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Abstract
Quantum computer is known as the ”holy grail of science”. Many groups and com-

panies are making great efforts to build a quantum computer. Quantum simulation is

one of the key applications of a quantum computer. As the name suggests, quantum

simulation is about simulating a quantum system which is less accessible and control-

lable using another quantum system which is more accessible and controllable. Spin

architectures such as NMR and NV centers in diamond form a convenient testbed for

the experimental investigations of quantum phenomena as well as quantum information.

Realizing any arbitrary unitary is a major requirement of a quantum simulator. In this

direction, the thesis focuses on quantum simulations and quantum controls using spin

based quantum architectures.

The thesis is divided into two parts.The first part of the thesis discusses the exper-

iments done on a NMR quantum simulator. We provided the first experimental inves-

tigation of the Quantum Pigeonhole effect using a four qubit NMR quantum register

and the experimental details are discussed in Chapter 2. In this experiment, we adapted

GRadient Ascent Pulse Engineering (GRAPE) technique for realizing unitary operators.

Later on, we realized unitary and non-unitary quantum controls by adapting bang-

bang (BB) method. Using the pulses realized by bang-bang control, we implemented

the Optimal Fixed-Point Quantum Search Algorithm on a three qubit NMR quantum

register (Chapter 3). We also demonstrated realizing some nonunitary operations using

BB along with Pulsed Field Gradients (PFG).

In Chapter 4 , we briefly discuss on realizing dynamically protected quantum gates

by integrating Dynamical Decoupling (DD) and optimal control techniques. We ex-

perimentally showed protecting quantum discord during Grover’s search algorithm by

applying protected quantum gates.

Then we come to the second part of the thesis which focuses on the experiments



done on nitrgen vacancy (NV) centers in nitrogen. We introduce the physical properties

such as electronic energy levels and Hamiltonian of the NV centers in Chapter 5. In

Chapter 6, we discuss the confocal setup and the microwave electronics for addressing

and manipulating the electronic spin in NV center. Finally, We show some of the basic

experiments performed on NV center based spin architecture.
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Chapter 1
Introduction

Quantum Information Processing

Quantum information processing (QIP) [25, 75] is an interdisciplinary field of research

that combines areas like theoretical and experimental physics, mathematics, computer

science, material science and engineering. QIP is the way of information processing and

computation by taking advantage of quantum mechanical laws such as superposition of

the quantum states and entanglement. Simulating a quantum system on a classical com-

puter becomes impossible when the system size gets bigger as it requires huge memory

to store the state of the system [20]. 1n 1982, Richard Feynman put forward the idea

of simulating a quantum system using another quantum system which is more accessi-

ble and controllable. He said ”let the quantum computer itself be built with quantum

mechanical elements which obey quantum mechanical laws” [33]. Apart form simu-

lating quantum systems, in 1984 C. Bennett and G. Brassard presented cryptographic

key distribution model using Weisner’s conjugate coding on a quantum computer [7].

This work opened up a secured way for communication and cryptography. In 1991,

A. Eckart proposed protocol for secure quantum communication based on quantum en-

tanglement [28, 48]. The first quantum algorithm was developed by Peter shor at Bell

1



2 Chapter 1. Introduction

laboratory for the prime factorization of a large number in the year of 1994 [87, 88].

This work was in-fact a major challenge for many of the existing encryption codes such

as RSA code. The codes like RSA exploit the difficulty of prime factorization on a

classical computer. Followed by Shor’s algorithm, in 1996, Lov Grover again from Bell

laboratory came up with an algorithm for data search on a unsorted data base. This

algorithm offers a quadratic speed up over any of the existing classical search algo-

rithm [40, 41]. In the same year, Lyod showed that a quantum computer can indeed

act like a universal quantum simulator [59]. That means, a quantum computer can be

initialized and be measured after performing universal set of quantum gates.The first

experimental quantum information processing was demonstrated by David Cory et al.

and Neil Gershenfeld and Isaac Chuang on the same year of 1997 using liquid state

NMR. In this chapter, I shall discuss the basics introduction for QIP [21, 38].

Quantum bit

A quantum bit or qubit is considered as the basic unit of quantum information process-

ing analogous to a bit in classical computer. However, if a bit can take either 1 or 0 as

an input, the quantum superposition allows a qubit to exist in both possible sates simul-

taneously. The two possible states of the qubit is generally represented by |0〉 and |1〉.

And,the state of a qubit can be written as,

ψ = α|0〉+ β|1〉 (1.1)

where, α2 + β2 = 1. The probability amplitudes α and β are in general complex

numbers.The matrix representation of the above state can be written as ψ =

[
α

β

]
. A

measurement made on the state gives the outcome either |0〉 with a probabilty |α|2 or

|1〉 with a probability |β|2. Often, the state of a qubit is represented a vector on a Bloch

sphere of unit radius as shown in Fig.1.1. Now, the equ.1.1 can be rewritten as,
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X

Y

Z

ψθ

φ

|0>

|1>

Figure 1.1: Bloch sphere representation of a qubit

ψ = cos(θ)|0〉+ eiφ sin(θ)β|1〉 (1.2)

where, θ and φ are the polar and azimuthal angles respectively.

Now consider a quantum register of n qubits and the state of the quatum register can

be expressed as the tensor product of individual states. And,it can be written as,

ψ =
n∑
1

ψ1 ⊗ ψ2 · · ·ψn (1.3)

for example,for a 2 qubit quantum register the state can be written as,

ψ = α1|0〉+ β1|1〉 ⊗ α2|0〉+ β2|1〉 = α1α2|00〉+ α1β2|01〉+ β1α1|10〉+ β1β2|11〉(1.4)

where,

|00〉 =

[
1

0

]
⊗
[

1

0

]
=


1

0

0

0

; |01〉 =

[
1

0

]
⊗
[

0

1

]
=


0

0

1

0

;

|10〉 =

[
0

1

]
⊗
[

1

0

]
=


0

1

0

0

; 101〉 =

[
0

1

]
⊗
[

0

1

]
=


0

0

0

1

;
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Density Matrix

The another way of expressing the sate of a quantum register is using a vector in a

Liouville space and it is called a density matrix. This is often required when we deal

with a statical ensemble of quantum system as in Nuclear Magnetic Resonance (NMR)

QIP. Assume we have ensemble of states ψi with probabilities pi, then the density matrix

of the total system can be expressed as,

ρ =
∑
i

pi|ψi〉〈ψi| (1.5)

where,
∑
pi = 1.

When Trρ2 = 1, then system is in a pure state that means all members of the ensem-

ble are in the same state. The condition for system being in a mixed state is, Trρ2 < 1.

A density matrix must satisfy the following three conditions:

• ρ is Hermitian. i.e.,ρ = ρ†

• ρ is a positive operator such that all eigenvalues are nonnegative.

• Tr[ρ] = 1

The most general density matrix representation for asingle qubit is,

ρ =
I + ~r.~σ

2
(1.6)

where, I is the identity matrix, ~r is the 3D Bloch vector and ~σ = σx~x+ σy~y+ σz~z is the

Pauli vector operator. And,

Quantum Entanglement

Quantum entanglement is one of the unique quantum mechanical phenomena. And, it

is an important resource for quantum communication, quantum computation and cryp-
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tography. Consider a composite system with n components. Then, the system is in a

entangled state if the total state of the composite system can not be expressed as a tensor

product of states of the each component. ie,

ψ 6= ψ1 ⊗ ψ2 · · ·ψn (1.7)

and this is called the non-separability criterion for an entangled state.

the most famous examples for a maximally entangled states are the Bell states and

these states are expressed as;

φ± =
|00〉 ± |11〉√

2
(1.8)

and

ψ± =
|01〉 ± |10〉√

2
(1.9)

Here, the measurement made on one of the qubits affect the measurement outcome

of the other qubit. for example in the state φ±, the measurement made on the first qubit

gives the output either |0〉 or |1〉 with 50 : 50 probabilities. If the measurement outcome

of the first qubit is |0〉 then simultaneously the second qubit also collapses to the qubit

state |0〉 .

Quantum Gates

Analogous to classical computers, the qubit manipulations are done by performing some

local as well as nonlocal quantum operators and those are called quantum gates. Unlike

classical gates, quantum gates are unitary operators which satisfy the condition UU † =

I. Consequently, all operations performed on a quantum register are reversible. In this

section, I will describe some of the basic quantum gates.
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Single Qubit Gates

NOT Gate: This gate is very similar to the NOT operation in classical information. This

gate acted upon a qubit transforms the state |0〉 to |1〉 and vice- versa. This operator is

nothing but the Pauli operator σx and the matrix form of this operator can be written as;

X =

[
0 1

1 0

]
.

Hadamard Gate: Hadamard (H) gate acted upon the state |0〉 transforms this into a

equal superposition state |+〉 = |0〉+|1〉√
2

and |1〉 into the state |−〉 = |0〉−|1〉√
2

. The matrix

form of H is;

H = 1√
2

[
1 1

1 −1

]
.

Phase Gate: The Phase gate (Rφ) operated on the basis state |1〉 take it to eiφ|1〉 and

leaves the basis state |0〉 unchanged as Z|0〉 = |0〉. And,the matrix form of Z gate is;

Rφ =

[
1 0

0 eiφ

]
.

where,φ is the phase sift.

Non-local Quantum Gates

Non-local quantum operators are applied on more than one qubits simultaneously. Controlled-

NOT (CNOT) gate is one of the examples for a Non-local quantum gates.

CNOT: CNOT gate is often used for selectively inverting a target qubit. The target qubit

flips when the controlled qubit is in the state |1〉 else it remain unchanged. The matrix

representation of this operator is;

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

Quantum Measurements

Quantum measurement is one of the most intricate problems in quantum mechanics.

There are various measurements schemes in quantum mechanics and Projective mea-
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surement is the most basic measurement scheme. Apart form projective measurements,

other schemes like weak measurements and Positive Operator Valued Measurements

(POVM) are also getting more popular in QIP.

Projective Measurements: Quantum measurements are described by a set of measure-

ment operator Mm which form a complete basis such that
∑
Mm = I. The state of the

quantum system can be written as;

ψ =
∑
m

Cm|m〉 (1.10)

The post measurement state is given by;

ψm =
Mm|ψ〉
Pm

(1.11)

where, Pm = 〈ψ|MmM
†
M |ψ〉 is the probabilities of measurement outcomes.

POVM: POVM is considered as the most general scheme for quantum measurement

as the measurement operatorsMm not necessarily orthogonal. The POVM measurement

elements are defined as;Em = MmM
†
m with the condition

∑
mEm = I. The probability

of the outcome is Pm = 〈ψ|Em|ψ〉.

Ensemble Average: The measurement outcome of a quantum mechanical event is

probabilistic. Therefore, the measurement has to be done on multiple copies of the state

which is to be measured. Ensemble average is another way for obtaining the expectation

value of an observable ‘A’. In this case, large number of quantum systems are prepared

in the same state with corresponding density matrix ρ, and the expectation value of A is

given by;

〈A〉 = Tr[ρA] (1.12)
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Divincenzo’s criteria

A Qubit can be realised using any two level quantum system. And such systems are

abundant in nature. But, according to Divincenzo’s criteria, not all quantum system

can be used for QIP tasks. He proposed a list of minimal requirements for a physical

implementation of a quantum computer. The criteria are the following;

• A scalable physical system with a well defined qubit.

• Ability to initialize system to any quantum state.

• Long relevant decoherence time.

• A Universal set of quantum gates.

• Qubit specific measurement.

There are two more additional criteria which are mostly relevant for quantum com-

munication tasks. The remaining two criteria are:

• The ability to inter convert stationary and flying qubits .

• The ability to faithfully transmit flying qubits between specified locations.

Experimental Architectures

Various physical systems have been anticipated for building a quantum computer based

on Divincenzo’s criteria. However, none of them satisfies all 7 criteria. And it is still a

question which one of them is going be the full fledged quantum computer. And, these

are some of the architectures:

• Nuclear Magnetic Resonance (NMR).

• Nitrogen Vacancy (NV) Center .
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• Superconducting Quantum Interference Device (SQUID).

• Trapped Atom/Ion.

• Linear Optics

• Quantum Dots.

This thesis covers both NMR and NV center architectures. In the following section,

we will discuss the basics of NMR. And, NV centers will be discussed in the second

part of the thesis.

Nuclear Magnetic Resonance

Many Nuclei posses an intrinsic physical property called Spin. It can be either an intiger

or a integer multiplication of 1/2. All spins have magnetic moment and a spin acts like

a tiny magnet. In NMR QIP, a qubit is realized using a spin 1/2 nucleus in an external

magnetic field, B0. When a spin 1/2 nucleus is placed in a magnetic field, it’s energy

eigenstates will split under Zeeman Hamiltonian (see Fig.1.2). The energy required to

induce flipping and obtain an NMR signal is the energy difference between these levels,

∆E = γhB0/2π where γ is the gyro-magnetic ratio of the nucleus and h = 6.63×10−27

erg sec is the Planck’s constant. The energy gap ∆E is in RF range. From the Bohr

condition, ∆E = hν, the frequency of the nuclear transition can be written as;

ν0 = γB0/2π (1.13)

This is called the Larmor resonance frequency. This is often in rf range and the system

is irradiated with an RF radiation. When the frequency of the RF matches with the ν0,

the resonance occurs. This phenomenon is popularly known as the nuclear magnetic

resonance (NMR).
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Figures/nmr_Zeeman.pdf

Figure 1.2: Zeeman splitting of a spin 1/2 nucleus.
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Many qubits can be realized if the NMR system has more than one NMR active nu-

clei. In that scenario, there will be additional interactions other than Zeeman interaction.

