11, CZY+16]. However in this article,

all our theoretical calculations are based on the assumption that there will not be any

such loopholes in performing the Bell test. Hence the algebraic bound 4 which we were

able to achieve, was not due to any kind of such loopholes. Further note that in our

protocol, Alice and Bob are post-selecting with respect to their choice of measurement

observables only, but not with respect to their measurement outcomes. In the ST-QKD

protocol, Alice and Bob publicly announce their choice of measurement observables

only, but not their measurement outcomes, and then post-select accordingly. Hence the

violation of Bell inequality which Alice and Bob achieve (which is upto 4), is not due to

fair-sampling loophole (this corresponds to post-selecting with respect to measurement

outcomes [Bra11, CZY+16]). If it were so, then our protocol could not have been used

for QKD.
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Fig. 6.1: Quantum circuit describing Moussa protocol to extract the expectation value
�AB�

1�ρ0 . Other three expectation values in Eq. (6.12) can be extracted in a similar
fashion.

6.5 An NMR experimental proposal to test space-

time Bell-CHSH protocol

Let B�
1 = (U

(2)
+y )

†BU
(2)
+y . Then one can verify that

�A(tA)B1(t
B)� = Tr(AB�

1ρ0) = �AB�
1�ρ0 (6.18)

and B�
1B

�†
1 = B�

1B
�
1 = I ⊗ I. Similar relations hold for other three expectation values in

Eq. (6.12) as well. Hence we can use Moussa protocol [MRCL10] in NMR to extract

the expectation values, as shown in Fig. 6.1.
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6.6 Summary and conclusion

We showed that if we insert context dependent local unitary evolutions into normal

Bell test, then it is possible to violate space-time (ST) Bell-CHSH inequality maximally

(i.e., up to 4). Correct context dependency can be achieved via post-selection. We

presented a scheme to boost the correlation over space to the maximum extent possible

(i.e., 4) via local unitary evolutions and subsequent classical communication (i.e., post-

selection). This does not contradict Tsirelson bound (2
√
2), as the latter does not take

into consideration unitary evolutions and/or post-selection. Further we showed that

this leads to a more efficient and more sensitive (to eavesdropping) ST quantum key

distribution (QKD) protocol. ST QKD protocol is far efficient and economical in terms

of resource (singlets, classical communication) required to generate a given amount of

secret key bits, than Ekert’s and Wigner’s QKD protocols. This can be achieved at the

cost of introducing a simple local unitary evolution (i.e., ±45 degree rotation about y-

axis on the Bloch sphere). However compared to BB84� (i.e., modified BB84), ST QKD

protocol is less efficient only in one aspect i.e., classical communication required, and in

other aspects it is same as BB84�. We also showed that, when the amount of secret key

bits to be generated is small, only ST and BB84� QKD protocols are economical.

Finally we note that if we get access to nonlinear evolution (closed time like curve based

qubit) then BB84 becomes insecure [BHW09]. However entanglement monogamy may

still ensure security of QKD via nonlocal correlation [Paw10]. In this sense entanglement

based QKD might be more superior to BB84.
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Chapter 7

Future directions

The standard text book quantum mechanics (QM) [CTDL05] is based on two pillars

viz., postulates of QM, and A. N. Kolmogorov’s mathematical model of quantum ran-

dom phenomena (i.e., modern axiomatic, measure theoretic approach to the theory of

random phenomena) [Gut05]. This gives rise to the widely used density matrix descrip-

tion in QM. Let us call this Kolmogorov QM (KQM). In chapter 5 we proposed a new

mathematical model of quantum random phenomena, inspired by Richard von Mises

[ST05, Ros10]. We call this Frequentist-inspired QM (FQM). As a potential application,

superluminal communication which is prohibited in KQM (i.e., density matrix descrip-

tion), becomes possible in FQM. We believe that our new model FQM is an important

step forward in the recent efforts elsewhere (see [PSCWH00, LZJ+06, Pop18, GLTZ19]),

to tackle many problems in QM, arising solely due to using density matrix description.

FQM being a very fundamental revival in our understanding of the foundations of QM,

we believe that it deserves further deeper investigation. In the following, we propose

further line of research into FQM.

Note: All the expressions, notations, acronyms etc., referred below, correspond to chap-

ters 4 and 5.

(1) Consider ineq. (8.29) which corresponds to procedure-A. Is there a way to eliminate

linear terms in ineq. (8.29) and get only the quadratic terms in κ(· · · ), by applying

Rx(X
Θ) in some fashion? If we can do this, then we will get a clear reduction in

fluctuation in procedure-A, compared to that in procedure-B.
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(2) Can we formulate in a sensible way, procedure-B (because this is simple) as a random

walk problem, and use the pathwise approach of mathematical finance [Son06] to predict

the dynamics ?

(3) It appears that κ(X = +1) corresponds to more than the measure zero set [Spa13,

Wil10, Bil95] corresponding to P (X = +1) = 1/2. It requires further investigation. It

will give us more insight into the connection between κ(X = +1) and the measure zero

set. Of course, the notion of measure zero set arises only when we assume a priori a

constant value for probability of a random event. Hence measure zero set does not make

sense in FQM. Still, looking for a connection may throw more light on the difference

between the two approaches viz., KQM and FQM.

(4) Strong LLN says, limiting relative frequency limN→∞ N+1(X,N)/N converges almost

surely, but not surely (even though convergence happens with probability one), to 1/2.

This is because of non-empty measure zero set (it is infinitely large). But ‘almost’ is

just a qualitative statement [Spa13]. This is because, does ‘almost sure’ mean 99.99% or

99.999% or ...? We may have to look into the law of iterated logarithms for a quantitative

statement about convergence [Spa13].

(5) It appears that there is some connection between justification of measure theo-

retic approach via strong LLN and Gödel’s incompleteness theorem [Raa18, Pen06]. A

mathematically rigorous investigation from this perspective will shed more light on the

measure theory of Kolmogorov.

(6) In reality we cannot realizeN → ∞, even though it is possible in principle/conceptually.

Hence the case 1 � N < ∞ requires more investigation, because this is what we can

realize in a real experiment.

(7) In KQM we have an averaged measure of fluctuation (because all quantities are

weighed using the a priori assumed probabilities, and it cannot capture fundamental
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fluctuation). Whereas in FQM we have fluctuations in-itself. Further investigation into

this will give more insight into the differences between the two approaches.

(8) To look for a deeper connection between Knightian uncertainty and κ(X = +1).

(9) Boltzmann entropy is based on frequentist-inspired or pathwise approach to ran-

dom phenomena whereas von Neumann entropy is based on density matrix description

[GLTZ19]. In non-equilibrium, only Boltzmann entropy gives correct prediction which

is in accordance with second law of thermodynamics [GLTZ19]. To carry out further

investigation into it, because it may throw more light on the differences between the

two incompatible approches viz., KQM and FQM.

(10) Postulates of quantum mechanics + Frequentist-inspired approach to random phe-

nomena = − − − − − − − description (i.e., what plays the role of density matrix in

FQM?; In FQM, is there a mathematical object analogous to density matrix?)

(11) It may be possible to test the predictions of FQM via spin noise in NMR.

(12) We need to reanalyze the problem of whether there is entanglement in NMR sys-

tems at room temperature [LZJ+06], in the new light of FQM. Then it may turn out,

within FQM, that even entanglement is contributing to the QFI amplification shown

in chapter 4. Also the problem of spin noise in NMR wherein we get signal due to

incomplete statistical cancellation, even if we do not use radio frequency pulse to tilt

thermal equilibrium magnetization along z-axis onto x-y plane, in the Bloch sphere

representation [Blo46, FHLD15].

(13) It is the entanglement and the nonlinear collapse dynamics of quantum measure-

ment which is the main resource for signaling. FQM’s discrimination protocol just

decodes the already superluminally transferred information. Our protocol shows that

signaling is in principle possible. Hence it motivates us to search for better signaling

resources like PT-symmetric nonunitary quantum mechanics [LHFL14], exploiting the
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time of nonlinear wave function collapse dynamics etc.

(14) Is there a connection between nonlinear dynamics of quantum measurement (col-

lapse) and signaling, and hence solution of NP and #P problems in polynomial time

[AL98, LHFL14], and also with cloning an arbitrary unknown quantum state?

(15) How can we reconcile the signaling predicted within FQM with special relativity

[LSV02, Fei67]? One can show that it is possible to encode information onto linear

polarization degree of freedom of a photon in such a fashion that the amount of gravita-

tional red shift of the photon is unaffected. This shows that information carries no mass

and/or linear momentum. Instead of linear polarization if we consider circular polariza-

tion degree of freedom of a photon to encode information, then it might be possible to

show (via something which is sensitive to angular momentum) that information carries

no angular momentum as well. Then it implies that information is not physical. (This

result will be published elsewhere.)

However information has to be encoded in a physical observable like spin angular mo-

mentum. Hence violation of Bell inequality and subsequent signaling predicted within

FQM, implies an instantaneous change in spin angular momentum (and hence energy

distribution) across spacelike separation. This is the dynamical aspect of Bell nonlocal-

ity. Note that even in Aharonov-Bohm effect there is an instantaneous change in kinetic

energy distribution of an electron across spacelike separation [AB59, AK04, ACR16].

