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Chapter 1

Quantum simulation

“Nature isn’t classical, dammit, and if you want to make

a simulation of nature, you’d better make it quantum me-

chanical, and by golly it’s a wonderful problem, because

it doesn’t look so easy”.

- Richard Feynman, 1982 [1].

1.1 Introduction

The origin of the quantum physics dates back to the year 1900 when Max Planck

tried to give an explanation for the properties of the black-body radiation [2].

This quantum theory was further developed by Schrödinger, Dirac and other

eminent physicists leading to the understanding of quantum mechanics as we

now know [3, 4, 5]. More than a century since its inception, we still believe that

quantum mechanics is the correct description of the present understanding of

nature. Yet this subject is so counter-intuitive that it has never ceased to surprise

us even now.

Quantum mechanics has a lot of applications in the present day science and

technology. For example, it is an indispensable tool to understand the struc-

ture of atoms, molecules and their interactions; the invention of magnetic reso-
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Chapter 1. Quantum simulation

nance imaging has revolutionized the field of medicine; lasers are heavily used

in medicine, communication, industries, etc; and the list goes on. This thesis

deals with one other application of quantum physics, i.e, quantum information

processing (QIP) and quantum computation (QC).

Quantum computers are believed to be capable of solving certain physical and

mathematical problems much more efficiently than the classical computers [6, 7,

8]. The phenomenon of quantum superposition offers computational parallelism

that is beyond the classical paradigm hence rendering quantum processors more

efficient.

Coupled quantum particles that can be precisely addressed, controlled and

measured form the basic hardware of a quantum computer. Moreover, in order

to implement quantum computation, Di Vincenzo gave certain criteria that the

quantum computer should posses [9]. These requirements are as follows:

1. Scalable and well defined quantum system.

2. Ability to initialize the quantum system to a desired initial state.

3. Long coherence times so as to implement specific gate operations.

4. A set of quantum gates which are universal.

5. Ability to perform a qubit-specific measurement.

One important application of quantum computers is to simulate quantum me-

chanical systems and this field of quantum simulations is the primary subject of

this thesis. Owing to a huge memory requirement, simulating quantum mechan-

ics using a classical computer is a challenging problem. The memory amounts

to the storage of the probability amplitudes of the state of the quantum systems

and grows exponentially with the number (n) of the quantum systems [10] (see

section. 2.1.2). For example, for a 2-level quantum system, also known as a

quantum bit or a qubit, and for n = 40, a classical computer has to store 240

2



1.1. Introduction

parameters and hence the problem becomes intractable. As a possible solution

to this limitation, Feynman in 1982 [1], proposed the concept of quantum simu-

lator to perform quantum simulations:

“Let the computer itself be built of quantum mechanical

elements which obey quantum mechanical laws.”

A quantum simulator is basically a quantum computer that can mimic the

dynamics of other quantum systems we wish to study. The idea is to realize the

dynamics of a quantum system using other accessible and controllable quantum

systems. By doing so, the Hilbert space of the quantum simulator is thus capable

of storing 2n complex amplitudes using only n (or ∝ n) qubits.

A typical quantum simulation protocol is explained in Fig. 1.1 [11]. The

Quantum System

|Φ(0)>
U

|Φ(t)>|Φ(0)>

|Ψ(0)> |Ψ(t)>
      U' ≈ ΦUΦ-1 

Quantum Simulator

Φ Φ-1

Figure 1.1: Quantum simulation protocol.

upper box represents the dynamics of a quantum system that we wish to study.

Here the quantum system in the initial state |φ(0)〉 evolves to a final state |φ(t)〉

under the action of an operator U . The lower box corresponds to the quantum

simulator that is used to simulate the above evolution. The way to implement

3



Chapter 1. Quantum simulation

quantum simulation is by encoding |φ(0)〉 into the initial state |ψ(0)〉 of the quan-

tum simulator followed by the application of U ′. The operator U ′ has a one-to-

one correspondence with U and is related by the transformation U ′ = φUφ−1,

where φ is a linear map. The final state |ψ(t)〉 of the quantum simulator encodes

the information corresponding to |φ(t)〉.

1.2 Thesis structure

Fig. 1.2 gives the pictorial representation of the thesis structure.