In this section, we will discuss all possible interactions in NMR Hamiltonian [56].

Zeeman interaction

Let us consider a particle with spin, I and the corresponding angular momentum, µ =

γhI/2π where, γ is the gyromagnetic ratio of the nucelus , h is the Planck’s constant

and I is the spin operator. Let us now apply a magnetic field,B0 along the z axis and the

corresponding Zeeman interaction Hamiltonian is given by;

HZeeman = −γ~B0Iz (1.14)

where, Iz is the z component of the Spin operator and ~ = h/2π. A spin I nucleus

has (2I+1) energy eigenstates under Zeeman Hamiltonian with eigenvalues, Em =

−γ~B0m where, m = −I,−I + 1 · · · I − 1, I and Em+1 − Em = ∆E = ~ω0 where

ω0 = −γB0 is the Larmor frequency. In NMR QIP, the qubit is realized by the case

I=1/2.

Chemical Shift

Now consider the case where we have two spin 1/2 particles of same species, i.e,

both are having the same gyro-magnetic ratio. Nevertheless, the local magnetic field

felt by the individual nuclei need not be the same. This is because the local field is

the sum of external field and the induced field by the nearby diamagnetic electrons.

The chemical environment is different for different nuclei, hence the local fields are

different. Therefore, the local field can be written as,

BLoc = B0(1− σ0) (1.15)

where, σ0 is called the Chemical shift tensor. This often plays a major role in addressing
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different qubits in NMR.

J- Coupling

It is an indirect interaction between two nuclei due to the hyperfine interaction between

the nuclei and the local electrons. This is also known as spin-spin or indirect dipole-

dipole interaction. Two nuclear spins are indirectly connected via a magnetic interaction

transmitted by the bonding electrons. In isotropic liquid state NMR, the Hamiltonian

corresponding to this interaction is written as,

HJ = 2π
n∑
i<j

JijI
i · Ij (1.16)

where, Jij is the J-coupling or the scalar coupling and I i and Ij are the spin operator

of the ith and the jth spin respectively.

Dipole-Dipole Interaction

A nucleus behaves like a tiny magnet and it possesses a magnetic dipole moment. Two

nuclei interact with each other directly through space. This interaction is called direct

dipole-dipole (DD) interaction. The Hamiltonian corresponding to DD interaction of

twonuceli is given by;

HDD = bijA+B + C +D + E + F (1.17)
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where,

A = I izIzj1− 3 cos2(θ) (1.18)

B =
−1

4
(I i+I

j
− + I i−I

j
+)(1− 3 cos2(θ)

C =
−3

2
(I i+I

j
z + I izI

j
+)(sin(θ) cos(θ)eiφ)

D =
−3

2
(I i−I

j
z + I izI

j
−)(sin(θ) cos(θ)eiφ)

E =
−3

4
(I i+I

j
+)(sin2(θ)ei2φ)

F =
−3

4
(I i−I

j
−)(sin2(θ)ei2φ)

with polar coordinates θ and φ and rij is the vector connecting the ith and jth spin. The

spin operators I+ = Ix + iIy and I− = Ix − iIy are called the ladder operators. And,

bij = −µ0γ
iγj~/4πr3

ij is the dipolar coupling constant, where µ0 = 4π×10−7N.A−2 is

the magnetic permeability of free space and γn is the gyromagnetic ratio of the nuclear

spin. Under secular approximation for the weekly coupled system or a heteronucelar

system, the Hamiltonian become,

HDD = 2dijI izI
j
z (1.19)

However, in liquid state NMR, due to the fast tumbling motion, this interaction gets

averaged out to zero.

Qudrupolar Interaction

A nuclear spin with I > 1/2 possesses a quadrupolar charge distribution and con-

sequently an associated electric quadrupolar moment. This qudrupole moment inter-

acts with its surrounding electric filed gradient.For a nuclear spin oriented an angle θ

with the external magnetic field which is assumed to be along the z axis, the first order
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quadrupole Hamiltonian can be written as,

HQ =
ωQ
6

(3I2
z − I(I + 1)) (1.20)

with ωQ = eQ ¯V zz

2I(2I−1)~ where, e is the electronic charge, Q is the quadrupole moment

and ¯V zz is the parallel component of the electric field tensor.

Quantum states in NMR

NMR is an ensemble quantum computer. Therefore, at thermal equilibrium the system

is in a completely mixed state and the corresponding density matrix is given by,

ρeq =
e−Hz/KBT

Z
(1.21)

where, Hz is the internal Hamiltonian with corresponding partition function Z, KB is

the Boltzmann constant and T is the absolute temperature [17]. This is a diagonal matrix

with diagonal elements,

ρeq =
e−Ei/KBT∑N
i e
−Ei/KBT

(1.22)

where Ei gives the population corresponding to different energy levels and N is the

dimension of the Hilbert space. At higher temperature T, Ei << KBT , then the ρeq can

be approximated by,

ρeq ≈ (I−Hz/KBT )/Tr(I−Hz/KBT )

≈ I/N −Hz/NKBT (1.23)

The term I/N is unaffected by the unitary transformations hence it does not contribute to

the NMR signal.Therefore this therm can be neglected during NMR experiments. Now

consider an ensemble of M spin 1/2 nuclei. The corresponding thermal equilibrium
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Thermal equilibrium Pure state PPS

(a) (b) (c)

Figure 1.3: population distribution for a 2 qubit system, a) Thermal equilibrium state, b) Pure
state, and c) PPS. Image taken and modified from [89].

density matrix in terms of Zeeman Hamiltonian can be written as,

ρeq =
M∑
k=1

~ω0k

NKBT
Ikz (1.24)

where, ε =
∑M

k=1
~ω0k

NKBT
is generally called the purity factor and it is≈ 10−5 for M = 1

at room temperature.

Pseudo Pure state: The system need to be initialized into a pure state for carrying

out QIP tasks. That is all members in the ensemble has to be initialized into a single

state |ψ〉 with corresponding density matrix, ρ = |ψ〉〈ψ|. In practice, it is very difficult

to achieve this condition. Nevertheless, this can be overcome by preparing the system

into a Pseudo Pure state (PPS) state. The PPS density matrix can be written as,

ρpps = (1− ε)I/N + ερ (1.25)

In PPS, all states except one state have equal population. The population distribution in

different NMR states are illustrated in Fig.1.3.
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Spin manipulations using RF field

A system initialized into a density matrix, ρ(0) evolve to a final density matrix ρ(t) via

a unitary transformation. And this can can be expressed as,

ρ(t) = Uρ(0)U † (1.26)

where U is a unitary operator with a condition, UU † = U †U = I.In quantum infor-

mation language, these are called quantum gates. A single qubit quantum gates can be

realized by a rotation about an axis n̂ on a Bloch sphere and it is given by,

Rθ
n̂ = eiθn̂·σ/2 = cos(θ/2)I− i sin θ/2(n̂xσx + n̂yσy + n̂zσz) (1.27)

where, n̂ ∈ n̂x, n̂y, n̂z is the 3-D unit vector, σ ∈ X, Y, Z are the Pauli matrices and θ

is the angle of rotation. And nonlocal operators such as CNOT gates can be realized by

the rotations along with free evolution operator under J-coupling.

In NMR, single qubit rotations are realized with the help of RF field applied perpen-

dicular to the external magnetic field B0. The RF Hamiltonian can be written as,

Hrf = −γB1(cos(ωrf t+ φ)Ix + sin(ωrf t+ φ)Iy) (1.28)

where ω1 = −γB1 is the rf amplitude, ωrf is the rf frequency and φ is the rf phase.

The resonance condition is met when ωrf = ω0 where, ω0 is the Larmor frequency of

the spin. Let us first consider the resonance case with ωrf = ω0. Under rotating frame

frame approximation, the effective rf Hamiltonian becomes,

Heff = ω1(cos(φ)Ix + sin(φ)Iy) (1.29)
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Now suppose there is an offset, Ω = ω0 − ωrf , the effective Hamiltonian will have

an additional term along the longitudinal axis. Now, the effective Hamiltonian is written

as,

Heff = ΩIz + ω1(cos(φ)Ix + sin(φ)Iy) (1.30)

This is equivalent to say, on resonance condition the effective field is along the x̂

axis and it is on the x̂ − ẑ plane when there is an offset. And, the nuclear spin will

start nutating around the effective field with a nutation frequency, ωeff =
√

Ω2 + ω2
1 .

Therefore, any angle of rotation, θ can be realized by choosing the RF duration, τ such

that ω1τ = θ.

NMR Readout

In NMR, the state readout is carried out with the aid of an RF coil placed along the

sample. The measurement observable is the bulk transverse magnetization of the en-

semble. At thermal equilibrium, the bulk magnetization vector points along the external

field B0 and a RF field, B1, applied along the transverse plane, flips the magnetization

to the transverse plane. Now, the bulk magnetization precesses around the transverse

field and produces electromotive field in the coil placed around the sample tube in ac-

cordance of the Faraday’s law of induction. However, due to decoherence and the static

field inhomogeneity, the induced field will start decaying with time and it is called the

free induction decay(FID). The NMR spectrum is obtained by Fourier transforming the

FID signal.

The final bulk magnetization can be expresses as,

M(t) ∝ Tr(ρ(t)Dop) (1.31)

where, M(t) = Mx + iMy, ρ(t) is the final density matrix and Dop = Ix + iIy is the
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detection operator. The signal in frequency domain is obtained via Fourier transforma-

tion of M(t).



Chapter 2
NMR investigation of quantum

pigeonhole effect

In this chapter, I will discuss the NMR simulation of a recent quantum phenomenon

called quantum pigeonhole effect using unitary operators realized via GRadient Ascent

Pulse Engineering (GRAPE) technique.

Introduction

Quantum theory has been often known for contradicting logics applied to our everyday

life and quantum pigeonhole effect (QPHE) [1, 2] is one of the examples. The pigeon-

hole principle is one of the most famous principles in mathematics and it states that if n

items are put in m < n containers, then at least one container must have more than one

item [68]. Although, it is the simple logic for counting, it has got several interesting ap-

plications in mathematics [15, 78, 85], computer science [4, 29, 77], graph theory [100],

and combinatorics [13].

Recently, Aharonov and coworkers have theoretically illustrated certain quantum

mechanical scenarios appearing to contradict the pigeonhole principle [2]. This phe-

nomenon, known as QPHE has already raised considerable interest. For example Yu

19
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Figure 2.1: (a) Three quantum particles entering a Mach-Zehnder interferometer consisting
of two beam-splitters (BS1 and BS2) and phase shifter (Z), and two particle-detectors D0 and
D1. (b) Circuit for NMR investigation of QPHE. Hadamard gates perform the function of beam
splitters, and Z-gate performs phase shift. Intermediate state information of the particle-qubits
(F1, F2, F3) is encoded onto an ancilla qubit (H4) using one of the controlled operations U12,
U13, and U23. The ancilla qubit is measured at the end of the circuit.

and Oh demonstrated the emergence of QPHE from quantum contextuality [104]. Rae

and Forgan suggested that QPHE arises as a result of interference between the wave-

functions of weakly-interacting particles [81]. In this work, we simulate QPHE using a

four-qubit NMR quantum simulator.

Theory

In the following section, I shall discuss the theoretical modeling of quantum pigeonhole

effect( subsection 2.1). I will also briefly discuss the optimal control technique namely
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GRAPE algorithm for realizing unitary operators for quantum simulation (subsection

2.2).

Quantum Pigeonhole Effect (QPHE)

Let us discuss the theory of QPHE by considering three identical particles simultane-

ously entering a Mach-Zender interferometer as shown in Fig. 2.1 (a). The Mach-zender

interferometer consists of two beam-splitters (BS1 and BS2), a 90 degree phase-shifter

(Z), and two identical detectors (D0 and D1). BS1 is used to create a superposition of

two paths labelled |0〉 and |1〉. When a particle initially prepared in state |0〉 enters BS1,

it transforms to |+〉 = (|0〉+|1〉)/
√

2. Both paths are guided towards BS2 using mirrors.

After the 90 degree phase-shifter Z, the state of the particle is |+i〉 = (|0〉 + i|1〉)/
√

2,

and after BS2 it becomes {(1 + i)|0〉+ (1− i)|1〉}/2. Thus the particle has equal prob-

ability of reaching either of the detectors. The state |+〉 can also be written in terms of

|±i〉, i.e.,

|+〉 =
1− i

2
|+i〉+

1 + i

2
|−i〉. (2.1)

We notice that the first component, namely |+i〉 transforms to |−〉 = (|0〉−|1〉)/
√

2 after

Z, and then to |1〉 after BS2, and finally ends up in detector D1. Similarly, the second

component, namely |−i〉 transforms to |+〉 = (|0〉 + |1〉)/
√

2 after Z, and then to |0〉

after BS2, and finally ends up in detector D0. In this sense, a measurement outcome of

|0〉 (or |1〉) amounts to postselecting |−i〉 (or |+i〉) state just before the phase-shifter.

Suppose, three particles are initially in a state |000〉 and after BS1, the state of the

particles is described by the superposition |ψa〉 = |+,+,+〉. The final state may col-

lapse with equal probability to any one of the states {|000〉, |001〉, |010〉, |011〉, |100〉,

|101〉, |110〉, |111〉}.
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The projectors

P12 = |0〉〈0| ⊗ |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ |1〉〈1| ⊗ 1 (2.2)

P13 = |0〉〈0| ⊗ 1⊗ |0〉〈0|+ |1〉〈1| ⊗ 1⊗ |1〉〈1| (2.3)

P23 = 1⊗ |0〉〈0| ⊗ |0〉〈0|+ 1⊗ |1〉〈1| ⊗ |1〉〈1|, (2.4)

probe if any two of the particles are in the same state, i.e., |00〉 or |11〉. The expectation

values of the projectors give corresponding probabilities. Evaluating the expectation

values for the state |+,+,+〉, we find that 〈P12〉 = 〈P23〉 = 〈P13〉 = 1/2. Just after

BS1, the probability for any two particles being in the same path is therefore 1/2.