This can be reconciled with special relativity provided there exists an underlying quan-

tum nonlocal field from which quanta of spacetime (gravitational field [Rov04]) and

matter (matter field) emerge as a consequence of nonlocal field excitation. And special

relativity holds within spacetime only. (Research along these lines is under progress.)

(16) It is interesting to discuss the unknown parameter estimation using QFI when the

ancillary qubits are classically correlated with the target qubit. For this purpose we

may proceed as follows: Consider states in which target and ancillary qubits are not
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even classically correlated. Then calculate QFI (corresponding to SLD). Next consider

states in which target and ancillary qubits are only classically (pre)correlated but have

no quantum (pre)correlations like quantum discord, entanglement etc. (For this purpose

we may use the results of [KLKW18].) Then find QFI (again corresponding to SLD)

and see if there is an enhancement compared to the previous one.
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Chapter 8

Appendix

8.1 Postulates of theory of random phenomena are

independent of postulates of QM

It is very important to carefully and clearly distinguish between axioms/postulates of

QM and the axioms of mathematical model of random phenomena which is necessary to

analyze the post measurement data and/or predict (stochastically but not determinis-

tically) the outcome of even a single projective measurement. The collapse of the state

vector postulate of QM do not say anything about which theory/mathematical model

of random phenomena is to be used. Born’s probabilistic interpretation of state vector

uses Kolmogorov’s modern axiomatic probability measure theory of random phenomena

and the resulting QM is known as density matrix description or KQM or standard QM

i.e.,

Postulates of QM +Kolmogorov�s probability measure theory

= density matrix description or KQM.

Postulates of QM + frequentist inspired theory ofrandom phenomena = FQM. (8.1)

FQM is based on an alternate approach to the theory of random phenomena which

is motivated by experiment (i.e., operationally motivated) and hence do not assume a

priori a probability measure unlike in KQM. FQM uses a posteriori LRF instead of a
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priori probability measure.

8.2 Fundamental difference between von Mises def-

inition of probability (and hence FQM’s LRF)

and Kolmogorov’s a priori probability

The basic, fundamental, and crucial difference between von Mises definition of proba-

bility (and hence FQM’s definition of LRF) and Kolmogorov’s a priori assumption of a

constant value for the probability of a single random event is the following.

von Mises defined probability as

P (X = +1) = lim
N→∞

N+1(X,N)/N = 1/2 (8.2)

(see [Ros10] in this regard). von Mises assumed that the limit always exists but it is

not correct as shown in Appendix 8.9, and hence κ(X = +1) term comes into picture.

That is, in FQM, LRF of the event X = +1 is defined as

F (X = +1) := lim sup
N→∞

N+1(X,N)

N
=

1

2
+ κ(X = +1). (8.3)

This is based on relative frequency and hence requires an ensemble or repetition of the

experiment, under identical conditions, a large number of times. Whereas Kolmogorov

assumed a priori a constant value (a real number between 0 and 1) for the probability

of a single random event [Gut05] (but not an ensemble) i.e.,

P (X = +1) = 1/2. (8.4)
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A priori probability is based on an observer’s intuitive/subjective notion like “equally

likely” events. It is an abstract mathematical quantity. It has no direct connection with

actual random phenomena (i.e., experiment) but it may be interpreted as an observer’s

subjective measure of belief [Ros10, GLTZ19] that in a single trial of X the outcome

will be +1. A priori probability per se has nothing to do with/has no connection with

outcomes of a large number of trials of random variable(s) i.e., an ensemble. (In fact

the notion of probability measure started with gambling like casino, dice throw etc.,

where we are forced to predict probabilistically, but not deterministically, the outcome

of a single trial of a random variable.) E.g., let Alice prepare a single qubit in the state

|+� = (|0�+ |1�)/
√
2. Then according to KQM, the state of the single qubit from Alice’s

perspective is described/represented by the pure density matrix

ρ = |+��+|. (8.5)

(Whereas the state of an ensemble of M number of identical copies of |+� is represented

by ρ⊗M.) Let Alice measure the observable |0��0| on ρ. Then density matrix descrip-

tion predicts probabilistically (but not deterministically) that Alice will obtain a single

outcome +1 with a priori assumed probability 1/2 (Born’s probabilistic interpretation

of state vector) i.e.,

P (X = +1) = Tr(|0��0|ρ) = 1/2. (8.6)

We may interpret, connect, and justify a priori probability 1/2 (and hence ρ) using

an ensemble of identical copies of |+�, in some sense, for practical purposes only (see

Appendix 8.2.1). But strictly speaking, fundamentally a priori probability pertains

only to a single copy of |+�. This follows from the very meaning of a priori assumption.

If it is not so, then a priori assumption becomes pointless and meaningless (also see

Appendices 8.9.2, 8.2.2).
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All the above notions and points apply to mixed states as well e.g., in the above example

assume that Bob knows everything except Alice’s outcome of measuring |0��0| on |+�.

Then according to density matrix description or KQM, the average state of a single qubit

(but not an ensemble of qubits each prepared using the same preparation procedure)

from Bob’s perspective is described by the mixed density matrix

ρB = (|0��0|+ |1��1|)/2. (8.7)

Mixedness here is a measure of Bob’s subjective ignorance about the state of the given

single qubit. In other words ρB is psi-epistemic (but not psi-ontic) i.e., ρB represents

an observer’s state of knowledge (or amount of ignorance) about the state of the given

single qubit [WB12, AAP11].

However if Bob wants to consider the actual physical state of the given single qubit path

by path then he must drop the a priori assumption of a probability measure associated

with Alice’s |0��0| measurement outcome, as done in FQM. Here it is important to note

that the two notions viz., path by path and a priori probability measure cannot coexist

simultaneously. Presence of one excludes the other. If we assume a priori a probability

measure then we are forced to consider the average state. This is why FQM and KQM

are fundamentally incompatible.

8.2.1 Physical justification, in some sense, for practical pur-

poses, of a priori probability: Connection with an en-

semble

Kolmogorov’s strong LLN tries to establish connection between theory (a priori assumed

probability measure) and experiment (limiting relative frequency), and hence it tries to
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give an experimental justification, in some sense, for the a priori theoretical probability.

Convergence shown by Kolmogorov’s strong LLN is in terms of the very notion which it is

actually trying to define/explain/justify i.e., probability, but not pointwise convergence

[ST05]. That is, Kolmogorov’s strong LLN shows that [Ros10]

P ( lim
N→∞

N+1(X,N)/N = 1/2) = 1, (8.8)

and it is known as almost sure (but not 100% sure) convergence because there is infinitely

large measure zero set [Wil10]. Given the definition and nature of random phenomena,

κ(X = +1) term follows (see Eq. (8.3)) upon dropping the a priori assumption of a

probability measure and using LRF (which do not converge pointwise to 1/2 always,

as shown in Appendix 8.9) instead of a probability measure. However for most of the

practical purposes, whenever N � 1, we may safely neglect κN(X = +1) i.e.,

for N � 1, N+1(X,N)/N ≈ 1/2. (8.9)

This has ample experimental evidence as well (i.e., stabilization of relative frequency

[Gut05]). This is the sense in which predictions of Kolmogorov’s strong LLN has been

tested experimentally. This is also the sense in which the predictions of KQM has

been verified experimentally so far (also see example-A discussed below). But FQM is

pointing to an experiment (discriminating between two different ensemble preparation

procedures discussed in chapter 5) wherein we may observe deviation from the predic-

tions of KQM. Examples discussed by Popescu [Pop18], Goldstein et. al. [GLTZ19] etc.,

also fall in this category.
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Example-A

Consider measuring σz on a single copy of |+�. Then according to KQM, ρ = |+��+|

and �σz�ρ = Tr(σzρ) = 0. This is nothing but theoretical mean value of the observ-

able σz based on observer’s measure of belief (which is 1/2) that single outcome of σz

measurement will be +1 and observer’s measure of belief (1/2) that single outcome

of σz measurement will be -1 i.e., �σz�ρ = 1/2 × (+1) + 1/2 × (−1) = 0. When

P (σz(ρ) = ±1) = 1/2 correspond to a single measurement outcome, then how come

�σz�ρ (which is based on P (σz(ρ) = ±1) = 1/2) not correspond to a single measure-

ment outcome? Let SN = (1/N)
�N

i=1 σzi where σzi is the outcome of σz measurement

on i-th copy of |+�. Kolmogorov’s strong LLN tries to justify/connect the theoreti-

cal mean �σz�ρ = 0 to experimental observation via P (limN→∞ SN = 0) = 1. But

the convergence is not pointwise. And what we actually observe is limN→∞ SN and it

will not always converge pointwise to 0 (Appendix 8.9). And hence we have, in FQM,

limN→∞ SN = 2κ(σz(|+�) = +1). But for most of the practical purposes, we may

safely neglect κN(σz(|+�) = +1) where N � 1, and say that theoretical mean value

predicted by ρ has been realized experimentally. In this approximate sense, we may as-

sociate/connect ρ with an ensemble and answer questions about average properties also

pertaining to an ensemble. But from a foundational point of view, we cannot neglect

κ(σz(|+�) = +1), and ρ describes state of a single qubit and answers questions about

mean values also pertaining to a single qubit’s state (but not an ensemble of identical

qubit states). In fact it is the FQM which fundamentally answers questions about aver-

age properties pertaining to an ensemble only, without assuming a priori a probability

measure.