We shall now consider only the cases wherein all the three particles reach the same

detector, say D0 (or D1) and discard all other possibilities. Then the measurement

outcome |000〉 (or |111〉) is equivalent to postselecting the state |φ1〉 = |−i,−i,−i〉 (or

|φ0〉 = |+i,+i,+i〉) before the phase-shifter.

The projection |ψsamej,k 〉 = Pjk|ψa〉 describes the component of |ψa〉 corresponding

to particles j and k being in the same path. Since,

〈φ0|ψsame1,2 〉 = 〈−i,−i,−i|P12|+,+,+〉 (2.5)

=
〈−i,−i,−i|0, 0,+〉+ 〈−i,−i,−i|1, 1,+〉

2
(2.6)

= 0, (2.7)

This is equivalent to saying that the postselected state |φ0〉 has no component having

particles 1 and 2 in the same path. Owing to the symmetry in the pre- (|ψa〉) and post-

(|φ0〉) selected states, the above conclusion can be extended to any pair of particles.

This effect is interpreted as - if all the three particles have to reach the same detector

D0, then no two particles can take the same path inside the Mach-Zender interferometer.

Of course, similar interpretation can also be given for the case in which all the three
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Figure 2.2: The molecular structure of 3-bromo-2,4,5-trifluorobenzoic acid. The chemical shifts
(diagonal elements) and effective coupling constants J ′ij (off-diagonal elements) are shown in
table. The NMR spectrum of ancilla is shown in Fig. 2.3(a).

particles reach the same detector D1. This phenomenon which seems to violate the

classical pigeonhole effect is called QPHE.

GRAPE algorithm for realizing unitary operators

Realizing any arbitrary unitary is one of the major requirements for building a universal

quantum simulator.Optimal control techniques have been extensively used for realiz-

ing robust quantum gates in NMR quantum simulator. In this work, we used GRAPE

algorithm for realizing unitary operators required for the simulation.

GRAPE is a gradient based optimization algorithm. The goal of any optimization

algorithm is to find the parameter co-ordinates (in n dimensional parameter space) where

a cost function φ is either maximum or minimum. Calculating the gradient of the cost

function at each point in the parameter space gives the direction to the maxima (see

Fig.2.4).

Consider the total Hamiltonian of an NMR system which is of the form,

H(t) = Hint +
M∑
k=1

uk(t)hk (2.8)

where, Hint is the internal Hamiltonian and the latter term is the rf Hamiltonian with rf
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Figure 2.3: The ancilla NMR at various stages of QPHE simulation, each obtained by a final
90◦ detection pulse. The simulated and experimental spectra are shown in the left and right
columns respectively. (a) Thermal equilibrium state ρeq (the background baseline is due to the
liquid crystal signal), (b) The partial pseudopure state ρ(0), and (c) after the entire MZI-circuit
(without Uij) indicating the various combinations of detections. Spectra in (d-f) correspond to
the complete QPHE circuit shown in Fig. 2.1(b) obtained with U12, U13, and U23 respectively.
The dashed boxes highlight the peaks corresponding to the postselected states as described in
the text.
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Figure 2.4: Gradient ascend algorithm
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Figure 2.5: Schematic representation of the GRAPE algorithm. The control amplitude at each
segment is assumed as a constant and the vertical arrows show the gradients indicating how each
amplitude should be modified in the next iteration in order to improve the cost function.

amplitude, uk, corresponding to different spin species, M and spin operator hk. And, a

total unitary operator at time, T can be written as,

U(T ) = D exp

(
−i
∫ T

0

H(t)dt

)
(2.9)

where, D is the Dyson time ordering operator coming from the time dependence of the

Hamiltonian.

For the practical convenience, the total time, T, can be discretized into N step of

∆t = N/T duration and during each time step, the rf amplitude uk can be treated as a

constant as shown in Fig.2.5. Now the unitary corresponding to each segment j can be

written as,

Uj = e−iH∆t (2.10)

and, the total unitary at time T is the cumulative product of the unitaries Ujs. For a given

Unitary Utarg, the goal is to optimize the rf amplitudes at each segment by maximizing
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a cost function which is nothing but the fidelity at time T in our case and is defined as,

φ = 〈Utarg|UT 〉 = 〈Utarg|UN ...U1〉 (2.11)

= 〈U †j+1...U
†
N Utarg|Uj...U1〉 (2.12)

= 〈Pj|Xj〉 (2.13)

where, Pj = U †j+1...U
†
N Utarg is the backward evolving propagation starting form the

target unitary, Utarg, and Xj = Uj...U1 is the forward evolving propagator at time j∆t.

The algorithm begins with initial guess amplitudes uks and in the next iteration,

amplitudes get modified as

uk(j) = uk(j) + ε
∂φ0

∂uk(j)

(2.14)

where, ∂φ0

∂uk(j)
= −〈Pj|i∆t Hk Xj〉 is the gradient at each segment j and ε is the step size

(see Fig.2.2). The mathematics for getting the above expression for ∂φ0

∂uk(j)
can be found

in reference [54]. We then repeat the algorithm until the desired fidelity has reached.

NMR simulation

We used a 4-qubit quantum register consists of 3-bromo-2,4,5-trifluorobenzoic acid (see

Fig. 2.2) partially oriented in a liquid crystal N-(4-methoxybenzaldehyde)-4-butylanline

(MBBA) for simulating QPHE. The three 19F spins and the 1H spin are respectively used

as the three particle qubits and the ancilla qubit for encoding the intermediate path infor-

mation. All the experiments were carried out on a 500 MHZ Bruker NMR spectrometer

at an ambient temperature of 298 K. The effective couplings in this system are due to

scalar interactions (Jij) as well as partially averaged dipolar interactions (Dij). Thus

the internal Hamiltonian for the system, under weak-coupling approximation, can be
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written as

H = −2π
∑
i

νiIzi + 2π
∑
ij

J ′ijIziIzj, (2.15)

where νi are the resonance frequencies, J ′ij = (Jij + 2Dij) are the effective coupling

constants, and Izi is the z-component of spin angular momentum operator of ith spin

[57]. All the relevant Hamiltonian parameters like chemical shifts and effective coupling

constants are tabulated in Fig. 2.2.

The first step in the experiment is the initialization the particle-qubits (three 19F

nuclei) in a pseudo pure state and the ancilla can be still in thermal state. And, such

state can be expressed as,

ρ(0) = 1/16 + ε|000〉〈000| ⊗ σz/2 (2.16)

where ε ∼ 10−5 is the purity factor. This state can be very easily realized by taking

difference between two initial states: (i) ρeq corresponding to thermal equilibrium state

and (ii) ρin obtained by inverting the populations of levels |0000〉 and |0001〉 using

a low-power transition-selective Gaussian pulse of duration 80 ms [37]. The ancilla

spectrum corresponding to the initial state obtained by a 90◦ detection pulse (shown in

Fig. 2.3 (b)) clearly indicates the transition corresponding to the particle-state |000〉.

The next step is to apply the various elements of the Mach-Zehnder interferometer

as shown in Fig. 2.1 (b). All the unitary operations were realized by GRAPE optimal

control technique [53]. The durations of the GRAPE pulses ranged from 400 µs to 700

µs, and the fidelities were better than 0.99 over a 10 % RF inhomogeneity range.

The experimental spectrum after the complete MZI-circuit is shown in Fig. 2.3(c).

To probe the component of the wave-function prior to the phase gate, we insert operator
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Figure 2.6: (a) Realizing Uij by a pair of CNOT gates. (b-d) NMR pulse sequences corre-
sponding to C1NOT4, C2NOT4, and C3NOT4 respectively. All the π pulses (open rectangles)
are about y axis and the phases of the π/2 pulses (filled rectangles) are as indicated. The delays
are set according to τi = 1/(8J ′i,4).
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Uij as shown in Fig. 2.1 (b). The action of Uij is given by

Uij = Pij ⊗ 1a + (1s − Pij)⊗Xa, (2.17)

where Pij are the projections as described in eqns. 2.4, 1s, 1a are respectively the iden-

tity operators on system and ancilla, and Xa is the NOT operator on ancilla. Effectively,

Uij conserves the ancilla if particles i and j are in the same path, but inverts it otherwise.

Thus in the ancilla NMR spectrum, a positive ancilla peak indicates two particles being

in the same path, while a negative peak indicates them being in different paths. Each of

the Uij operations is realized by a pair of CNOT gates as described in Fig. 2.6 (a). The

NMR pulse-sequences to generate each of the CNOT gates are shown in Fig. 2.6 (b-d).

The NMR spectra obtained after the complete MZI-circuit along with probing of

particles (1, 2) (by U12), (1, 3) (by U13), and (2, 3) (by U23), are shown respectively

on the right side of Figs. 2.3(d-f). The corresponding simulated spectra are shown on

the left side. The intensity variations in the experimental spectra are mainly due to the

imperfections in executing CNOT operations resulting from RF field inhomogeneities,

nonlinearities of the RF amplifiers, as well as decoherence. However, we observe an

overall agreement of the experimental results with the quantum theoretical simulations.

In particular, we focus on the NMR transition 000 (111) corresponding to postselection

of all the three particles reaching D0 (D1). These transitions are highlighted by dashed

lines in Fig. 2.3(d-f)). All these transitions have negative intensities indicating that no

two particles are in the same path. This is a clear demonstration of QPHE.

For three particles and two containers, the various other arrangements and their clas-

sical as well as quantum possibilities are shown in Table 1. Here the first two arrange-

ments, where there is a clear contradiction between classical and quantum, correspond

to QPHE. For the other cases, while the possibilities are probabilistic in the classical

regime, they are certain in the quantum regime. Of course, it is also possible to gener-
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Arrangement 

Possibility 

 
Classical 

Quantum 

D0 
Postselection 

D1 
Postselection 

Any two in same 
container 

At least 
one pair 

None None 

Any two in different 
containers 

At most 
two pairs 

All three 
pairs 

All three 
pairs 

Any pair in 
container-0 

(container-1) 

Probable NO NO 

All three in same 
container 

Probable NO NO 

One of the particles 
in container -0 
(container-1) 

 
Probable 

 
YES (NO) 

 
NO (YES) 

Table 2.1: The classical and quantum possibilities are tabulated for various arrangements of
three particles in two containers. The top two rows correspond to QPHE.

alize QPHE to N particles in M < N containers [2].

Conclusions

Quantum pigeonhole effect is yet another illustration of quantum systems displaying

effects beyond the classical predictions. The nonclassical effect in this case emerges as

a result of assignment of premeasurement states based on the knowledge of postmea-

surement values.

Here we provided the first experimental simulation of QPHE using an NMR quan-

tum simulator. The quantum register consisted of three 19F spins simulating three quan-

tum particles whose intermediate state was probed by a 1H spin (ancilla). The exper-

imental results agreed well with the quantum theoretical predictions. The successful

demonstration of QPHE also illustrated good quantum control achieved on a four-qubit

heteronuclear NMR system partially oriented in a liquid crystal.



Chapter 3
Steering Quantum Dynamics via

Bang-Bang Control:

Implementing optimal fixed point

quantum search algorithm

In this chapter, I will introduce a novel quantum control technique called Bang-Bang

(BB) control (section 2). Then, I will discuss the Optimal Fixed Point Quantum Search

(OFPQS) algorithm for finding marked items among unsorted item in section 3 and

show how we have experimentally implemented the algorithm on a NMR quantum sim-

ulator using the unitary operators realized using BB control (section4). I will also show

how to realize certain non-unitary operations using BB control in section 5.

Introduction

Steering a quantum state from one state to another is often required during a quantum

simulation and there has been a remarkable progress in the field of quantum control

during the past several years (eg. [34, 54, 62, 95, 99]). In most of the previous meth-
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ods, smooth modulations (SM) of the control parameters is assumed (see Fig. 3.1).

Therefore, those require repeated calculation of the unitaries during each segment of

the discretized time (see section.2.2 in Chapter 3) in every iteration. Another approach

for steering a quantum evolution is based on a sequence of short bursts of full-power

control fields. Such an approach, popularly known as a bang-bang (BB) control, has

been successfully used in a variety of quantum architectures (for example, [72, 108]).

Similar sequences have also been used for controlling spin dynamics. For example, a

train of short high-power RF pulses is used to generate a DANTE composite pulse in

NMR [11, 35, 71].

Here we propose a BB control to generate an arbitrary quantum state steering. We

also discuss how this scheme scales much more efficiently with the size of the control

sequence compared to the SM scheme. Combined with a global optimization routine,

this BB scheme can be used to generate not only arbitrary unitaries but also certain

nonunitary operations with high fidelities.

Bang-bang approach

Although the following methods can be generalized to other quantum architectures, for

the sake of clarity, we shall use the rotating frame picture of an NMR spin system (in an

isotropic medium or in a partially oriented medium). Denoting ωr, Jrs, Drs respectively

for resonance off-sets, indirect (scalar), and direct coupling constants, and Ir for spin

operators, the secular part of the internal Hamiltonian can be written in the form

H0 = −
∑
r

ωrIrz + 2π
∑
r<s

(Jrs + 2Drs)IrzIsz (3.1)

+2π
∑
r<s

(Jrs −Drs)(IrxIsx + IryIsy), (3.2)
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Figure 3.1: Smooth modulation (SM) vs bang-bang (BB) sequence. Ωj , φjk, ∆t are the ampli-
tude, phase, and duration of the segments, and T is the total duration of the sequence. The helix
represents the crusher gradient required for nonunitary gates. Performance of BB improves over
SM for lower duty cycles as illustrated in the graph. Here τSM and τBB indicate respectively
SM and BB computational times for calculating 10-qubit propagators of T = 0.5 ms duration.

wherein the third term vanishes for weakly interacting spins, particularly for spins be-

longing to different nuclear species [56].

The BB approach relies on intermittent bursts of full control power instead of its

smooth modulation.For generality we consider a spin-system having several nuclear

species, and let the jth species be irradiated by an independent RF source with an am-

plitude switching between either 0 or a maximum value Ωj , but with a variable RF

phase φj ∈ [0, 2π] (see Fig. 3.1). The propagator for the BB sequence can easily be

setup by discretizing the total control period T into short segments of duration ∆t. Let

Sj =
∑

m I
(j)
m be the collective spin operator of m spins belonging to the jth species.

We call Xj = exp{−i(H0 + ΩjSjx)∆t} as the basic propagator and it needs to be com-

puted only once. No matrix exponential needs to be calculated during the run-time of

iterations, and therefore one obtains a significant speed-up over the SM techniques.

During the kth segment there can be a delay or a pulse. If the kth segment is a delay,

then Ujk = exp(−iH0∆t) is also a constant operator and therefore needs to be evaluated

only once. On the other hand, if the kth segment is a pulse with a phase φjk, then the

propagator is simply obtained by rotating Xj about the z-axis, i.e., Ujk = ZjkXjZ
†
jk.

Here Zjk = exp(−iφjkSjz) is a diagonal operator in the Zeeman product basis and is

therefore efficiently evaluated in the run-time of the iterations. The net propagator for
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the entire control sequence is simply the cumulative product U =
∏

k

(∏
j Ujk

)
.

Typically complex unitaries involving non-local quantum operations require long

evolutions under spin-spin interactions, and have low duty cycles. In such cases, the

BB approach is orders of magnitude faster than the conventional methods which re-

quire repeated matrix exponentiations to evaluate the segment unitaries (Fig. 3.1). If

[H0, Zjk] = 0 (eg. weak-coupling case: |ωr−ωs| � 2π|Jrs−Drs| for all r and s), then

a further speed-up ensues, since the delay propagators become diagonal.

Given a target unitary UT, we optimize the BB parameters {Ωjk, φjk} using the

genetic algorithm by maximizing the unitary fidelity Fu. If the goal is to prepare a

specific quantum state ρT starting from an initial state ρin, then we need to calculate the

output state ρout = UρinU
† and the state fidelity

Fs =
|Tr(ρTρout)|√
Tr(ρ2

T )Tr(ρ2
out)

(3.3)

is to be maximized.

The procedure for using the genetic algorithm is as follows. As indicated in Fig. 1,

BB sequence consists of bunches of pulses separated by variable delays. Each bunch of

w-pulses is assigned with w + 1 genes - one for the number of pulses, and remaining

for the phases {φw}. In order to accommodate variable number of bunches in the pulse

sequence, it is necessary to pad the vector with dummy genes which are not necessarily

used in the optimization routine. There occurs a delay gene after every bunch of pulses

and the delay gene d indicates the number of delays (each of duration ∆t) to be inserted

between the bunches. Thus the overall gene sequence for two bunches may look like

[w1,d1,w2,d2,{φ1},{φ2}]. All genes, except the phase genes, are rounded to nearest in-

tegers. For example, a particular gene sequence [3, 3, 2, 4, 0, {0.7, 0.9, 1.2}, {0.5, 1.1}]

refers to two bunches of pulses containing a sequence of 3 pulses, 3∆t delay, 2 pulses,

4∆t delay, and the corresponding phase vectors are {0.7, 0.9, 1.2} and {0.5, 1.1} re-
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spectively. Here 0 is the dummy gene. Genetic algorithm begins with a set of initial

gene sequences called population. In every iteration, it picks up the fittest populations

and pass onto the next generation. The genetic algorithm seeks to determine an optimal

gene-sequence that maximizes the fidelity. We have utilized the genetic algorithm proto-

col implemented in MATLAB for our optimizations. Here we also note that the genetic

algorithm has earlier been used for various optimization purposes in NMR [36, 65].

OFPQS algorithm

Classical search algorithms can find one or more ‘marked’ items among an unsorted

database of Q items in O(Q) steps. On the other hand, Grover’s quantum search algo-

rithm achieves the same task in O(
√
Q) steps, thereby providing a quadratic speedup

over the classical counterpart [42]. Grover’s algorithm identifies one of the R marked

items among Q unsorted items with the help of a given oracle function that can rec-

ognize the marked items. It can also be interpreted as the rotation of an initial state

vector |ψQ〉 in the 2D space spanned by the superposition of Q−R non-solution states

|ψQ−R〉 and the superposition of R solution states |ψR〉 [74]. The Grover iteration thus

drives |ψQ〉 towards |ψR〉 in O(
√
Q/R) steps. However, if we do not know the num-

ber of marked items R beforehand, we cannot predict the number of iterations which

would land the initial state closest to the marked state. Too few iterations give us a

state comprising of mostly non-solution states, whereas, too many iterations can surpass

the solution states and we may end up getting non-solution states, yet again. In order

to overcome this problem, attempts have been made to develop fixed point quantum

search (FPQS) algorithms, which monotonically amplify the probability of obtaining

the marked states [43, 96]. While these FPQS algorithms lacked the quadratic speedup,

a recent optimal FPQS (OFPQS) algorithm proposed by Yoder et. al. achieves this

speedup while maintaining the fixed point behavior [103]. In the following we outline
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Figure 3.2: Quantum circuit for OFPQS algorithm. Here the angles α and β depend on the
iteration number l as indicated in Eqn. 3.4.

the various steps involved in the OFPQS algorithm.

The quantum circuit for the OFPQS algorithm is shown in Fig. 3.2 (for 3-qubits).

We need to extract |ψR〉 from |ψQ〉 with a success probability PL ≥ 1 − δ2 for a

predefined parameter δ. The algorithm needs a quantum register with a total number

of qubits n ≥ log2(Q) + 1 including an ancilla qubit, all initialized in the ground

state |0〉⊗n. The system qubits are then transformed into a uniform superposition by

applying n − 1 Hadamard gates. We are provided with an oracle UG which when

acted upon the marked state, flips the ancilla qubit. Thus, UG|ψR〉|a〉 = |ψR〉|a⊕ 1〉

and UG|ψQ−R〉|a〉 = |ψQ−R〉|a〉, where |a〉 represents the ancilla qubit. Various gates

in the generalized Grover iteration are also shown in Fig. 3.2. Let us consider l

generalized Grover iterations. Defining L = 2l + 1 and γ−1 = T1/L(1/δ) where

TL(x) = cos(L cos−1 x) is the Lth Chebyshev polynomial of the first kind, the phase

rotations are given by

αj = −βl−j+1 = 2 cot−1
(

tan(2πj/L)
√

1− γ2
)

(3.4)

for all j = 1, 2, . . . l [103]. As each Grover iterate contains two applications of the

oracle UG, the query complexity is L− 1.
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Figure 3.3: (a) Molecular structure of dibromo fluoromethane, (b) the Hamiltonian parameters
and relaxation time constants, and (c-e) PPS spectra (upper trace), equilibrium spectra (middle
trace), and PPS pulse-sequences (bottom trace) for the 1H, 19F and 13C qubits, (f) bar diagram
representing theoretical (red) and experimental (blue) diagonal elements of the traceless devia-
tion density matrix corresponding to |000〉 PPS. In (b), the diagonal and off-diagonal elements
are respectively resonance off-sets and J-coupling constants in Hz.
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NMR Implementation

We implement the OFPQS algorithm on a quantum register involving two system qubits

1H and 19F, along with an ancilla qubit 13C of dibromofluoromethane-13C [70] dissolved

in acetone-D6 (see Fig. 3.3). All the experiments were carried out on a Bruker 500 MHz

NMR spectrometer at an ambient temperature of 300 K. Here, we demonstrate the op-

timal search algorithm for searching one and two marked items among four unsorted

items. As described in the circuit in Fig. 3.2, the experiment mainly involves three

stages: (i) preparation of |000〉 state, (ii) iterations of the generalized Grover operation,

and (iii) measurement of the final probabilities using the ancilla qubit. Fig. 3.3 shows

the BB-sequence consisting of both RF pulses and crusher gradients automatically gen-

erated for the 3-qubit initialization by maximizing the state-to-state fidelity Fs. In the

experiment, the crushers are easily achieved using three PFGs whose time instants are

obtained by BB optimization scheme. Fidelity of the experimental results of |000〉 PPS

preparation shown in Fig. 3.3 (c-e) is estimated to be 0.998±0.001. Steering the system

form thermal state to |000〉 PPS state causes change in purity hence, it is essentially a

non-unitary process. Therefore BB can be also used for realizing non-unitary operations

along with crusher gradient and this will be addressed in detail in the next section.

As shown in the circuit of Fig. 3.2, we then prepare the uniform superposition state

|ψQ〉 by applying a Hadamard gate on each of the system qubits.

First we divide the circuit shown in Fig. 3.2 into several segments as indicated by

the vertical dashed lines. Each of these segments is realized by a BB sequence with an

average fidelity of 0.98 over 10% RF inhomogeneity. In order to demonstrate the ability

of the BB scheme to realize highly intricate and long circuits, we also implemented the

entire generalized Grover iterate (Fig. 3.2) by a single BB sequence. The durations

of the BB sequences for l = {1, 2, . . . , 10} varied in the range 40 ms to 220 ms, and

consisted of 8,000 to 44,000 segments, each segment being 5µs long. The simulated
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Figure 3.4: The experimental 13C spectra after various steps of OFPQS algorithm as indicated
in Fig. 2: (a) equilibrium state, (b) pseudopure state |000〉, (c) initial state preparation, (d) oracle,
(e-g) after amplification with l = 1, 2, and 3 respectively. Spectra in (a) to (d) are obtained after
a Hadamard gate.
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Figure 3.5: The theoretical and experimental results for the probability PL of finding (a) one
(|01〉) and (b) two (|10〉 and |11〉) marked states among four items versus the number of iterations
l. The red and blue points respectively represent the theoretically predicted and experimentally
obtained probabilities measured directly from the ancilla (13C) spectra (shown in insets).
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fidelities were about 0.98 over 10% RF inhomogeneity. While such long sequences im-

plementing multiple control operations are hard to realize by other control methods, the

present BB scheme exploits the very low duty-cycle and the one-time evaluation of basic

propagators to efficiently compute the overall unitaries. But, all our experiments were

performed with formal pulses (where we segregate the circuit into several segments) in

order to measure the ancilla spectrum after each stage of the algorithm. We performed

the experiments for one (|10〉) and two (|10〉 and |11〉) marked items by systematically

increasing the number of iterations (l) in each case.

In order to measure the final probabilities of finding the marked states, we first de-

stroy the coherences by applying a crusher gradient (Fig. 3.2). The relative probabilities

of the system qubits being in various eigenstates are encoded in the population differ-

ences of the ancilla qubit. Therefore we finally measure the ancilla after applying a

Hadamard operator, as shown in Fig. 3.2.

Ancilla measurements

In all our experiments, we set δ2 = 0.2 so that the theoretical lower bound for the proba-

bilities of finding the marked state is 1−δ2 = 0.8. The spectra obtained at various stages

of the algorithm for one marked state, i.e., |10〉 are shown in Fig. 3.4. The final spectra

(e-g) after amplification with l = 1, 2, and 3 clearly identify the marked state with ex-

perimental probabilities being in the range 0.7±0.05. Probability of finding the marked

items after various iterations are shown in Fig.3.5. The experimental probabilities were

in the range 0.75 ± 0.07 and 0.74 ± 0.05 for one and two marked states respectively.

The lower values of experimental probabilities are mainly due to pulse imperfections as

well as decoherence. In spite of the lower probabilities, the marked states can be clearly

identified from the spectra.It is clear that as the number of iterations increases, each final

state remains close to the solution state, thus exhibiting the fixed point behavior.
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Figure 3.6: (a) Molecular structure of the five-qubit system 1-bromo-2,4,5-trifluorobenzene and
its Hamiltonian parameters wherein diagonal and off-diagonal numbers represent resonance off-
sets and effective (J+2D)-coupling constants (in Hz), (b-f) the spectra corresponding to the ther-
mal equilibrium state (blue) and |00000〉 PPS prepared from the nonunitary BB sequence (red),
and (g) bar diagram representing theoretical (red) and experimental (blue) diagonal elements of
the traceless deviation density matrix corresponding to |00000〉 PPS.
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Realizing non-unitary operations using BB

The another important aspect of BB is that it can also be used for realizing certain

nonunitary operators along with crusher gradient. In the algorithm, the nonunitary op-

erators are realized by inserting one or more crusher genes. A crusher gene g can take

values 0 or 1, corresponding to ON or OFF. g = 0 keeps the state unaltered, while g = 1

retains only the diagonal elements of the density matrix, thus completely destroying all

the coherences.

In this work, we also describe preparing a 3 and 5 qubit PPS target state with the

help of a crusher gradient which is essentially a nonunitary operator that attenuates all

the coherences, ultimately retaining only the diagonal elements of the density matrix in

the computational basis. Simple pulsed-field-gradients (PFGs) used here are efficient

in this task unless one generates homonuclear zero-quantum coherences, in which case

more advanced twirling methods are needed [6]. Although it is possible to incorporate

the effects of decoherence, in our present scheme we ignore such effects by assuming

that the control sequences are much shorter than the decoherence time-scales. The PPS

spectrum of a 3 qubit PPS and diagonal density matrix obtained after diagonal tomog-

raphy are shown in Fig.3.3.