In the preceding calculations if we replace ρ by ρB = (|0��0|+ |1��1|)/2 then from foun-

dational point of view, ρB describes average (but not actual) state of a single qubit

and answers questions about mean values also pertaining to a single qubit (but not an
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ensemble of qubits).

8.2.2 A priori probability measure corresponds to a single ran-

dom event but not an ensemble

There are certain random phenomena which are not repeatable (or we are not allowed

to repeat) e.g., horse race, insurance company, gambling (casino, dice throw etc). In

such situations we are forced to predict (not deterministically but only stochastically

or probabilistically) outcome of a single trial of the random variable. There are many

approaches to tackle this problem viz., Kolmogorov’s modern axiomatic probability

measure theoretic approach [Gut05] which assumes a priori a constant value (a real

number between 0 and 1) for the probability of a single random event i.e., assumes a

priori a probability measure; Pathwise approach [Son06] (used in mathematical finance

to handle Knightian uncertainty) which do not assume a priori a probability measure;

Imprecise probability approach [VS12] etc. FQM cannot make any prediction in such

cases as it do not assume a priori a probability measure and as it requires an ensemble

i.e., a large number of trials of the given random variable(s) to make any predictions

which are based on κ(.) terms.

Even if we repeat the experiment infinitely many times still we can never be 100% sure

of obtaining/observing 1/2 because relative frequency cannot always converge pointwise

to 1/2 (see Appendix 8.9). Then how come a priori probability 1/2 (and hence ρ) is

associated not with a single measurement outcome but is associated with a large number

of measurement outcomes/ensemble? The very meaning of the axiom (i.e., assuming a

priori a real number between 0 and 1 for the probability of a single random event) itself

clearly shows that a priori probability 1/2 pertains/corresponds to a single random

event but not an ensemble. (Note that probability one implies sure occurrence provided
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measure zero set is empty. E.g., in case of Kolmogorov’s strong LLN, measure zero

set is infinitely large and hence the convergence shown by Kolmogorov’s strong LLN is

almost sure but not 100% sure convergence.) Kolmogorov’s strong LLN tries to justify,

in some sense, the a priori assumed probability 1/2 (which is subjective) by connecting

it with experiment i.e., limiting relative frequency (which is objective).

If a priori probability requires an ensemble framework i.e., a large number of measure-

ment outcomes to justify/obtain it, then a priori assumption of a probability measure

becomes pointless and meaningless. The very meaning of a priori is, no connection with

experiment. It is the FQM which requires an ensemble framework to obtain LRF (which

plays the role of KQM’s a priori probability measure) because FQM do not assume a

priori a probability measure. In fact it is the FQM which fundamentally answers ques-

tions about average properties pertaining to an ensemble only (but not a single qubit)

without assuming a priori a probability measure.

A priori probability 1/2 is an abstract mathematical (theoretical) quantity which may

be connected, in some sense, with experiment, as shown above. We may interpret it as

an observer’s subjective measure of belief that the outcome in a single trial of X will be

+1.

8.2.3 FQM v/s KQM: Known and unknown states

KQM or standard QM: Known or partially known or completely unknown state of

a single qubit is described by density matrix which lives in operator space (but not

in Hilbert space) which allows incoherent superposition (e.g., (|0��0| + |1��1|)/2 is an

incoherent superposition as it do not give rise to any interference effects between its two

components viz., |0��0| and |1��1| [Aud07]).

ρB = (|0��0| + |1��1|)/2 describes the average state of a single qubit whereas ρB
⊗M
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describes average state of an ensemble of M number of identically prepared qubits.

When we have full information about the state of a single qubit (i.e., state is known)

then its state is described by either a state vector living in Hilbert space (FQM) or a pure

density matrix living in operator space (KQM). When we have partial information about

the state of a single qubit (i.e., state is unknown) then its state is described by either

a set of state vectors living in Hilbert space without assuming a priori a probability

measure for the stochastic process used to prepare the unknown state (FQM, quantum

teleportation, proof of nocloning theorem, BB84 etc.) or a mixed density matrix living

in operator space (KQM).

It is important to note that κ(., .) is not the only difference between FQM and KQM.

E.g., in quantum teleportation, approximate cloning, BB84, discriminating between

linearly dependent and independent state vectors etc. (see Sec. 5.4), κ(., .) terms are

not used at all but one considers all possible states corresponding to the given unknown

quantum state, path by path, without assuming a priori a probability measure for the

stochastic process used to prepare the single copy of the given unknown quantum state.

κ(., .) terms are necessary if we are interested in fluctuation. Crucial and fundamental

difference between KQM and FQM is in assuming a priori a probability measure. κ(.)

is a natural consequence of dropping a priori assumption of a probability measure.

8.3 QST propagator UT in N-qubit STR

The task of the QST operator UT (eq. (4.11)) is to transfer information about the state

of the target qubit onto the ancillary qubits. Motivated from the INEPT sequence, we

modeled this operator in the form

UT = Uθt2,φ
t
2
UJ,τ2Uθt1,φ

t
1
Uθa2 ,φ

a
2
UJ,τ1Uθa1 ,φ

a
1
, (8.10)
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where

U
θ
a/t
j ,φ

a/t
j

= e
−iθ

a/t
j

�
I
a/t
x cosφ

a/t
j +I

a/t
y sinφ

a/t
j

�
, (8.11)

with Iaα = IA0α + IA1α (see eq. (4.10)), I tα = I1α (eq. (4.5)) for α ∈ {x, y, z}, θa/tj is the

nutation angle, φ
a/t
j is the phase, and

UJ,τj = e−iπJτj2I1zI
a
z . (8.12)

Using these parameters {θa/tj ,φ
a/t
j , τj} we can now construct the constraint matrix Z

by applying eqs. (4.11). We optimized these parameters using the genetic algorithm

routine of MATLAB, and obtained the solution illustrated in fig. 4.1(d). While the

solution is not unique, we found it to be sufficient for our purposes.

8.4 Constraint Matrix Z

Constraint matrix Z (eq. (4.12)) corresponding to the UT given in fig. 4.1(d) is the

following

Z =




1.5222 −2.3043 1.2564

−0.5025 −1.3001 1.9377

2.1985 −1.4165 2.3981

1.5946 0.2081 −1.3022



, (8.13)
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whose condition number is 4.5, which is sufficiently low for practical purposes. One of

our experimental signals was

S =




�IA0x�

�IA0y�

�IA1x�

�IA1y�



=




−2.1956

−1.4463

−1.3123

0.2762



. (8.14)

Using eq. (4.12), we now find




sin θ0 cosφ0

sin θ0 sinφ0

cos θ0



= Z−1S =




0.0657

0.9976

−0.0218



, (8.15)

which leads to (θ0,φ0) = (1.01π/2, 0.96π/2) and the corresponding correlation with

(π/2, π/2) is 99.8 as mentioned in the Table 4.1.

8.5 QFI of a single-qubit

8.5.1 Polar parameter

Consider eq. (4.16). Since the partial derivative

∂�θ,φ0

∂θ
=

εt,1
2




− sin θ e−iφ0 cos θ

eiφ0 cos θ sin θ


 =

εt,1
2

∂n̂

∂θ
.�σ, (8.16)
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the corresponding unbiased observable for a single target qubit turns out to be (using

eqs. (4.3) and (4.17)) [ZSM+13]

M←→
θ0 ,φ0

= 2
∂�θ,φ0

∂θ

����
θ0

= εt,1
∂n̂

∂θ

����
θ0

.�σ. (8.17)

Since n̂0.
∂n̂
∂θ

��
θ0

= 0, the unbiased observable corresponds to a direction orthogonal to

the target state �θ0,φ0 .

Often the measurement observable is not the same as the optimal (unbiased) observable.

For example, a QST observable makes no prior assumption about the target state, and

hence is in general a biased observable. To study QFI under a biased observable, we

now consider a deviation of a chosen observable from the optimal observable (eq. (8.17))

via Θ0 = θ0 + δθ0 and Φ0 = φ0 + δφ0. The chosen (or biased) observable is of the form

M←→
Θ0,Φ0

= εt,1




− sinΘ0 e−iΦ0 cosΘ0

eiΦ0 cosΘ0 sinΘ0


 . (8.18)

QFI obtained using eq. (4.13) is then

Fθ(�θ0,φ0 ,M←→
Θ0,Φ0

) =

ε2t,1(cos δφ0 cos θ0 cosΘ0 + sin θ0 sinΘ0)
2

1− ε2t,1(cos δφ0 sin θ0 cosΘ0 − cos θ0 sinΘ0)2
.

For δφ0 = 0 we obtain

Fθ(�θ0,φ0 ,M←→
Θ0,φ0

) =
ε2t,1 cos

2 δθ0

1− ε2t,1 sin
2 δθ0

. (8.19)

fig. 8.1 displays the profile of QFI in the above scenario. For the maximally biased

observable with δθ0 = π/2, QFI vanishes throughout, while for the optimal case, with
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Fig. 8.1: Profile of QFI Fθ versus the deviation δθ0 in the polar angle and the generalized
Bloch radius εt,1, as described by eq. (8.19).