To demonstrate the potential of the BB scheme in a larger quantum register, we car-

ried out preparation of pseudopure state in a five-qubit system consisting of three 19F

and two 1H spins of 1-bromo-2,4,5-trifluorobenzene (see inset of Fig. 3.6) partially ori-

ented in a liquid crystal [91]. The nonunitary transformation was realized using a single

BB sequence of 89.1 ms duration involving four crusher gradients. The normal and PPS

spectra of each spin are also shown in Fig. 3.6. The overall fidelity of the PPS prepara-

tion was estimated to be 0.96±0.02. The lower fidelity compared to the 3-qubit register

is not only due to the increased complexity, but also due to the temporal fluctuations in

the dipolar interaction strengths of the 5-qubit system. Nevertheless, the automatic pro-
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cedure for generating the nonunitary transformation promises applications in a variety

of physical implementations involving quantum control.

Conclusions

Bang-bang pulses are efficient to compute, easier to implement, and are robust against

pulse errors. Using a nonlocal optimization algorithm, such as the genetic algorithm,

it is possible to efficiently optimize the BB sequence to generate any desired unitary

transformation or to prepare a quantum state. For example, in the case of NMR, long

control sequences are often needed to apply nonlocal transformations. It is unnecessary

to apply RF pulses throughout the control sequence, which is not only hard to compute

but also prone to RF inhomogeneity errors. The BB control technique allowed us to

carry-out the first experimental demonstration of optimal fixed point quantum search

algorithm on a three-qubit NMR register. The experimental spectra easily identified the

marked state out of a database of four unsorted items.

Combined with crusher gradients it is also possible to realize nonunitary transfor-

mations. Using this scheme, we have demonstrated the synthesis and experimental im-

plementation of pseudopure states in 3- as well as 5-qubit NMR quantum registers.

BB sequences can be realized by on and off switching of the control field and there-

fore it is also applicable to a variety of other architectures where smooth amplitude

modulation of control fields is difficult. It may also be possible to realize a hybrid

control sequence by combining the BB scheme with other optimal control techniques.

Although the present experimental demonstration is in an NMR system, the simplicity

of the BB scheme should allow its application in other architectures such as SQUID or

NV− center-based quantum registers.
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Chapter 4
Optimized dynamical protection of

nonclassical correlation in a quantum

algorithm

This chapter focuses on realizing dynamically protected gates by integrating dynamical

decoupling (DD) and optimal control techniques. I will also discuss on preserving non-

classical correlations , in particular quantum discord, during Grover’s search algorithm

by applying dynamically protected gates.

Introduction

Quantum correlations such as quantum discord (QD) and quantum entanglement are re-

garded as precious resources for QIP [23,30,61]. Hence, it is important to preserve these

resources during the process of computation. A quantum register interacts with its envi-

ronment and suffers loss of information stored in it via decoherence. In practice, another

important source of information loss is via incoherence, which results from the spatial

inhomogeneity in the control fields [46]. Therefore it is necessary to realize noise-free

quantum controls which preserve quantum correlations. Dynamical decoupling (DD)

45
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involves modulating the system-environment interaction and thereby suppress decoher-

ence as well as incoherence [97, 98]. It usually consists of a sparse sequence of in-

stantaneous qubit-flips to systematically modulate the system-environment interaction.

Unlike the fault-tolerant schemes based on error-correction or decoherence-free sub-

spaces, DD requires no additional resource in terms of ancillary registers [58, 93, 94].

Accordingly, DD has been widely studied and implemented experimentally [3,5,80,86].

Recently several experimental studies have been performed towards protecting quantum

correlations in quantum memory [52, 92]. More recently, combining DD and quantum

gates had been studied theoretically [55] as well as experimentally [83, 106, 107].

In this work, we incorporate DD within the optimal control procedure, which not

only avoids the manual slicing of the gate segments, but also naturally takes care of

DD pulse-errors. In particular, we demonstrate realizing protected gates by combining

DD and Gradient Ascent Pulse Engineering (GRAPE) protocol [54]. As a specific case,

we study the experimental efficiency of protected gates implementing Grover’s search

algorithm in terms of preserving QD and of maintaining the probability of marked state.

Dynamically protected gates

Theory

In this subsection, I shall discuss the theoretical description of DD protected gate. Let us

consider an N-spin system with an internal HamiltonianHS and a control Hamiltonian

HC(t) =
N∑
i=1

Ωx(t)Iix + Ωy(t)Iiy (4.1)

where Ωx(t) and Ωy(t) represent the x and y components of the amplitude and phase

modulated RF fields being applied on all the spins. Simultaneously, let us also consider

the system-environment interaction Hamiltonian HSE(t), so that the total Hamiltonian
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is of the form

H(t) = HS +HC(t) +HSE(t). (4.2)

While the system-environment interaction Hamiltonian HSE that is responsible for

the decoherence, is usually hard to characterize, it is still possible to minimize it’s dis-

ruptive effect by controlled system modulations. The goal here is to achieve a quantum

operation while protecting the quantum register against the environmental decoherence.

In the following, we first describe the procedure for integrating DD with Quantum Con-

trol (QC) to achieve a protected quantum operation.

Suppose a propagator UT is to be realized by the control fields {Ωx(t),Ωy(t)}. In

practice, time-discretized (piecewise constant) amplitudes are used, i.e., during the kth

segment [(k − 1)∆t, k∆t], the control parameters are {Ωx,k,Ωy,k} (see Fig. 4.1). The

ideal closed-system unitary for the kth segment is

uk = exp [−i(HS +HC,k)∆t] , (4.3)

where HC,k =
∑

i Ωx,kIix + Ωy,kIiy. The control propagator for a sequence of n-

segments is U = ukuk−1 · · ·u1.

In the presence of environmental interaction however, the actual open-system prop-

agator for the k-th segment becomes

uop
k = exp [−i(HS +HC,k +HSE)∆t] , (4.4)

which acts on the joint system-environment state. Subsequent tracing out of the envi-

ronmental part results in decoherence of the quantum system. DD pulses modulate the

system-environment evolution and thereby suppress decoherence.

The propagator for a DD pulse with flip-angle β and phase α is given by Pβ,α =

exp(−iβSα), where Sα =
∑

i Iix cosα + Iiy sinα. The overall propagator for a pro-
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tected sequence consisting of M DD pulses sandwiched between control propagators is

(see Fig. 4.1),

UP = UM+1

M∏
j=1

Pβj ,αj
Uj. (4.5)

Using the toggling-frame picture [45, 106], we may rewrite the above in the form,

UP = UM+1

M∏
j=1

Ũj, (4.6)

where the toggling frame unitaries Ũj = T †j UjTj , and Tj = Pβj−1,αj−1
Pβj−2,αj−2

· · ·Pβ1,α1

and T1 = TM+1 = 1. Given a target propagator UT , we optimize the control amplitudes

which maximize the fidelity

F (UP , UT ) = Tr
[
U †TUP

]
/Tr

[
U †TUT

]
. (4.7)

Time 

/2   

Amplitude

max

0

/2

Figure 4.1: Protected quantum gate scheme. Certain segments are reserved for the full-
amplitude (Ωmax) DD-pulses (Pβj ,αj

) and other segments are subject to optimization to realize
a given target unitary UT .
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Unlike the previous works on the protected gates [106,107], where β = π was used,

in this work we generalize to variable DD flip angles. We also integrate periodic, full-

amplitude, DD pulses in the optimal control procedure itself, by pre-assigning segments

and freezing their amplitudes and phases. The main advantage of this method is that the

DD pulses along with their imperfections, like additional spin-flips, RF inhomogeneity,

and offset errors, are accounted and corrections are incorporated by the control segments

in order to achieve a robust sequence for implementing the target propagator. Moreover,

there is no need for the manual slicing of control pulses to introduce DD pulses. In the

following, we shall consider the dynamical protection of a single qubit and illustrate

how it can be achieved by DD pulses with a range of flip-angles.

A simple model:

Protected NOT gate on a single qubit

For a simple demonstration of dynamical protection, we choose the NOT gate, UT =

exp(−iπIx) on a single qubit. We consider a DD pulse Pβ,x = exp(−iβIx) sandwiched

between two identical effective control propagators U = exp(−iπ/2 Ix), such that

the total propagator UP = UPU . Here the DD pulse has not been accounted by the

control propagators, and therefore the fidelity F (UP , UT ) = cos(β/2) drops with the

flip-angle. In order to account for the DD pulse, we introduce a correction in the control

propagator such that Uc = exp{−i(π/2− c)Ix}, where c is the correction factor. In this

case, fidelity of the target with the net corrected propagator UPc = UcPβ,xUc becomes

F (UPc, UT ) = cos(β/2−c). Thus setting c = β/2 leads to unit fidelity for arbitrary DD

flip-angles. We now consider an undesired offset-error φz such that the DD-corrected

control propagators take the form Ucz = exp[−i{(π/2 − β/2)Ix + φzIz}], then the
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fidelity of the operation UPcz = UczPβ,xUcz becomes

F (UPcz, UT ) =

(
4φ2

z

γ2
+
η2

γ2
cos

γ

2

)
sin

β

2
+
η

γ
sin

γ

2
cos

β

2
, (4.8)

where γ2 = η2 + 4φ2
z and η = π − β. Clearly F (UPcz, UT ) = 1 for β = π. However,

for small values of φz, F (UPcz, UT ) ≈ 1 for all values of β. Without the DD pulse, the

fidelity of the unprotected operation U2
z = exp{−2i(π/2 Ix + φzIz)} is F (U2

z , UT ) =

π
γ

sin γ
2
, which starts from unity for φz = 0, but drops as φz starts increasing. Fig. 4.2(a)

displays the relative performances of these DD sequences with respect to the offset-error

φz. For this simple model, it turns out that while β = π works the best, even β = π/2

can show significant protection.

We now consider a more general case of a XY-DD protected NOT gate

U
(y)
cz Pβ,yU

(y)
cz U

(x)
cz Pβ,xU

(x)
cz , where

U (x/y)
cz =

n∏
j=1

exp
{
−i
( π

4n
− cx/yIx − dx/yIy + φzηj

)}
subjected to a random noise in the range [−φzηj,+φzηj] with a variable amplitude φz.

We have studied the above gate with n = 100 segments and numerically optimized the

correction factors cx/yIx and dx/y. During the above optimization, noise term φzηj need

not be considered. The contour plot of the fidelity of such an XY-DD protected NOT

gate is shown in Fig. 4.2(b). For the unprotected NOT gate, the fidelity drops below

0.9 for φz > 3◦ as shown by the dashed line. However in this region, fidelity of the

protected NOT gate is above 0.99 for a wide range of DD angles. These models indicate

that unlike the coherence storage schemes where β = π is usually considered, protected

quantum gates can also be constructed out of β 6= π.

Before we discuss the experimental and numerical studies, we first briefly review

quantum discord and its evolution during different stages of Grover’s algorithm.
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Figure 4.2: (a) Fidelity of the protected NOT gate versus offset error (in deg) correspond-
ing to the DD sequences UPcz = UczPβ,xUcz . (b) Fidelity of the protected NOT gate
U
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(x)
cz versus DD angle β and amplitude of the random phase-rotations.

For the unprotected NOT gate, the fidelity drops below 0.9 for the noise amplitude φz > 3◦ as
indicated by the dashed line.
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Figure 4.3: Venn diagram representing the total information H(S,A) of a bipartite system.
H(A) and H(S) are individual information of the system A and S respectively, I(S : A) is the
mutual information and H(S|A) and H(A|S) are conditional entropies.
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Quantum Discord (QD)

Quantum entanglement is considered as an important resource in QIP [8, 82]. Even

when the entanglement is absent, a bipartite quantum system (S,A) may possess an-

other useful type of quantum correlation known as quantum discord (QD) [76]. QD is

quantified by the minimal mismatch between the mutual information obtained in two

classically equivalent, but quantum mechanically distinct ways. As can be seen from

Fig. 4.3, the mutual information can be expressed either as

I(S : A) = H(A) +H(S)−H(S,A), (4.9)

or as

J(S : A) = H(S)−H(S|A). (4.10)

In classical information,

H(X) = −
∑
x

px log2 px (4.11)

is the Shannon entropy obtained using the probabilities px of xth outcome. Similarly,

the joint entropy

H(S,A) = −
∑
a,s

p(s, a) log2 p(s, a), (4.12)

is obtained using the joint probabilities p(s, a) and the conditional entropy

H(S|A) = −
∑
a,s

pap(s|a) log2 p(s|a), (4.13)
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is obtained using the conditional probability p(s|a), which is the probability of occur-

rence of outcome s given that the outcome a has occurred.

In quantum information, we replace the Shannon entropy with von Neumann en-

tropy, i.e.,

H(ρX) = −
∑
x

λx log2(λx), (4.14)

where λx are the eigenvalues of the density matrix ρX . The joint von Neumann entropy

H(S,A) is evaluated using the eigenvalues λs,a of the full density matrix ρS,A. On the

other hand, the conditional entropy H
Π
(S|A) is evaluated using the eigenvalues λs|aΠ

of the post-measurement density matrix ρS|AΠ
after carrying out a measurement along a

basis {Πa
i }.

While the two forms I(S : A) and J(S : A) of mutual information are identical

in the classical case, the requirement of measurement for the latter form makes them

different in the quantum case. This difference, when minimized over the entire set of

orthormal measurement bases {Π}, is often nonvanishing, and is attributed to a form of

quantum correlation termed as quantum discord (QD) [60, 76], i.e.,

D(S|A) = I(S : A)−max
Π

J(S : A). (4.15)

Since QD is also regarded as an important resource for quantum computing, it is neces-

sary to understand its evolution during quantum algorithms. In the following we discuss

the evolution of QD in Grover’s search algorithm.