δθ0 = 0 we obtain the upper bound ε2t,1 for the mixed state QFI (see eq. (4.19)).

8.5.2 Azimuthal parameter

Consider eq. (4.21). Since n̂0.
∂n̂
∂φ

���
φ0

= 0, to achieve optimal measurement one has to

measure in a direction orthogonal to the state �θ0,φ0 . Hence the directions n̂0,
∂n̂
∂θ

��
θ0
, and

∂n̂
∂φ

���
φ0

are mutually orthogonal. Again, we consider a deviation of a chosen observable

from the optimal observable (eq. (4.21)) via Θ0 = θ0 + δθ0 and Φ0 = φ0 + δφ0, and the

corresponding biased observable is then

M
Θ0,

←→
Φ0

= εt,1 sinΘ0




0 −ie−iΦ0

ieiΦ0 0


 . (8.20)
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QFI obtained using eq. (4.14) is then

Fφ(�θ0,φ0 ,MΘ0,
←→
Φ0
) =

ε2t,1 cos
2 δφ0 sin

2 θ0

1− ε2t,1 sin
2 δφ0 sin

2 θ0
,

which is independent of δθ0. For the unbiased observable (SLD) i.e., δθ0 = δφ0 = 0, we

obtain eq. (4.22).

8.6 Why is the simultaneous estimation of (θ,φ) not

possible?

Simultaneous estimation of both the parameters θ and φ is not possible as they are not

compatible for the following reason. Consider Fθ(�θ0,φ0 ,M←→
θ0 ,φ0

) and Fφ(�θ0,φ0 ,Mθ0,
←→
φ0
)

(sec. 4.4.1). These QFIs correspond to individual estimation of θ,φ. However if the

SLDs M←→
θ0 ,φ0

and M
θ0,

←→
φ0

commute, then we can measure in the common eigenbasis

and estimate both θ,φ simultaneously, and still achieve same precision as in individual

estimation scenario [RJDDan16]. This saves resource. However the compatibility of

SLDs is sufficient but not necessary for simultaneous estimation [RJDDan16]. Weaker

conditions necessary for simultaneous estimation are the following:

Im(Tr(�µ,νAB)) = 0 ∀ A,B and

Re(Tr(�µ,νAB)) = 0 for A �= B, (8.21)
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where A,B ∈ {M←→µ ,ν ,Mµ,←→ν } [YNSA17]. However in our case,

Im(Tr(�θ0,φ0M←→
θ0 ,φ0

M
θ0,

←→
φ0
)) = −Im(Tr(�θ0,φ0Mθ0,

←→
φ0
M←→

θ0 ,φ0
)) = ε3t,1 sin θ0,

Im(Tr(�θ0,φ0M
2←→
θ0 ,φ0

)) = Im(Tr(�θ0,φ0M
2

θ0,
←→
φ0
)) = 0,

and

Re(Tr(�θ0,φ0M←→
θ0 ,φ0

M
θ0,

←→
φ0
)) = Re(Tr(�θ0,φ0Mθ0,

←→
φ0
M←→

θ0 ,φ0
)) = 0.

Hence the incompatible parameters (θ,φ) cannot be estimated simultaneously.

8.7 QFI with quadrature measurement

Single qubit case: We define the analog of dual parameter quantum Cramer-Rao bound

(Δθ)2 + (Δφ)2 ≥ inf

�
1

(k/2)Fθ(��θ0,φ0
, Iα)

�
+ inf

�
1

(k/2)Fφ(�θ0,φ0 , Iα)

�
=

1

2k�Q(�θ0,φ0)

(8.22)

where infimum is over α ∈ {x, y}. In a given quadrature detection, we have k/2 num-

ber of Ix measurements (real signal) and k/2 number of Iy measurements (imaginary

signal). 2k in the denominator is because of using two quadrature detections (sec.

4.3.1). Fφ(�θ0,φ0 , Iα) is estimated using eq. (4.14). However, the θ0 measurement in-

volves destroying coherences using a PFG followed by an Iz measurement. In NMR,

Iz measurement can be achieved by applying a (π/2)y pulse (i.e., nutation angle π/2,

and phase π/2) on the state followed by an Ix measurement. This allows us to estimate

Fθ(�θ0,φ0 , Iz) = Fθ(�
�
θ0,φ0

, Ix) using eq. (4.13). Accordingly dual parameter quadrature

QFI �Q(�θ0,φ0) is as given in eq. (4.36).

STR case: Similar to eq. (8.22) we define the analog of dual parameter quantum
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Cramer-Rao bound as

(Δθ)2 + (Δφ)2 ≥ inf{ 1

(k/4)Fθ(ρθ0,φ0 ,Mqα)
}+ inf{ 1

(k/4)Fφ(ρθ0,φ0 ,Mqα)
} =

1

k�Q(ρθ0,φ0)
(8.23)

where infimum is over q ∈ {0, 1} and α ∈ {x, y}. Here we use single quadrature detection

of ancillary qubits where each of the four observables Mqα is measured on k/4 copies

of ρθ0,φ0 . Hence there is k in the denominator. Accordingly we obtain dual parameter

quadrature QFI �Q(ρθ0,φ0) as given in eq. (4.38).

8.8 In F (X = +1), 1/2 cannot be preferred over 1/2+c

In Eq. (5.1), choosing 1/2 is motivated/guided by the following factors: Experimen-

tal observation (i.e., stabilization of relative frequency [Gut05] somewhere around 1/2),

symmetry i.e., |+� is an equal superposition of the two eigenvectors of the observable

being measured (i.e., |0��0|), and convenience i.e, 1/2 is the square of the Fourier co-

efficient or amplitude in |+�. However from foundational point of view, these are not

compelling and sufficient reasons to prefer 1/2 over 1/2 + c, |c| > 0. (Note that if we

choose 1/2 + c then we will not recover KQM from FQM by setting κ(., .) terms to

zero. But that is okay because any way in KQM, probability 1/2 is an a priori as-

sumption which is not based on experiment. Then there is no compelling reason for not

to choose 1/2 + c (instead of 1/2) as a priori probability.) The fact that F (X = +1)

cannot always converge pointwise to 1/2 proves that even F (X = +1) has intrinsic

fluctuation. Further even if we repeat infinitely many times the experiment involving

N → ∞ number of trials of X, still F (X = +1) may not always fluctuate symmetrically

about 1/2. This is more appealing in case of F (Xθ �=π/2 = +1) where Xθ is defined in

the text preceding Eq. (5.4). This is due to fundamental uncertainty/indeterminacy

arising due to intrinsic randomness in measurement outcomes. If F (X = +1) would
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always fluctuate symmetrically about 1/2 then that would contradict the very meaning,

nature, and definition of random phenomena. What really matters and one can talk of

is the relative fluctuation i.e., fluctuation of F (Xθ=π/2 = +1) will be different compared

to that of F (Xθ �=π/2 = +1). This is unlike in KQM wherein one can talk of absolute

fluctuation due to the presence of quantitatively precise probability measure.

Of course we can absorb c into κ(X = +1). But here we are trying to argue that

F (X = +1) may not always fluctuate symmetrically about 1/2. And hence there is no

compelling reason to prefer 1/2 over 1/2 + c.

8.9 No pointwise convergence of limiting relative

frequency

If limN→∞ N+1(X,N)/N = 1/2, then it implies that ∀0 < � < 1/2, ∃M < ∞ such that

∀N > M, |N+1(X,N)/N − 1/2| < �. However, as N < ∞, all possible outcomes will be

realised with nonzero (positive) chance or possibility or likeliness, upon repeating the

experiment many times. Hence the requirement for pointwise convergence to 1/2 is not

always satisfied (e.g., for N+1(X,N) = N).

8.9.1 For most of the practical purposes limN→∞N+1(X,N)/N ≈

1/2: Overlooks content dependent fluctuation

As N increases, the number of elements in the sample space which correspond to or give

N+1(X,N)/N = 1/2 also increases (also it is the highest for N even). Whereas there

will always be only one element which gives N+1(X,N)/N = 1 or 0. But as long asM,N

are finite (however large), if we repeat sufficiently many times the experiment involving

M or N trials each, then certainly we will obtain/realize even the element which gives
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N+1(X,N)/N = 1 or 0. Hence limN→∞ N+1(X,N)/N cannot always converge pointwise

to 1/2. However for any given � > 0 we can choose M so large that for most of the

practical purposes the condition |N+1(X,N)/N−1/2| < � is almost always satisfied (this

is an experimental fact i.e., stabilization of relative frequency [Gut05]). And hence we

may say that limN→∞ N+1(X,N)/N ≈ 1/2 for most of the practical purposes. But by

this approximation we miss out, overlook the existence of κ(X = +1) term (Eq. (8.3))

and hence the content dependent fluctuation which is the key resource to distinguish

between z and x ensembles i.e., EA and EB. If content dependent fluctuation is present

even in the limit N → ∞, then it is justifiable to assume that it should be present even

at large but finite N as well (because physics is the same at all N). Hence the above

approximation misses out content dependent fluctuation. Content dependent fluctuation

might be easily observable even at large but finite N unlike the observation of violation

of |N+1(X,N)/N − 1/2| < �. This is because former is only a relative property (i.e.,

we study fluctuation of one ensemble compared to that of another ensemble) unlike the

latter. In the latter we have to wait for rare events to occur but it is not required in case

of the former as we are interested only in the relative fluctuation which do not depend

on rare events alone.

8.9.2 A priori probability may lead to information loss

If limN→∞ N+1(X,N)/N = 1/2 always then a priori assumption of probability 1/2 be-

comes useless and pointless (because then we can take former itself as our starting point

instead of assuming a priori probability 1/2). Because it is not so, a priori assumption

of probability 1/2 makes sense and makes life easy, makes predictions and calculations

mathematically neat and rigorous (Bayes rule, Borel sets etc.), and quantitatively pre-

cise. But it may lead to information loss as shown by FQM in chapter 5.
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8.9.3 No pointwise convergence of limiting relative frequency

follows directly from randomness: Experimental verifi-

cation not necessary

The following statement is not correct: “Whether limN→∞ N+1(X,N)/N always con-

verges pointwise to 1/2 or not has to be found only experimentally.” This is because as

shown in Appendix 8.9, given the definition, meaning, and nature of random phenomena,

one can show using the definition of pointwise convergence that limN→∞ N+1(X,N)/N

cannot always converge pointwise to 1/2. Hence experiment is sufficient but not nec-

essary to arrive at this result. Moreover N → ∞ number of trials of random variable

cannot be realised in a real world experiment but only in a thought experiment i.e.,

at the conceptual level only. Obtaining always a given constant value (1/2) out of ev-

ery infinite set of random data contradicts the very meaning, definition, and nature of

randomness [vL96].

8.9.4 Implications of no pointwise convergence

No pointwise convergence (Appendix 8.9) has following implications.

The fact that limN→∞ N+1(X
θ=π/2, N)/N cannot always converge pointwise to 1/2,

opens up every other possibility including converging pointwise to a value different from

1/2, even for the random variable Xθ=π/2 (other possibility is oscillation of

limN→∞ N+1(X
θ=π/2, N)/N i.e., not converging pointwise to any fixed value). The two

cases viz., θ = π/2 and θ �= π/2 are distinguished by their fluctuation i.e., for θ = π/2

we have

F (Xθ=π/2 = +1) = cos2(θ/2)|θ=π/2 + κ(Xθ=π/2 = +1)
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whereas for θ �= π/2 we have

F (Xθ �=π/2 = +1) = cos2(θ/2)|θ �=π/2 + κ(Xθ �=π/2 = +1).

Fluctuation of κ(Xθ=π/2 = +1) is different from that of κ(Xθ �=π/2 = +1). Moreover

F (Xθ=π/2 = +1) fluctuates around 1/2 whereas F (Xθ �=π/2 = +1) do not fluctuate

around 1/2. Note that 1/2 in F (Xθ=π/2 = +1) is just for the sake of convenience. We

could have well chosen a value slightly different from 1/2 as well i.e., we could have

defined

F (Xθ = +1) = (cos2(θ/2) + �) + κ(Xθ = +1)

where |�| > 0. (Note that as � is a constant, it can be absorbed into κ(...) term. � is

an overall shift of reference point common to all values of θ. Hence it is like change

of coordinate system. Similar to the proof in Appendix 8.9, one can also show that

limN→∞ N+1(X
θ, N)/N cannot always converge pointwise to 1/2 + �. For θ = 0, π

we will have κ(X0,π = +1) = −�.) This is because, due to no pointwise convergence

(and hence fundamental uncertainty/fluctuation represented by κ(...) term) we cannot

strictly say that F (Xθ=π/2 = +1) will fluctuate strictly and symmetrically around a

value which is precisely 1/2. There is no compelling reason to choose 1/2. 1/2 is

motivated by symmetry and convenience. Even if we repeat infinitely many times the

experiment involving N → ∞ number of trials, still we will not come to know with

certainty if F (Xθ=π/2 = +1) fluctuates symmetrically around 1/2 or not. This is due to

fundamental uncertainty arising due to intrinsic randomness in measurement outcomes.

What really matters and one can talk of is the relative fluctuation i.e., fluctuation of

F (Xθ=π/2 = +1) will be different compared to that of F (Xθ �=π/2 = +1). And the

fluctuation of F (Xθ = +1) depends on θ (see Appendix 8.11 in this regard).
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Moreover FQM predicts different fluctuations in two different ensemble preparation

procedures even at large but finite N which is the case of practical interest. In this case

there is no question of whether limit exists or not. We have considered the limit N → ∞

for the sake of mathematical rigor and to show that even in the limit N → ∞ (which

can be realised at least in a thought experiment) fluctuation do not vanish unlike in

KQM and hence there exists content dependent fluctuation. Physics is same at all N .

And hence if content dependent fluctuation exists in the limit N → ∞ then it should

also be present even at large but finite N as well.

8.10 Anderson orthogonality catastrophe

In the limit M → ∞, due to Anderson’s orthogonality catastrophe (AOC) [And67] we

obtain |�ψA
j |ψB

k �| → 0 ∀j, k. However the states |ψB
k �’s will be still linearly dependent on

|ψA
j �’s. This is a seemingly strange property exhibited only by infinite tensor product

non-separable Hilbert spaces [vN76]. And hence within KQM, in spite of AOC, it is still

not possible to distinguish between the two preparation procedures A and B [Che98].

Proof of this will be published elsewhere.

8.11 Justification of the assumption that κ(Xθ = +1)

depends on θ

The fact that F (Xθ = +1) cannot always converge pointwise to cos2(θ/2) proves the

existence of fluctuation term i.e., κ(.), but it does not say if κ(.) depends on θ or not.

Hence in Eq. (5.4) we have implicitly assumed that κ(.) will depend on θ. This can

be justified as follows. KQM predicts that variance (which is a measure of fluctuation),
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Var(Xθ) = �Xθ2� − �Xθ�2 = sin2 θ. This has been tested experimentally to a good

extent. Hence from this we can deduce that fluctuation will be maximum for θ = π/2

and fluctuation gradually decreases as θ either decreases to 0 or increases to π. Hence

it is an experimental fact that fluctuation will depend on content/state i.e., θ. This

justifies the assumption that fluctuation of F (Xθ = +1) (and hence κ(Xθ = +1)) will

depend on θ.

8.12 Physical meaning and significance of sample

mean

Consider sample means S(A,M), S(B,M) as defined in Eqs. (5.5, 5.9) respectively.

They are the average of final (i.e., after applying Rx(X
Θ)) σz measurement (carried out

by Bob) outcomes Xθ
i ’s. In procedure A, Xθ

i ∈ {Xθ1
i , Xθ2

i , Xπ−θ1
i , Xπ−θ2

i }. Whereas in

procedure B, Xθ
i ∈ {Xπ/2

i } (because in procedure B, with respect to σz measurement

outcomes, the states |+� and |−� are equivalent). For the sake of ease, let us consider

S(B,M) (because in procedure B, the set to which Xθ
i belongs to, has only one element).

We have defined

S(B,M) =
1

M

M�

i=1

X
π/2
i .
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⇒ S(B,M = 1) = X
π/2
1 . Hence we can rewrite

S(B, N) =
1

N
(N+1(S(B,M = 1), N)

−N−1(S(B,M = 1), N))

=
1

N
(2N+1(S(B,M = 1), N)−N)

(∵ N+1(S(B,M = 1), N) +N−1(S(B,M = 1), N) = N)

= 2FN(S(B,M = 1) = +1)− 1 = 2FN(X
π/2
1 = +1)− 1.

Similarly one can obtain S(A, N) = 2FN(S(A,M = 1) = +1) − 1. Sample means are

used to study the relative fluctuation in the two procedures A and B.

8.13 Evaluating lim supN→∞
N+1(X

π−θ1
1 ,N0(X1,N))

N

If {aN} and {bN} are sequences of non-negative numbers, then

lim inf
N→∞

aN lim inf
N→∞

bN ≤ lim inf
N→∞

(aNbN)

≤ lim inf
N→∞

aN lim sup
N→∞

bN

≤ lim sup
N→∞

(aNbN) ≤ lim sup
N→∞

aN lim sup
N→∞

bN ,

and lim inf
N→∞

aN + lim inf
N→∞

bN ≤ lim inf
N→∞

(aN + bN)

≤ lim inf
N→∞

aN + lim sup
N→∞

bN

≤ lim sup
N→∞

(aN + bN) ≤ lim sup
N→∞

aN + lim sup
N→∞

bN

(8.24)
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[KN00, Roy68, Soh06]. Then using ineq. (8.24) we obtain,

lim sup
N→∞

N+1(X
π−θ1
1 , N0(X1, N))

N

≤ (sin2 θ1
2
+ κ(Xπ−θ1

1 = +1, 0(X1)))(
1

2
+ κ(X1 = 0)).