QD in Grover’s algorithm

Grover’s algorithm identifies a marked item in an unsorted database of N items in

O(
√
N) iterations, while a classical algorithm needs O(N) iterations on an average.
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Figure 4.4: Various experimental stages of Grover’s search algorithm for up to six iterations
subjected to a random noise (top trace). It begins with a thermal initial state, followed by prepa-
ration of pseudopure state (PPS), Hadamard operator (H), and application of Grover’s iterates
(UG) consisting of oracle (UW ) and diffusion (UD) operators. The middle and bottom traces
show ideal evolutions of probability of marked state 〈k0〉 and QD respectively.
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Figure 4.5: Idealized estimations (solid lines) and experimental (filled circles) QD (in units of
ε2/ ln 2) (a, c) and probability 〈k0〉 − 0.25 (in units of ε; constant 0.25 is due to the traceless
deviation matrix experimentally estimated) of the marked state (b, d) under Grover iterates with
XY DD-protections without (a, b) and with (c, d) additional incoherence. The top trace (β = 0)
corresponds to unprotected Grover iterates. The middle (β = π/2) and the bottom (β = π)
traces correspond to XY DD protected Grover iterates.
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The algorithm starts with initializing a quantum register into an uniform superposition

|ψ0〉 =
1√
N

N−1∑
k=0

|k〉. (4.16)

It then uses an oracle

UW =
N−1∑
k=0

(−1)δk,k0 |k〉〈k| (4.17)

that flips a marked state |k0〉, and a diffusion operator

UD = 2|ψ0〉〈ψ0| − 1, (4.18)

which inverts each of the basis states about the mean. Together these two operations

constitute a Grover’s iterate, i.e., UG = UDUW , that amplifies the marked state ampli-

tude.

The top trace of Fig. 4.4 displays various stages in the Grover’s algorithm up to six

iterations. The middle trace displays the periodic evolution of the probability 〈k0〉 of the

marked state |k0〉 = |01〉. The bottom trace displays the corresponding evolution of QD

over six iterations. As expected, QD vanishes whenever the system reaches the marked

state - which is a classical state. QD vanishes also for uncorrelated states of the form

ρS ⊗ ρA not involving mutual interaction between S and A. The question that we ask

is, how does QD evolve in a noisy channel implementing Grover’s algorithm, and how

well it can be protected by interleaving the Grover’s iterates with DD. In the following

section, we explore the answer to the above question by NMR based experiments.
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Experiments

In our NMR experiments we utilize the two spin-1/2 proton nuclei of Cytosine dissolved

in deuterated dimethylsulfoxide (DMSO-D6). All the experiments are carried out on a

Bruker 500 MHz NMR spectrometer at an ambient temperature of 300 K. The resonance

offsets of the two protons are 436 Hz and −436 Hz, while the scalar coupling constant

J = 7.0 Hz. Starting from the thermal equilibrium state ISz + IAz, we use the spatial

averaging technique [22] to prepare the pseudopure state (PPS) (1− ε)1/4 + ε|00〉〈00|,

where ε ∼ 10−5 is the purity factor typically present in NMR systems.

We generated the DD-protected oracle operator UW corresponding to the marked

state |k0〉 = |01〉 and the diffusion operator UD by incorporating DD pulses into the

GRAPE optimal control technique [10, 54] as described in section II. Each GRAPE

segment was of duration 5.1 µs. The fidelities of these GRAPE pulses, each about 75

ms long, were above 0.99 after averaging over 10% RF inhomogeneity distribution. A

full power DD pulse was introduced in between every 1000 segments. The phase α of

the DD pulses was alternated between x and y.

To estimate QD, we need to obtain the density matrix at various stages of Grover’s

algorithm (see Fig. 4.4). The density matrix is generally obtained using quantum state

tomography (QST) which involves a set of independent experiments (on identically pre-

pared states) each measuring a particular set of observables. The expectation values are

then obtained by measuring the signal intensities. We have adopted a QST procedure

that results in only absorptive spectral lines which precisely quantify the expectation

values without requiring any further numerical processing.

Pure-phase Quantum State Tomography

In the conventional scheme (like the ones mentioned in [74], [84], [90]), one obtains

absorptive, or dispersive, or even mixed-phase spectral lines which are often hard to
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quantify. A pure-phase tomography has been designed to obtain only absorptive spectral

lines which are far easier and precise to quantify. In the case of a two-qubit homonu-

clear system involves a set of six experiments:

(i) . ≡ Gz − 6090 − τ

(ii) 75−180 − .

(iii) 75105 − .

(iv) 1/2J − 7530 − .

(v) 5/12J − 75105 − .

(vi) 75195 − 5/12J − 7515 − ..
Here Gz is the pulsed-field gradient to destroy the coherences, τ is the delay optimized

to suppress the homonuclear zero-quantum coherence, and J is the indirect spin-spin

coupling constant. Four absorptive transitions obtained after each of the above exper-

iments are integrated and the density matrix is estimated using the constraint-matrix

procedure described in [84, 90].

Results and Discussions

After obtaining the experimental density matrix ρexp, we estimated QD via the optimal

set of measurement bases proposed by Lu et al. [60]. Similarly, we also estimated

the probability 〈k0〉 = 〈k0|ρexp|k0〉 of the marked state for |k0〉 = |01〉. Fig. 4.5 (a)

displays experimentally estimated QD values (in units of ε2/ ln 2) at various stages of

the Grover’s algorithm for up to six iterations, with unprotected (top trace) as well as

for XY DD-protected Grover’s iterates with β = π/2 (middle trace) and β = π (bottom

trace). Fig. 4.5 (b) displays the corresponding probability of the marked state |01〉.

Thus, in the absence of incoherence, we observed that the experimental values are in

reasonably good agreement with the idealized predictions represented by solid lines

(also described in Fig. 4.4) indicating high-quality of quantum controls as well as low
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inherent noise in the NMR system.

To further investigate the power of DD protection, we deliberately introduced in-

coherence in the form of linear static-field inhomogeneity along the z-axis by using

approximately 5 mG/cm pulsed-field-gradient (PFG). It introduces a differential offset

of ±10 Hz across the sample volume corresponding to a phase shift φz ∼ 0.1◦ during a

single GRAPE segment of duration 5.1 µs. The total duration for six Grover-iterations

was about 0.9 second, and the translational diffusion of the molecules over this pe-

riod further introduces randomness in the overall dephasing. The top trace of Fig. 4.5

(c,d) display respectively the experimentally measured QD values and probabilities with

unprotected Grover iterates in the presence of such an incoherence. Clearly, the exper-

imental data without DD protection show little correlation with the ideal trajectories.

The other traces of Fig. 4.5 (c,d) display the experimental data under XY DD-schemes

with β = π/2 and β = π as indicated. The best protection was achieved by the XY DD

sequence consisting of π/2 pulses.

The bars with solid edges in Fig. 4.6 show the average root-mean-square (RMS)

deviation of the experimental QD (a) and probabilities 〈k0〉 (b) from the idealized the-

oretical values displayed in Fig. 4.5 for various DD flip angles without (open bars) and

with (filled bars) incoherence. In general, RMS deviations are enhanced by incoher-

ence, but suppressed by DD. Interestingly, the DD protection with β = π/2 showed the

best performance in suppressing the effects of incoherence. To further strengthen this

claim, we simulated RMS deviations using GRAPE pulses corresponding to UPG for

six iterations with 20% inhomogeneous RF fields and incoherent fields ranging from

−10 Hz to +10 Hz. The results are shown by bars with dashed edges in Fig. 4.6 (a,b).

The simulations also support the experimental finding that β = π/2 DD protection has a

superior performance. We also estimated the mean fidelities Fm = 1
6

∑6
j=1 F (U j

PG, U
j
G)

(see Eq. 4.7) as displayed in Fig. 4.6 (c). All the mean fidelities have good values in



4. Experiments 59

(a) QD

0 /2
0

0.2

0.4

R
M

S
 d

ev
ia

tio
n

(b) k
0

0 /2
0

0.2

0.4

R
M

S
 d

ev
ia

tio
n

(c) F
m

0 /2
0

0.5

1

M
ea

n 
fid

el
ity

Figure 4.6: Average root-mean-square deviation (bars with solid edges) between the experi-
mental data and ideal theoretical values (shown in Fig. 4.5) for QD (in units of ε2/ ln 2) (a) and
the probability 〈k0〉 (in units of ε) (b) of marked state versus DD flip angle β without incoher-
ence (open bars) and with incoherence (filled bars). The corresponding numerical simulations
are shown by bars with dashed edges. (c) Numerically estimated fidelities of UG averaged over
six iterations without (open bars) and with (filled bars) incoherence. Here errorbars indicate
variations over six iterations.

the absence of incoherence again indicating a good control. However in the presence of

incoherence, while the unprotected iterate completely fails, both β = π/2 and β = π

cases show relatively better performances.

We now try to understand the correlation between probability of the marked state and

QD. Fig. 4.7 displays the experimental QD values versus the probabilities without (a)

and with (b) incoherence. Ideally, the initial superposition state has no QD, but has same

probability of 0.25 for all the four basis states, which corresponds to the bottom left

corner as indicated by the dashed line. The intermediate state after the oracle UW takes

the superposition to a highly correlated state with a maximum QD, but still without any

higher probability for the marked state, which corresponds to the bottom-right corner.

Diffusion operator then amplifies the probability of the marked state, which is a classical

state with no QD, and therefore corresponds to the top-left corner. In the case of no

incoherence, most of the data points are localized to the expected corners. However,

in the presence of incoherence, while there is a significant dispersion of data points
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Figure 4.7: Experimental values of QD for six Grover iterations plotted against the probability
〈k0〉 − 0.25 without (a) and with (b) incoherence. Simulated values of QD versus probability
for 10 Grover iterations without (c) and with (d) incoherence. In all the cases, QD values are in
units of ε2/ ln 2 and probability values are in units of ε.

belonging to the unprotected gates (β = 0), those belonging to protected gates (β 6= 0)

still maintain localization. Thus DD schemes preserve quantum correlations and thereby

assure success of the algorithm. Here again β = π/2 shows the best performance.

Figures 4.7 (c,d) display the simulated values of probability versus QD without (c) and

with (d) incoherent fields (ranging from−10 Hz to +10 Hz) for 10 Grover iterations. In

the absence of incoherence there is a reasonable localization for all the three values of

β. However, with incoherence the unprotected Grover iterations completely fail since

the maximum probability of the marked state remained less than 0.4 throughout the

iterations. The data points corresponding to protected Grover iterates with β = π are

significantly dispersed, but still show signatures of localization, while those with β =

π/2 show the best localization consistent with the experimental results.
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Conclusions

Quantum correlations such as quantum discord and quantum entanglement form re-

sources that fuels quantum information processors. In this work, we experimentally

studied the evolution of quantum discord as well as the probability of a marked state

over six iterations of Grover’s quantum search algorithm on an ensemble of spin-1/2

nuclear pairs using nuclear magnetic resonance methods. Unlike the earlier works on

protected quantum gates which considered only π pulses, we have generalized to DD-

pulses with variable flip angles. Further, we have integrated the dynamical protection

into GRAPE optimal control protocol by pre-assigning the positions of dynamical flips.

In this way, protected quantum gates are robust by construction against the external

noise. Similar protocol can also be incorporated in other optimal control techniques

such as Bang-Bang [9], Krotov [67], etc. While the protected gates performed generally

better, to investigate the extent of protection, we introduced an additional incoherent

noise in the form of a pulsed field gradient. In this case, we observed a significant bene-

fit of dynamically protected gates. Interestingly, we found that the dynamical protection

with π/2 flip-angles to outperform those with π. We have supported our experimental

findings with numerical simulations and also provided simple single-qubit models to

explain this observation. Although, DD with non-inversion pulses might appear counter

intuitive at the outset, π/2-rotation based modulation schemes such as WAHUHA [39]

and solid-echo sequences [45] have long been used in NMR spectroscopy. We believe

that our study will be useful in understanding dynamical protections and thereby de-

signing robust quantum controls.
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Chapter 5
Nitrogen-vacancy Centers in diamond

This part of my thesis focuses on building experimental platform for performing quan-

tum information processing using Nitrogen-vacancy (NV) centers in diamond. This

chapters discusses the fundamental properties of the NV center in diamond.

Introduction

Nuclear magnetic resonance (NMR) is a powerful technique for obtaining structure and

dynamics of molecules in chemistry. It also got high importance in medical applica-

tions, namely, the magnetic resonance imaging (MRI) [63]. However, NMR is not so

promising as a quantum computer as it is an ensemble based quantum processor. The

NMR quantum register is in a statistical mixture of all possible states in thermal equi-

librium and it is difficult to initialize them in a pure state under ambient conditions. It

often requires extreme conditions such as high magnetic field and cryogenic tempera-

ture. Besides, scalability is a challenge in NMR as it is not possible to find molecules

with large number of NMR active nuclei in nature.

Nitrogen-Vacancy (NV) centers in diamond has recently emerged as a promising

candidate for quantum information processing. The electronic spin states of the NV

center can be initialize with a purity better than 99% through off resonant optical pump-

2
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ing and resonance fluorescence can be exploited to detect the electronic spin state of the

NV center even at room temperature [19, 27, 101].