8.14 Case where θ1 = θ2 = 0, π/2

For θ1 = θ2 = 0, N+1(X
θ1=0
1 , N+1(X1, N)) = N+1(X1, N), andN+1(X

π−θ1=π
1 , N0(X1, N)) =

0.

⇒ F (S(A,M = 1) = +1) = lim sup
N→∞

N+1(S(A,M = 1), N)

N

= lim sup
N→∞

N+1(X1, N)

N
= 1/2 + κ(X1 = +1).

Alternatively, for N < ∞ with θ1 = θ2 = 0, we have κN(X
θ1=0
1 = +1,+1(X1)) =

0, κN(X
π−θ1=π
1 = +1, 0(X1)) = 0. Then from ineq. (5.8) we obtain FN(S(A,M = 1) =

+1) = 1/2 + κN(X1 = +1). ⇒ lim supN→∞ FN(S(A,M = 1) = +1) = 1/2 + κ(X1 =

+1).

For θ1 = θ2 = π/2,

N+1(S(A,M = 1), N) = N+1(X
θ1=π/2
1 , N+1(X1, N))

+N+1(X
π−θ1=π/2
1 , N0(X1, N))

= N+1(X
π/2
1 , N+1(X1, N) +N0(X1, N))

= N+1(X
π/2
1 , N). (8.25)

132



⇒ F (S(A,M = 1) = +1) = lim sup
N→∞

N+1(S(A,M = 1), N)

N

= lim sup
N→∞

N+1(X
π/2
1 , N)

N

= 1/2 + κ(X
π/2
1 = +1) = 1/2 + κ(X1 = +1).

8.15 limit infimum

If we define

F �(S(A,M = 1) = +1) = lim inf
N→∞

N+1(S(A,M = 1), N)

N

(8.26)

then using ineq. (8.24), we obtain for the case θ1 = θ2 in Eq. (5.3),

F �(S(A,M = 1) = +1) ≥ 1

2

+κ�(X1 = +1)
�
cos2(θ1/2) + κ�(Xθ1

1 = +1,+1(X1))
�

+κ�(X1 = 0)
�
sin2(θ1/2) + κ�(Xπ−θ1

1 = +1, 0(X1))
�

+
1

2

�
κ�(Xθ1

1 = +1,+1(X1)) + κ�(Xπ−θ1
1 = +1, 0(X1))

�

where κ�(· · · )’s correspond to limit infimum.

8.16 On the observability of content dependent fluc-

tuation

The fact that limiting relative frequency cannot always converge pointwise to a given

constant value (real number) proves the existence of fluctuation term κ(.) and hence
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content dependent fluctuation (i.e., fluctuation of F (S(A,M = 1) = +1) depends on

θ1, θ2) (see Appendix 8.11). However it should be noted that observing content depen-

dent fluctuation may not be as difficult as observing violation of the requirement for

pointwise convergence e.g., observing the violation of |N+1(X1, N)/N − 1/2| < � where

� > 0, N < ∞, usually becomes difficult if we choose N sufficiently large (this is justified

by the stabilization of relative frequency which is an experimental fact [Gut05]). This is

because, former requires observing relative fluctuation only, which do not depend only

on rare events unlike the latter which depends only on rare events.

8.17 Perfect anti-correlation of singlet in FQM

We can rewrite limN→∞ S(σA
z σ

B
z , N), defined in Sec. 5.7 as follows:

lim
N→∞

S(σA
z σ

B
z , N) = lim

N→∞
N+1(S(σ

A
z σ

B
z ,M = 1), N)−N−1(S(σ

A
z σ

B
z ,M = 1), N)

N
.

We have

N+1(S(σ
A
z σ

B
z ,M = 1), N)

= N+1+1(S(σ
A
z σ

B
z ,M = 1), N)

+N−1−1(S(σ
A
z σ

B
z ,M = 1), N) = 0 + 0.

N−1(S(σ
A
z σ

B
z ,M = 1), N)

= N+1−1(S(σ
A
z σ

B
z ,M = 1), N)

+N−1+1(S(σ
A
z σ

B
z ,M = 1), N)

= N+1(σ
A
z , N) +N−1(σ

A
z , N) = N.
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⇒ lim
N→∞

S(σA
z σ

B
z , N)

= − lim
N→∞

N+1(σ
A
z , N) +N−1(σ

A
z , N)

N
= −1.

8.18 The case when 1 � N < ∞

Consider the case when 1 � N < ∞. Define

FN(X = +1) =
N+1(X,N)

N
:=

1

2
+ κN(X = +1) (8.27)

where κN(X = +1) is a random variable which takes values in [−�N , δN ] (�N > 0, δN >

0). Then the expression corresponding to ineq. (5.7) will be the following,

N+1(X
θ1
1 , N+1(X1, N))

N+1(X1, N)

N+1(X1, N)

N

= (cos2(θ1/2) + κN(X
θ1
1 = +1,+1(X1)))

×(1/2 + κN(X1 = +1)), (8.28)

for N+1(X1, N) > 0. This shows that, in all the results derived in the main text, we

just have to replace κ(· · · )’s with the corresponding κN(· · · )’s, and inequalities become

equalities. Of course the constraint that the terms in the denominators should be greater

than zero should be satisfied (like N+1(X1, N) > 0 in Eq. (8.28)). Further note that

lim supN→∞ FN(X = +1) = F (X = +1) and hence lim supN→∞ κN(X = +1) = κ(X =

+1) as required. Similarly we obtain lim supN→∞ κN(· · · ) = κ(· · · ).

Further note that when N is very small (say e.g., 1 ≤ N ≤ 10), then both FN(S(A,M =

1) = +1) and FN(S(B,M = 1) = +1) will easily saturate i.e., will easily take maxi-

mum and minimum possible values which are 1 and 0 respectively. Hence Bob cannot

distinguish. Fig. 5.1 is helpful in understanding this point.
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8.19 Case where θ2 �= θ1 in Eq. (5.3)

Let M = 1. Let Nx1xΘ
1
((X1, X

Θ
1 ), N) be the number of X1 = x1 and XΘ

1 = xΘ
1

outcomes in N independent trials each of X1 and XΘ
1 . Then we have the follow-

ing identity Nx1xΘ
1
((X1, X

Θ
1 ), N) = Nx1(X1, NxΘ

1
(XΘ

1 , N)) (∵ events are independent)

where NxΘ
1
(XΘ

1 , N) is the number of xΘ
1 outcomes in N independent trials of XΘ

1 ,

x1 = +1, 0; xΘ
1 = θ1, θ2; and Nθ1(X

Θ
1 , N) +Nθ2(X

Θ
1 , N) = N . Further we have

N+1(S(A,M = 1), N) = N+1(X
θ1
1 , N+1θ1((X1, X

Θ
1 ), N))

+N+1(X
θ2
1 , N+1θ2((X1, X

Θ
1 ), N))

+N+1(X
π−θ1
1 , N0θ1((X1, X

Θ
1 ), N))

+N+1(X
π−θ2
1 , N0θ2((X1, X

Θ
1 ), N))

whereN+1θ1((X1, X
Θ
1 ), N)+N+1θ2((X1, X

Θ
1 ), N)+N0θ1((X1, X

Θ
1 ), N)+N0θ2((X1, X

Θ
1 ), N) =

N . Then using ineq. (8.24) we obtain

lim sup
N→∞

N+1(X
θ1
1 , N+1θ1((X1, X

Θ
1 ), N))

N

= lim sup
N→∞

N+1(X
θ1
1 , N+1θ1((X1, X

Θ
1 ), N))

N+1θ1((X1, XΘ
1 ), N)

×N+1θ1((X1, X
Θ
1 ), N)

N

= lim sup
N→∞

N+1(X
θ1
1 , N+1(X1, Nθ1(X

Θ
1 , N)))

N+1(X1, Nθ1(X
Θ
1 , N))

×N+1(X1, Nθ1(X
Θ
1 , N))

Nθ1(X
Θ
1 , N)

Nθ1(X
Θ
1 , N)

N

≤ lim sup
N→∞

N+1(X
θ1
1 , N+1(X1, Nθ1(X

Θ
1 , N)))

N+1(X1, Nθ1(X
Θ
1 , N))

× lim sup
N→∞

N+1(X1, Nθ1(X
Θ
1 , N))

Nθ1(X
Θ
1 , N)

lim sup
N→∞

Nθ1(X
Θ
1 , N)

N
,
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for N+1(X1, Nθ1(X
Θ
1 , N → ∞)) > 0, Nθ1(X

Θ
1 , N → ∞) > 0. Substituting θ1 = 0, θ2 = π

in the above expression, we obtain

lim sup
N→∞

N+1(X
θ1
1 , N+1θ1((X1, X

Θ
1 ), N))

N

≤ (1/2 + κ(X1 = +1, θ1(X
Θ
1 )))(1/2 + κ(XΘ

1 = θ1))

(∵ N+1(X
θ1=0
1 , N+1(X1, Nθ1(X

Θ
1 , N))) = N+1(X1, Nθ1(X

Θ
1 , N))). Similarly we obtain

lim sup
N→∞

N+1(X
θ2
1 , N+1θ2((X1, X

Θ
1 ), N))

N

≤ lim sup
N→∞

N+1(X
θ2
1 , N+1(X1, Nθ2(X

Θ
1 , N)))

N+1(X1, Nθ2(X
Θ
1 , N))

× lim sup
N→∞

N+1(X1, Nθ2(X
Θ
1 , N))

Nθ2(X
Θ
1 , N)

lim sup
N→∞

Nθ2(X
Θ
1 , N)

N
.

Substituting θ1 = 0, θ2 = π in the above expression, we obtain

lim sup
N→∞

N+1(X
θ2
1 , N+1θ2((X1, X

Θ
1 ), N))

N
= 0

(∵ N+1(X
θ2=π
1 , N+1(X1, Nθ2(X

Θ
1 , N))) = 0). Similarly

lim sup
N→∞

N+1(X
π−θ1
1 , N0θ1((X1, X

Θ
1 ), N))

N

≤ lim sup
N→∞

N+1(X
π−θ1
1 , N0(X1, Nθ1(X

Θ
1 , N)))

N0(X1, Nθ1(X
Θ
1 , N))

× lim sup
N→∞

N0(X1, Nθ1(X
Θ
1 , N))

Nθ1(X
Θ
1 , N)

lim sup
N→∞

Nθ1(X
Θ
1 , N)

N
.

Substituting θ1 = 0, θ2 = π in the above expression, we obtain

lim sup
N→∞

N+1(X
π−θ1
1 , N0θ1((X1, X

Θ
1 ), N))

N
= 0
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(∵ N+1(X
π−θ1=π
1 , N0(X1, Nθ1(X

Θ
1 , N))) = 0). Similarly

lim sup
N→∞

N+1(X
π−θ2
1 , N0θ2((X1, X

Θ
1 ), N))

N

≤ lim sup
N→∞

N+1(X
π−θ2
1 , N0(X1, Nθ2(X

Θ
1 , N)))

N0(X1, Nθ2(X
Θ
1 , N))

× lim sup
N→∞

N0(X1, Nθ2(X
Θ
1 , N))

Nθ2(X
Θ
1 , N)

lim sup
N→∞

Nθ2(X
Θ
1 , N)

N
.

Substituting θ1 = 0, θ2 = π in the above expression, we obtain

lim sup
N→∞

N+1(X
π−θ2
1 , N0θ2((X1, X

Θ
1 ), N))

N

≤ (1/2 + κ(X1 = 0, θ2(X
Θ
1 )))(1/2 + κ(XΘ

1 = θ2))

(∵ N+1(X
π−θ2=0
1 , N0(X1, Nθ2(X

Θ
1 , N))) = N0(X1, Nθ2(X

Θ
1 , N))). Substituting the above

expressions into Eq. (5.6), we obtain for the case θ1 = 0, θ2 = π, the following expression

F (S(A,M = 1) = +1) ≤ 1

2
+

κ(XΘ
1 = θ1) + κ(XΘ

1 = θ2)

2

+
�
κ(X1 = +1, θ1(X

Θ
1 )) + κ(X1 = 0, θ2(X

Θ
1 ))

�
/2

+κ(XΘ
1 = θ1)κ(X1 = +1, θ1(X

Θ
1 ))

+κ(XΘ
1 = θ2)κ(X1 = 0, θ2(X

Θ
1 )). (8.29)
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Further, we can rewrite,

lim sup
N→∞

S(A, N) = lim sup
N→∞

N+1(S(A,M = 1), N)− (N −N+1(S(A,M = 1), N))

N

= 2F (S(A,M = 1) = +1)− 1

= κ(XΘ
1 = θ1) + κ(XΘ

1 = θ2)

+κ(X1 = +1, θ1(X
Θ
1 )) + κ(X1 = 0, θ2(X

Θ
1 ))

+2κ(XΘ
1 = θ1)κ(X1 = +1, θ1(X

Θ
1 ))

+2κ(XΘ
1 = θ2)κ(X1 = 0, θ2(X

Θ
1 )) (8.30)

where we used Eq. (5.6) and expression (8.29). Similarly we can rewrite,

lim sup
N→∞

S(B, N) = lim sup
N→∞

N+1(S(B,M = 1), N)− (N −N+1(S(B,M = 1), N))

N

= 2κ(X1 = +1) = 2κ(XΘ
1 = θ1) (8.31)

where we used Eq. (5.10).

8.20 Associating normal distribution with the fluc-

tuation of κN(...) terms for practical purposes

Here we quantify (for practical purposes) using KQM, the content dependent fluctuation

in S(A, N), and the fluctuation of S(B, N).
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8.20.1 S(A, N) ≈ κM1
(X1 = +1)+κM2

(X1 = 0)+4κN(X
Θ
1 = θ1)κN(X1 =

+1) for N � 1, θ1 = 0, θ2 = π

In the case θ1 = 0, θ2 = π in Eq. (5.3), for N � 1, we can make following approxima-

tions:

N+1(X1, Nθ1(X
Θ
1 , N))

Nθ1(X
Θ
1 , N)

=
1

2
+ κN(X1 = +1, θ1(X

Θ
1 ))

≈ N+1(X1,M1)

M1

=
1

2
+ κM1(X1 = +1), (8.32)

N0(X1, Nθ2(X
Θ
1 , N))

Nθ2(X
Θ
1 , N)

=
1

2
+ κN(X1 = 0, θ2(X

Θ
1 ))

≈ N0(X1,M2)

M2

=
1

2
+ κM2(X1 = 0) (8.33)

where M1 = N/2,M2 = N/2 (for convenience we have assumed N to be even). It is

important to note that M1 number of trials of X1 are independent and different from

M2 number of trials of X1. This is represented by denoting each of the N/2 number of

trials in Eqs. (8.32, 8.33) using different symbols i.e., M1 and M2. Further

N+1(X1,M1)

M1

− N0(X1,M2)

M2

= 2
N+1(X1, N)

N
− 1

⇒ κM1(X1 = +1)− κM2(X1 = 0) = 2κN(X1 = +1).

And κN(X
Θ
1 = θ1) = −κN(X

Θ
1 = θ2). Substituting these into the finite N expression

corresponding to expression (8.30), we obtain

S(A, N) ≈ κM1(X1 = +1) + κM2(X1 = 0)

+4κN(X
Θ
1 = θ1)κN(X1 = +1). (8.34)
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8.20.2 Plotting the density of FN(S(A/B,M = 1) = +1)

To experimentally study the fluctuation of FN(S(A/B,M = 1) = +1), we should

repeat the experiment n times and plot the density of FN(S(A/B,M = 1) = +1) versus

FN(S(A/B,M = 1) = +1) where density of FN(S(A/B,M = 1) = +1) is nothing but

the ratio of number of times we get FN(S(A/B,M = 1) = +1) = y in n repetitions and

(n × δFN(S(A/B,M = 1) = +1)) where y ∈ [0, 1] and δFN(S(A/B,M = 1) = +1)(=

1/N) is the step size. For example, consider the simplest case of plotting the density of

FN(S(B,M = 1) = +1)

= N+1(S(B,M = 1), N)/N = N+1(X
π/2
1 , N)/N

= 1/2 + κN(X
π/2
1 = +1). (8.35)

N+1(X
π/2
1 , N) takes value y� ∈ {0, 1, 2, ..., N} and hence FN(S(B,M = 1) = +1) takes

value y ∈ {0, 1/N, 2/N, ..., 1}. Hence FN(S(B,M = 1) = +1) tends to become a

continuous random variable in the limit N → ∞. Now we repeat n times the experiment

involving N trials of X
π/2
1 . Then we calculate the ratio of number of times we get

FN(S(B,M = 1) = +1) = y in n repetitions and (n× (1/N)). Then we plot this ratio

versus y. For N � 1, we will obtain this plot to be approximately a Gaussian centered

around 1/2 (this we know from actual experiment) (KQM predicts that Gaussian will

have mean 1/2 and variance 1/(4N)). This is how we can experimentally study the

fluctuation of FN(S(B,M = 1) = +1), and hence the fluctuation of κN(X
π/2
1 = +1).

Similarly, we can experimentally study the fluctuation of FN(S(A,M = 1) = +1). FQM

predicts that the fluctuation of FN(S(A,M = 1) = +1) will be different from that of

FN(S(B,M = 1) = +1).