Diamond

Diamond is known as the hardest naturally occurring substance found on Earth. It is

one of the allotropes of carbon where four sp3 hybridized adjacent carbon atoms are

bounded via covalent bonds with a bonding angle of 109.5◦. The unit cell consists of

two face-centered-cubic (fcc) Bravais lattices, which are displaced by a/ 4 (1, 1, 1),

where a = 3.57A◦ is the lattice parameter and the distance between neighboring carbon

atoms is of d = 1.44A◦.

Diamond is an insulator with a band gap of 5.45 eV and the corresponding wave-

length is in the ultraviolet range. Therefore, diamond transmits visible light and appears

transparent. However, the defects in the diamond lattice introduces extra band gaps

between the valence and conduction bands of the diamond and consequently appears

colorful.

The diamond is naturally grown in the mantle of earth where it has the favorable con-

ditions to grow such as the pressure in the range of 7-8GPa and the temperature ranging

from 1400 to 1600◦. Under ambient conditions, diamond is not a stable allotrope of car-

bon but graphite. Even though, diamond to graphite conversion process is a rather slow

due to high energy barrier of about 728KJ/mol under ambient conditions [102].

Many efforts have been made for growing diamonds in lab due to their special prop-

erties. And, now, diamonds can be grown in laboratories by creating the growth con-

ditions. The most common techniques for growing diamonds are High Pressure High

Temperature (HPHT) and chemical vapour deposition (CVD).



4 Chapter 5. Nitrogen-vacancy Centers in diamond

High Pressure High Temperature (HPHT) growth

HPHT diamonds are subjected to extremely high temperature (>2000◦C) and pressure

(≈ 10GPa) inside special chambers in a lab in order to recreate the process that takes

place in the mantle of earth. The phase transition from graphite to diamond is allowed

under these conditions. This method is highly used in jewellery industries as it incor-

porate large amount of impurities such as Nitrogen and Boron during the growth. For

example, introducing nitrogen during the growth turns the diamond yellow. Diamonds

can be classified in to four types depending up on the amount of Nitrogen and Boron

impurities [14, 105].

• Type Ia: This type of diamonds contain Nitrogen (< 3000ppm) in large clusters

throughout the crystal lattice.

• Type Ib: These diamonds contain single nitrogen (< 500ppm) atoms instead of

clusters dispersed throughout the crystal lattice.

• Type IIa: Low nitrogen (< 1ppm) content.

• Type IIb: Low nitrogen (< 1ppm) content as in type IIa but boron impurities.

Chemical Vapour Deposition (CVD)

CVD and particularly microwave plasma-activated CVD is another popular method for

growing synthetic diamond. This method requires a diamond seed crystal placed inside

a growth chamber which is at a pressure of about 10’s of mbar and temperature in the

range of 700-1200◦C. The surface of the diamond seed crystal serves as a growth sub-

strate. It mainly consists of a gas mixture of Hydrogen and a small amount of Carbon

containing gas such as Methane(CH4) which is heated up by microwave irradiation and

eventually becomes a plasma. The Hydrogen atoms serve the process mainly in two

ways. Firstly, the diamond lattice is stabilized and prevented from the formation of
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graphite by termination with hydrogen atoms. Secondly, the gaseous activation process

dissociates the molecular hydrogen into atoms which leads to the formation of reactive

Carbon-containing radicals such as CH3 radicals by reacting with the source hydrocar-

bon. These Hydrogen atoms also remove the Hydrogen from the surface CH bonds

and create surface radical sites. These radical sites often get reacted with the gas phase

Carbon containing radicals hence, result the diamond growth. The complete details of

this process can be found in Ref. [16]. The colored diamond can be grown by doping

with Nitrogen or Boron impurities. These color centers can also be created through

irradiation process after the synthesis.

Color Centers in Diamond

Over 500 luminescent centers are found in diamond. Those are mainly due to addition-

ally incorporated atoms such as Silicon or Phosphorous or just due to missing carbon

atoms. Such defects introduce additional energy levels between valence and conduction

band of the diamond which are of 5.47 eV apart. Consequently, additional transitions

are allowed with transitions frequencies in the visible light range. NV− center is one

of that kind. NV− centers have recently gain more popularity due to their applications

in quantum sensing, quantum information processing and metrology. This the follow-

ing section, I am going to briefly discuss the electronic and spin properties of the NV−

center in diamond.

Nitrogen-Vacancy Center

NV center is a point defect in diamond consists of substitutional Nitrogen atom with an

adjacent vacancy. Together with the three sp3 neighbor Carbon atoms which forms a

tetrahedral structure resulting a C3v symmetry with the Nitrogen atom and the vacancy

lying on the symmetry axis (NV axis). Owing this symmetry, it can have four different

orientation, namely along the four crystallographic axes[111], [1̄1̄1], [11̄1̄] and [1̄11̄] as
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Figure 5.1: Four possible crystallographic orientations of NV center. Image taken and modified
from [73]

shown in Fig.5.1 [26]. The center can possess three possible charges such as NV−, NV0

and NV+. NV0 has five electrons coming from three dangling bond of the carbon atoms

and the two lone pair electrons of the Nitrogen atom. The center can gain a charge of

positive or negative respectively depending on the presence of acceptors or donors in

the lattice. NV− and NV0 can be identified by their optical Zero Phonon Lines (ZPL)

at 1.945 eV(637nm) and 2.156 eV(575nm) respectively. And, the associated vibronic

bands extend the ZPL to higher in absorption and lower in emission [24]. An additional

infrared ZPL at 1.190 eV (1042nm) has been observed associated with NV− center

under optical illumination. NV− and NV0 have been observed experimentally, but NV+

is still a theoretical prediction. This thesis mainly focuses on NV− centers and now

onwards I refer NV− center as NV center.
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Figure 5.2: NV center can be described by a triplet ground state, a triplet excited state and a
singlet intermediate state. NV center is excited with a 532 nm laser and the spin conserving
optical transitions are possible between ground and excited state with a zero phonon line of 637
nm.

Electronic Structure of NV Center

NV center possesses six valence electrons, hence it has a electron spin, S = 1. From the

group theory, NV center has a spin-triplet Ground state with 3A2 symmetry and a spin

triplet of 3E symmetry excited state. And, it also possesses intermediate singlet states

described by 1A1 and 1E. The electronic structure of NV center is shown in Fig.5.2.

Spin Initialization and readout

NV center can be excited from off-resonantly by a 532nm laser. Consequently, a spin

preserving transition fluorescence occurs between the 3A2 and the 3E states. Also, an

extra decay path through Inter-System Crossing (ISC) is enabled via the intermediate

singlet states and it is a non radiative decay (ZPL = 1042nm). And, this plays a major

role in the spin initialization and readout of NV center. The state, ms = | ± 1〉 30%

higher probability for undergoing ISC compared to ms = |0〉 state. Fluorescence along

with ISC optically pump the NV center predominantly into ms = |0〉 ground state. The

Florescence lifetimes of the excited NV center is of 12 ns for the ms = |0〉 state and 7.8

ns for the ms = | ± 1〉 state. However, ISC takes about 300 ns to decay to ms = |0〉
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state.

The Electronic spin state can be distinguished by the differential fluorescence be-

tween ms = |0〉 and ms = | ± 1〉 state. The NV center which is initialized into

ms = | ± 1〉 state emits about 30% less number of photons than that of ms = |0〉

state. Therefore, NV center can be initialized as well as readout via optical pumping.

we can distinguish between the two quantum state ms = |0〉 and ms = | ± 1〉 state by

counting the florescent photons, hence once can realize a qubit by considering these two

states.

In NV center experiments, the readout performance is quantified by the signal-to-

noise ratio(SNR) and the signal is generally the number of photon detected in a fixed

readout cycle [47] . Therefore, SNR can be defined as:

SNR =
α0 − α1√
α0 + α1

(5.1)

where, αi is the average photon detected for a single measurement of spin state |i〉. And,

contrast between the two signals can be written as:

C = (1− α1

α0

) (5.2)

The contras, C ≈ 0.3 for an NV center in bulk diamond during the typical fluores-

cent based readout method. However, we often need to average the signal by repeating

the experiments many times to improve the SNR. Therefore, time averaged SNR after

N measurements is:

< SNR >=
√
N × SNR (5.3)
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NV Center Hamiltonian

In this section, I shall discuss the Ground state Hamiltonian of the NV center. The

Hamiltonian mainly has three parts: electronic spin Hamiltonian, nuclear spin Hamilto-

nian and electron-nuclei spin Hamiltonian which is the hyperfine interaction. Therefore,

the general ground state Hamiltonian of the NV center can be written as

Hgs = He +Hn +Hhf . (5.4)

Electronic Spin Hamiltonian

The NV center is effectively a two unpaired electronic system with a electronic spin

I = 1. The ground state electronic spin Hamiltonian consists of two parts namely Zero

Field Splitting (ZFS) which occurs due to the crystallographic field and the Zeeman field

which is the splitting due to the external magnetic field. Consequently, the electronic

spin Hamiltonian in the unit of the Plank’s constant,h, can be written as,

He = HZFS +Hzeeman = Dgs[S2
z − E(S2

x − S2
y)] + γeB0Sz. (5.5)

where, γe = 2.8025MHz/G is the gyro-magnetic ratio of the NV center, Dgs ≈

2.87GHz is the ground state ZFS component at room temperature, E is the off-axis

component of the ZFS (E << D) and S = (Sx, SySz) are the spin angular momentum

operators of the NV center where,

Sx = h√
2

 0 1 0

1 0 1

0 1 0

 Sx = ih√
2

 0 −1 0

1 0 −1

0 1 0

 Sx = h

 1 0 0

0 0 0

0 0 −1


For the simplicity, we assume the external field is aligned along the NV axis which

is generally considered as the Z-axis hence the Zeeman Hamiltnian only has the contri-
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Figure 5.3: NV energy level splittings with different interactions including Zero Field Splitting,
Zeeman interaction and hyperfine interaction with 14N or 15N . The nuclear spin eigen states
are shown with a subscript ’n’. Image taken and modified from [73]

bution from the Sz component.

Nuclear spin and Electron-Nuclei Hamiltonian

The Nitrogen atom in the NV center has a nuclear spin, I . The Nitrogen has two possible

Isotops such as 14N with I = 1 and 15N with I = 1/2. The natural abundant of 14N

isotop is 99.6%. Depending on the isotops of Nitrogen atom, the Nuclear part can have

upto two parts:- nuclear Zeeman splitting which shifts the nuclear eigen states and the

quadrapolar part which is only present in the case of I > 1/2. Besides, NV center can

be often surrounded by one or more 13C carbon atoms of spin I = 1/2. The nuclear

spin Hamiltonian can be described as;

Hn = HZeeman(n) +HQ = −
N∑
i=1

(γiB0.I) +Q(I2
z −

1

3
I(I + 1)). (5.6)

The Hamiltonian parameters are listed in Table.5.1.

The next part of the Hamiltonian is due to the interaction between NV center and

the nuclear spin and it is known as the hyperfine interaction. The hyperfine Hamiltonian

can be written as,

Hhf =
N∑
i=1

SAiIi =
N∑
i=1

A
‖
iSzIzi + A⊥i (SxIxi + SyIyi) (5.7)
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Nuclei Type Υ (kHZ/G) A∥ (MHz) A⊥ (kHz) Q (MHz)

14N 0.3077 -2.14 -2.7 -4.945

15N -0.4316 3.03 3.65 -

13C 1.071 Varies with position in the lattice -

Table 5.1: Hamiltonian parameters corresponding to different nuclei coupled to the NV center.
The values are taken from [31, 32]

where, Ai is the hyperfine tensor and it can be diagonalized to have the form:

A =

 A⊥ 0 0

0 A⊥ 0

0 0 A‖


where A‖ and A⊥ are the parallel and perpendicular components of the A tensor

respectively. Again, the hyperfine interaction parameters corresponding to different nu-

clei are shown in Table.5.1 and the energy level splittings due to different interactions

are depicted in Fig.5.3. However, the hyperfine tensor can be varied for the 13C nuclei

depending on the position of the carbon atom in the diamond lattice.
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Chapter 6
Experimental Setup

In this chapter, I shall discuss the confocal setup for addressing the defect centers in

diamond and the microwave setup for the spin manipulations of those centers. And, I

will also discuss some of the experimental results.

Confocal Microscope

Confocal microscope is used for selective imaging of different points in the source plane

by blocking the lights from all other points in the source plane [12]. This can be accom-

plished by placing a pinhole in the image plane such that only the light from the point

of interest is passed through the pinhole. Although a confocal microscope can be built

using two biconvex lenses and a pinhole, in practice, it can be more complex and re-

quiring more optical components. A schematic of the simplest confocal setup is shown

in Fig.6.1

A scanning confocal enables the access of more than one point in the source plane

[66, 69]. It can be achieved either by sweeping the pinhole position in the image plane

or by moving the source plane such that the lights from the new source point of interest

is collected by the pinhole. In our case, we used the later method that is moving the

source plane for obtaining the scanning image of the diamond hence finding out the NV

13
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Source plane
bi-convex lenses

Image plane

Figure 6.1: A simple confocal setup. The conjugate nature of source plane and image plane is
shown by considering three points in the source plane at different depths focusing at the image
plane after passing through two biconvex lenses.The pinhole blocks the lights from the other
points except the light from the point source of interest. Image adopted and modified from [79]

centers.

Scanning, Fluorescent Confocal Microscope

A scanning confocal microscope was built using various optical components as shown

in Fig.6.2. In this section, I will be explaining the confocal setup in detail.

The most important part of the florescent confocal technique is to excite the NV

center with the right wavelength laser and in our case it is 532 nm. Ideally, a laser

with spatial mode TEM00 is preferred. We used 1 W Gem-532 laser from Laser Quan-

tum GmbH. Although, the NV centers were never excited with a power more than 150

mW during our experiments and the power is controlled using the remote laser control

software provided by the same company .