Now we can safely (i.e., without loss of any fundamental content-dependent fluctua-

tions) bring in KQM for practical purposes and quantify the fluctuation of κN(...) terms
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as follows. It is an experimental fact that if we plot the density of FN(X = +1) versus

FN(X = +1), we obtain approximately a Gaussian function centered approximately

around 1/2. Hence it is reasonable for practical purposes to associate a normal proba-

bility density function with the fluctuation of κN(...) terms, i.e.,

f(κN(X1 = x1)) ≈
1�

2πVar(X1)/N
exp(

−κN(X1 = x1)
2

2Var(X1)/N
),

(8.36)

where f(Z) is the probability density function of the random variable Z, and Var(X1) =

�X2
1 � − �X1�2 = 1/4 is the variance of X1. Note that we can associate mean zero with

every κ(...) term. This is because, according to KQM,

�FN(X = +1)� = �X� = 1/2 ⇒ �κN(X = +1)� = 0,

Var(FN(X = +1)) =
Var(X)

N
=

1

4N
= Var(κN(X = +1)),

�FN(X = +1)� = �FN(X
Θ = θ1)�,

Var(FN(X = +1)) = Var(FN(X
Θ = θ1)). (8.37)

Further, it is important to note that from a foundational perspective, fluctuation of

κN(X1 = +1) do not vanish even in the limit N → ∞, contrary to the approximation

in (8.36), which becomes a “delta function”. This is due to no pointwise convergence of

LRF, always to 1/2. Note that for notational convenience, we are using the same symbol

for the random variables κN(...)’s and also the values they take. Its meaning should be

understood from the context of usage. To associate an approximate probability density
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function with 4κN(X1 = +1)κN(X
Θ
1 = θ1) in expression (8.34), we proceed as follows:

f(ζ = 4κN(X1 = +1)κN(X
Θ
1 = θ1))

≈
� ∞

−∞
dκN(X

Θ
1 = θ1) f(ζ|κN(X

Θ
1 = θ1))f(κN(X

Θ
1 = θ1)),

(8.38)

where f(ζ,κN(X
Θ
1 = θ1)) = f(ζ|κN(X

Θ
1 = θ1))f(κN(X

Θ
1 = θ1)). Note that ζ depends

on κN(X
Θ
1 = θ1) and hence f(ζ|κN(X

Θ
1 = θ1)) �= f(ζ).

Theorem-1 [Ros10]: If X is a normally distributed random variable with mean µ and

variance σ2, then Y = aX+ b is also a normally distributed random variable with mean

aµ+ b and variance a2σ2 where a, b are constants.

Using approximations (8.36) and (8.38), and theorem-1, we obtain

f(ζ = 4κN(X1 = +1)κN(X
Θ
1 = θ1))

≈
� ∞

−∞

dκN(X
Θ
1 = θ1)�

2πVar(X1)/N
exp(

−κN(X
Θ
1 = θ1)

2

2Var(X1)/N
)

×
�

N

32πκN(XΘ
1 = θ1)2Var(X1)

exp(
−Nζ2

32κN(XΘ
1 = θ1)2Var(X1)

), (8.39)

where Var(X1) = 1/4, and where we have used the fact that κN(X1 = +1) and κN(X
Θ
1 =

θ1) are independent random variables and that the same variance (= 1/(4N)) must be

associated with each of them (because X1 and XΘ
1 differ only in the value assigned

to their outcomes. See Eqs. (8.37) in this regard). If κN(X1 = +1) and κN(X
Θ
1 =

θ1) were not independent, then for a given value of κN(X
Θ
1 = θ1), the probability

distribution which we can associate with κN(X1 = +1) will depend on the given value

of κN(X
Θ
1 = θ1) as well. There is no analytical solution to the integral (8.39) (see

[SMO12] in this regard, and for further details regarding approximate and numerical

solutions to the integral), and in particular the distribution is not normal. Further
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η = κM1(X1 = +1)+κM2(X1 = 0) is normally distributed with mean 0 and variance 1/N

[Ros10]. And η, ζ are not independent. Hence S(A, N) cannot be normally distributed.

We also have S(B, N) = 2κN(X1 = +1) (Eq. (8.31)). But

f(2κN(X1 = +1))

≈ 1�
8πVar(X1)/N

exp(
−κN(X1 = +1)2

8Var(X1)/N
). (8.40)

Hence the fluctuations of sample means around 0 are different in the two preparation

procedures A and B.
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[BcvH96] V. Bužek and M. Hillery. Quantum copying: Beyond the no-cloning the-

orem. Phys. Rev. A, 54:1844–1852, Sep 1996. 80

[BE14] Costantino Budroni and Clive Emary. Temporal quantum correlations

and leggett-garg inequalities in multilevel systems. Phys. Rev. Lett.,

113:050401, Jul 2014. 33, 42, 91

147



[Bel64] J S Bell. On the einstein podolsky rosen paradox. Physics, 1:195–200,

1964. 86

[Bel89] J S Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge

university press, 1989. 84, 86

[Ben92] C H Bennett. Quantum cryptography using any two nonorthogonal states.

Phys. Rev. Lett., 68:3121–3124, May 1992. 87

[BF02] K Boström and T Felbinger. Deterministic secure direct communication

using entanglement. Phys. Rev. Lett., 89:187902, Oct 2002. 87

[BHD16] Yakov Ben-Haim and Maria Demertzis. Decision making in times of knigh-

tian uncertainty: An info-gap perspective. Economics: The Open-Access,

Open-Assessment E-Journal, 10 (2016-23):1–29, 2016. 74

[BHW09] Todd A. Brun, Jim Harrington, and Mark M. Wilde. Localized closed

timelike curves can perfectly distinguish quantum states. Phys. Rev. Lett.,

102:210402, May 2009. 80, 82, 103

[Bil95] P. Billingsley. Probability and Measure. Wiley, 1995. 72, 74, 105

[bJDBDJ05] Edited by John D. Barrow, Paul C. W. Davies, and Charles L. Harper Jr.

Science and Ultimate Reality-Quantum Theory, Cosmology and Complex-

ity. Cambridge University press, 2005. 1, 71

[BKH+16] A Boaron, B Korzh, R Houlmann, G Boso, C C W Lim, A Martin, and

H Zbinden. Detector-device-independent quantum key distribution: Secu-

rity analysis and fast implementation. Jour. of App. Phy., 120(6):063101,

2016. 87

148



[BKW05] D.A. Belsley, E. Kuh, and R.E. Welsch. Regression Diagnostics: Identi-

fying Influential Data and Sources of Collinearity. Wiley Series in Prob-

ability and Statistics. Wiley, 2005. 57

[Blo46] F. Bloch. Nuclear induction. Phys. Rev., 70:460–474, Oct 1946. 12, 106

[BLSS09] Charles H. Bennett, Debbie Leung, Graeme Smith, and John A. Smolin.

Can closed timelike curves or nonlinear quantum mechanics improve quan-

tum state discrimination or help solve hard problems? Phys. Rev. Lett.,

103:170502, Oct 2009. 82

[Bra11] C Branciard. Detection loophole in bell experiments: How postselection

modifies the requirements to observe nonlocality. Phys. Rev. A, 83:032123,

Mar 2011. 101

[Cab02] A Cabello. Violating bell’s inequality beyond cirel’son’s bound. Phys.

Rev. Lett., 88:060403, Jan 2002. 86

[Cab08] Adán Cabello. Experimentally testable state-independent quantum con-

textuality. Phys. Rev. Lett., 101:210401, Nov 2008. 29

[Cav96] John Cavanagh. Protein NMR spectroscopy: principles and practice. Aca-

demic Pr, 1996. 12, 26, 43, 44, 56

[Cav18] Eric G. Cavalcanti. Classical causal models for bell and kochen-specker

inequality violations require fine-tuning. Phys. Rev. X, 8:021018, Apr

2018. 20, 90, 94

[CEB+05] P. Cappellaro, J. Emerson, N. Boulant, C. Ramanathan, S. Lloyd, and

D. G. Cory. Entanglement assisted metrology. Phys. Rev. Lett., 94:020502,

Jan 2005. 50

149



[CFH97] David G. Cory, Amr F. Fahmy, and Timothy F. Havel. Ensemble quantum

computing by nmr spectroscopy. Proceedings of the National Academy of

Sciences, 94(5):1634–1639, 1997. 16, 21, 28, 50

[CFS73] V. Capasso, D. Fortunato, and F. Selleri. Sensitive observables of quantum

mechanics. International Journal of Theoretical Physics, 7(5):319–326,

1973. 24

[CGKL98] I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung. Bulk

quantum computation with nuclear magnetic resonance: theory and ex-

periment. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 454(1969):447–467, 1998. 45

[Che98] Anthony Chefles. Unambiguous discrimination between linearly indepen-

dent quantum states. Physics Letters A, 239(6):339 – 347, 1998. 80, 129

[CHSH69] J F Clauser, M A Horne, A Shimony, and R A Holt. Proposed experiment

to test local hidden-variable theories. Phys. Rev. Lett., 23:880–884, Oct

1969. 86

[Cir80] B S Cirel’son. Quantum generalizations of bell’s inequality. Lett. in Math.

Phy., 4(2):93–100, 1980. 87, 94

[CLK+00] D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant,

G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne,

M. Pravia, Y. Sharf, G. Teklemariam, Y.S. Weinstein, and W.H. Zurek.

Nmr based quantum information processing: Achievements and prospects.

Fortschritte der Physik, 48(9-11):875–907, 2000. 50

[CM10] E. G. Cavalcanti and N. C. Menicucci. arXiv:1004.1219 [quant-ph], 2010.

84

150



[CPH98] D. G. Cory, M. D. Price, and T. F. Havel. Physica D, 120:82, 1998. 44,

50

[Cra53] Harald Cramer. Richard von mises’ work in probability and statistics. The

Annals of Mathematical Statistics, 24(4):657–662, 1953. 72

[CTDL05] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum Me-
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[L0̈6] G. Lüders. Concerning the state-change due to the measurement process.

Annalen der Physik, 15(9):663–670, 2006. 32, 33, 42, 91

157
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