Often during NV experiments, the laser needs to be turned on and turned off in a

highly controlled manner. This is done by using an Acousto-Optic Modulator(AOM).

We used a AOM of crystalline quartz optical medium with an acoustic velocity of 5.74

mm/µs from Gooch & Housego. The refractive index of the optical medium can be

changed by introducing mechanical oscillations in the medium. A piezoelectric material
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Figure 6.2: Fluorescent confocal setup.

which is attached to the optical medium is driven by a RF signal to produce mechani-

cal oscillations in the piezoelectric material thereby creating oscillations in the optical

medium. The compression and rarefaction in the material introduce regions of low and

high refractive indices and it will act like a diffraction grating. The first order diffraction

beam is picked off with an iris and blocked all other orders. The maximum first order

efficiency (> 98%) is achieved with a RF driver of frequency 250 MHz and RF power

6.6 W. The RF driver of rising time 20 ns is controlled using the TTL input which is

generator by the pulseblaster (SpinCore PBESR-PRO-500).

The AOM is placed at the focal point of the L1 (LA1608-A, Thorlabs). This is to

ensure that the beam size is smaller than the active area of the AO medium which is

0.25 mm × 0.25 mm. The original beam diameter of our laser is ≈ 1 m. The first order

is again a diverging beam and we placed a lens L2 (LA1484-A, Thorlabs) at the focal

plane from the AOM output to make it collimated.
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It is assumed that the first diffraction order is not completely Gaussian and the

Gaussian mode is filtered using a single mode fiber (P1-460B-FC-2, Thorlabs). The

maximum fiber coupling efficiency is achieved only if the incident laser is highly col-

limated. The fiber coupler, c1 (SM1FC-FC/PC, Thorlabs) is placed at the focal point

of an achromatic lens L3 (AC050-015-A-ML, Thorlabs) which was mounted on a xyz

stage(XYZCTS50, Holmarc Pvt. Ltd). The other end of the fiber acts as a point source

hence the light coming out of the fiber is diverging. Therefore, the fiber end is placed at

the focus of a small focal length lens, L4 (LA1951-A, Thorlabs), so that the laser beam

is again collimated. The telescope which consist of mirrors M1 (BB1-E02-10, Thorlabs)

and M2 (BB1-E02-10, Thorlabs) gives the additional degrees of freedom. We found that

the beam expansion after the L4 was sufficient enough to completely fill the back plane

of the objective thereby achieving the tight focusing. So we didn’t have to expand the

beam further.

Next, a dichroic mirror (DMLP567R, Thorlabs) is placed before the objective which

has high reflectivity for the green light and high transmittivity in the red region. There-

fore, the red fluorescent from the NV which is collected at the detector. A 100X mag-

nification, oil immersion objective with a numerical aperture 1.4 from Olympus (UP-

LSAPO 100XO) is used in our setup. The objective was placed on a PI nano-stage

(P-527.2CL) with a closed loop travel of 200 µm in both x and y axes and 50 µm in the

z axis.

The diamond sample is glued on a home designed PCB board and it is mounted

on a xyz micro stage. The 3D translational stage was constructed by combing a xy

stage (XYT1/M, Thorlabs) unit and a z stage unit (MVS010/M, Thorlabs) along with

an extended top platform (AMA005/M, Thorlabs). The light emitted from the sample

which is in the wavelength range 600-800 nm transmits through the dichroic mirror and

focused it to a pinhole using an achromatic lens with focal length f=100 mm (ACN254-
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Figures/ConfocalImageNVs.jpg

Figure 6.3: Confocal Image. The diffraction limited red spots are the high Fluorescent regions
and those are the locations of NV centers in the diamond sample.

100-A, Thorlabs) which is mounted on a xyz (XYZCT65, Holmarc Pvt. Ltd) stage

for the fine adjustments. Another achromatic lens with with focal length of 50 mm

(ACN254-50-A, Throlabs) is placed at a distance 2f from the 50 µm pinhole (P50D,

Thorlabs) and the light is collected by a single photon counting module (SPCM-AQRH-

W4, Excelitas) with a dark count of 100 c/s. The data acquisition from the SPCMS done

using a NI DAQ card from National Instruments (NIPCIe 6363) and a scanning counter

software is developed using LABVIEW. A 10 µm× 10 µm xy scanning image obtained

is shown in Fig.6.3. This image is obtained by performing a scanning on a sample where

there are many single color centers and all other pulsed experiments (will be discussed

at the end of this chapter) are done on a different sample with ensemble NV center.

Microwave Circuit

A basic microwave circuit was built for manipulating the electronic spins of the NV

center. A copper wire strapped across the diamond sample delivers the microwaves to

the sample. Both ends of the copper wire is soldered tightly on the PCB sample holder.
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Figure 6.4: Microwave Circuit.

A microwave generated by the Keysight N9310A microwave generator is amplified up

to 16 W after the amplifier (ZHL-16W-43+, Mini-Circuits) is passed through copper

wire. A microwave switch (ZYSW-2-50DR, Mini-Circuits) is placed before the am-

plifier for turning it on while it is needed. The microwave switch is trigged with the

TTL pulses generated by the same Pulseblaster which is used for triggering the AOM

controller. The same pulseblaster is also used for triggering the fast counting device

(FAST ComTec MCS6A) whcih recorded the photon counting events from the SPCM

during pulsed experiments. In addition to it, the microwave switch is used to achieve

the desired microwave pulse duration. The outcoming microwave after the PCB board

is attenuated using a MW attenuator (VAT-2W2+, Mini-Circuits) and finally terminated

using a 50 Ω terminator (KARN-50+, Mini-Circuits). The schematic of the microwave

circuit is shown in Fig.6.4. The current microwave circuit is incapable of controlling the

phases of the microwave and this can be achieved by introducing an additional arbitrary

wave generator (AWG) and a IQ mixer. This will part will be looked up in the future.
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Experiments

The main three stages of NV center experiments are spin initialization, spin manipula-

tions and Readout of the final spin state. Both spin initialization and readout are done

optically applying laser pulses of duration 2 µs.The confocal setup addresses the fluo-

rescing defects centers in diamond and it is not alone sufficient to confirm if it is a NV

center or not. Therefore, we performed the Optically Detected Magnetic Resonance

(ODMR) for confirming those are NV center.

Continuous Wave ODMR

The electronic structure of the NV center can be characterized by applying microwave

of different frequency to the diamond sample. In continuous wave ODMR, the NV

centers are initialized into ms = 0 spin state by applying a laser pulse of duration 2 µs.

When the microwave frequency matches the energy level between ms = ±1, the spin

state of the NV center is rotated between the energy level, hence there will be a drop in

the fluorescent count. The florescent response during laser pulse while the NV center

is initialized into different spin states are shown in Fig.6.5 [44]. In the presence of an

external magnetic field, the degeneracy between ms = ±1 is lifted and consequently

we observe two resonant frequencies. The ODMR spectra we observed are shown in

Fig6.6.

Rabi Flops Experiments

We confirmed NV centers by performing ODMR and the next step was to character-

ize the coherent properties of them. We performed the basics pulsed experiments such

as Rabi, Ramsey Oscillations and spin relaxation experiments.During pulsed experi-

ments,the fast counter recorded the events at the SPCM of the whole measurement se-

quence.
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Figure 6.5: Flourescence response during laser pulse while NV center is initialized in ms = 0
(Red) and ms = ±1 (green). Image modified from the referece [73]

Figure 6.6: Zero Field splitting (ZFS) ODMR.(a) The fluorescence response was dropped at the
frequency ν = 2.87 GHz which corresponding to the ZFS between ms = 0 and ms = ±1. (b)
ODMR performed with an external field aligned along one out of 4 possible orientations and the
spitting between the | − 1〉 and | + 1〉 transitions is given by ∆ν = 2γNVBz where γNV is the
gyromagnetic ratio of the NV center and Bz is the magnetic field along the NV axis. Other 3
possible orientations are symmetric to the aligned axis and the splitting due to the component of
the Bz along those axes are not resolved due to the high FWHM of the ODMR dips.
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b)a)

Figure 6.7: Rabi Oscillations. (a) pulse sequence for Rabi experiments. (b) Fluorescent os-
cillations with the mw pulse duration and the π pulse duration corresponding to the maximum
population inversion is ≈ 86 ns.

In Rabi flop experiments, strong mw pulses of variable duration are applied. The

NV centers are initialized into ms = 0 state. The mw pulses rotate the spin state and

bring them into a superposition;

ψ = α|0〉+ β| ± 1〉

where, α2 + β2 = 1 and the probability amplitudes, α and β vary as a function of mw

duration. Consequently, we observe an oscillating fluorescence response as a function

of mw pulse duration as shown in Fig. 6.7 [50]. The decay in oscillation gives the infor-

mation about the spin-spin relaxation time T2∗ of the NV center and as we performed

experiments on the ensemble NV centers,the T2∗ is rather small thus the oscillation de-

cayed faster. in this case,the Rabi nutation frequency, Ω = γB1 where γ = 2.8 MHz/

Gauss is the gyro magnetic ratio of the NV center electronic spin and the B1 is the

component of mw excitation field along the NV axis, is found to be 6.28 MHz.

Spin relaxation experiments

The NV center which is initialized into one of the electronic state or the coherent su-

perposition of electronic states often interacts with the environment decays back to the
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Figure 6.8: Free Induction Decay (FID) curve (a) pulse sequence for characterizing T ∗2 . (b)
Fluorescent count with the free precession time; the T ∗2 is ≈ 180ns.

thermally mixed states via relaxation processes. These are mainly due to the spin-spin

interactions in the ensemble NV centers as well as the other spin impurities such as C13

and Nitrogen associated to the NV center. These interactions mainly cause a dephasing

in the coherent NV spin sate and it is characterized by the T ∗2 [51].

In T ∗2 characterization experiments, the NV center is optically initialized into ms =

0 state. Then a π/2 pulse is applied to create the coherent superposition of two possible

electronic spin states and it is written as;

ψini = (|0〉+ | ± 1〉)/
√

(2) (6.1)

Then allow them to freely evolve under its internal Hamiltonian for time τ . During

this time, the state ψini accumulates a relative phase between |0〉 and | ± 1〉) due to

decoherence. After a time τ , another π/2 pulse is applied to bring it back to the |0〉 and

| ± 1〉 basis. The fluorescent response is recorded as a function of τ and T ∗2 is estimated

from the decay time. The decaying fluorescent response versus precession time, τ is

shown in Fig. 6.8. The oscillations observed in the experiment is due to the offset in the

ODMR frequency [18].

The other possible spin relaxation is due to the spin-flips caused by the phononic
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Figure 6.9: T1 relaxation experiments.

interaction with the crystal lattice and it is characterized by the T1 time. As a result

of this, the spin state initialized into ms = 0 states goes back to the thermal state.

This experiments can be performed easily by letting the NV spin which is optically

initialized evolve freely for a time τ which we referred as the dark time as it redistribute

the populations of the spin states as and the pulse sequence is shown in Fig. 6.9 (a). The

decaying fluorescent response as a function of τ is shown in Fig.6.9 (b). The decay time

gives the value of T1 [49, 64] .
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Chapter 7
Conclusion and Outlook

Conclusion

In this thesis we successfully showed experimental realization of the recent quantum

phenomena called the quantum pigeonhole effect and the implementation of optimal

fixed quantum search algorithm. The another main focus of the thesis is to achieve

robust quantum control. In some of the experiments, we adapted the popular optimal

control technique, GRAPE for realizing optimal control pulses.

We also proposed a novel method for realizing robust controls through bang-bang

control. In this technique, the smooth modulation of the control parameters are avoided.

Therefore, repeated calculation of basic unitaries during the discrete time steps are not

often required hence it is computationally inexpensive. In practice, smooth modulation

of RF field is more difficult than turning on and off the full power RF field in a controlled

manner. So, here we used the intermittent burst of full power RF field which we called a

bang along with free evolution under the intrinsic Hamiltonian of the quantum system.

The another important achievement of this thesis was realizing optimized protected

quantum gates by integrating dynamical decoupling and optimal control techniques.

In this work, we also look into how to protect non-classical correlations in particular

25
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quantum discord during Grover’s search algorithm. Quantum correlations are known

to be an important resource for quantum computing as well as quantum simulations

hence it is important to preserve them during computations. Protected quantum gates

happened to show a good advantage in protecting quantum discord over unprotected

quantum gates. We also found that a XY-DD with 90◦ pulse angle over performs the

180◦ pulses.

Later during my PhD, we worked on setting up the experimental platform where

we can perform quantum information processing using Nitrogen vacancy centers in di-

amond in the future. Nitrogen vacancy center were gaining great attention for applica-

tions in developing quantum technologies such as quantum computer, quantum sensors

and metrology. We could successfully build a confocal setup in our lab and address

single NV centers in a diamond sample which was lent to us by Dr. Phani Kumar. How-

ever, all other spin manipulation experiments were performed on NV ensemble in a bulk

diamond which we bought from Diamond Elements Pvt. Ltd. We also, performed spin

relaxation studies on NV center ensemble.

Outlook

There are lot of space for improving the techniques and experiments we discussed in

this thesis. It would be interesting to address mutually interacting NV center qubits and

repeating experiments such as quantum pigeon hole effect and optimal quantum search

algorithm on them. It is also possible to apply the optimal control techniques such as

GRAPE, BB and optimized protected quantum gates on NV center quantum simulator.

In order to implement these technique, we need to incorporate some more electronics

such as an extra arbitary wave generator and an IQ mixer in our existing microwave

circuit for controlling the phase of the microwave pulses.
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