Chapter 1: Introduction

 Part II: Implementations  Part III: Implementations

     Unitary Control Nonunitary ControlBasic Background

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

Part I

Figure 1.2: Structure of the thesis.

The thesis contains three parts.

• The first part consists of chapter 2 and chapter 3. Chapter 2 deals with

the basic terminology and theory of quantum information processing. It

includes the description of quantum states, their evolution and measure-

ment schemes that forms the platform to understand a quantum simulation

protocol as mentioned in the previous section. Chapter 3 explains the ba-
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1.3. Implementations

sics of nuclear magnetic resonance (NMR) and how nuclear spins in NMR

can be used as quantum simulators.

• The second part is about the implementations of quantum simulations us-

ing unitary control. It consists of two related works and are explained in

chapters 4 and 5.

• Finally, part III deals with the implementations of non-unitary dynamics

and the related work is explained in chapter 6.

Three different works [12, 13, 14] that form the backbone of this thesis are

explained in detail in chapters 4 to 6. A brief description of these three chapters

are given in the section 1.3.

1.3 Implementations

Since a couple of decades various quantum devices are believed to be promising

candidates for quantum simulations. Among them are the nuclear spins [15, 16],

electron spins in quantum dots [17], neutral atoms [18], trapped ions [19],

superconducting circuits [20], etc, each with strengths and challenges as shown

in table 1.1. As of now, the number of quantum simulation experiments that are

done or are proposed to be implemented is almost exhaustive [21, 22, 23, 24,

25, 26, 27, 28, 29]. However, large-scale quantum simulators are yet to become

a reality. The main obstacles for this are the scalability, precise control of the

dynamics and decoherence.

In this thesis I will explain some aspects of quantum simulations using both

unitary and nonunitary controls. Specifically, we address the problems of quan-

tum control and decoherence. While we use nuclear spin 1/2 systems in an NMR

setup as our quantum simulators, most of the concepts are general and are ap-

plicable elsewhere. The experimental implementations of these aspects that are

a part of thesis are briefly explained below:

5



Chapter 1. Quantum simulation

Quantum simulators Strength Challenges
Nuclear spins Well established, Scaling,

readily available technology individual control
Electron spins Individual control, readout Scaling
Neutral atoms Scaling Individual control,

readout
Trapped ions Individual control, readout Scaling

Superconducting circuits Individual control, readout Scaling

Table 1.1: Strenght and challenges of a few quantum simulators [10].

1. Chapter 4 describes unitary control, the methodology, and one particular

quantum simulation realized using the advanced optimal quantum control

techniques. I will first describe the novel quantum phenomenon known

as “quantum exotic freezing”, proposed by Arnab Das in 2010 [30]. It

is based on dynamical quantum many-body localization, wherein a spin-

chain freezes its dynamics for certain specific frequencies of external drive.

Unlike classical systems, the quantum systems freeze and respond non-

monotonically with the frequency of the external drive. Here I will de-

scribe the first experimental observation of quantum exotic freezing using

an NMR system consisting of three mutually interacting spin 1/2 nuclei

[12]. I will also describe the importance of robust unitary control over

spin-dynamics. Particularly, I will describe the implementation of GRadi-

ent Ascent Pulse Engineering (GRAPE) protocol for robust unitary control.

2. Chapter 5 addresses the problem of decomposition of an arbitrary unitary

operator in terms of simpler unitaries. Here we propose a general nu-

merical algorithm, namely Pauli Decomposition over Commuting Subsets

(PDCS), to decompose an arbitrary unitary operator in terms of simpler ro-

tors [13]. Each rotor is expressed as a generalized rotation over a mutually

commuting set of Pauli operators. Using PDCS, we decomposed several

quantum gates and circuits and also showed its application in designing

quantum circuits for state preparation. We hypothesize the decomposition

6



1.3. Implementations

method to scale efficiently with the size of the system, and propose its ap-

plication in quantum simulations. As an example, I will describe quantum

simulation of three-body interaction using a three-spin NMR system and

monitor the dynamics with the help of overall magnetization.

3. In practice, quantum systems are affected by their interactions with the

environment leading to an undesirable nonunitary process known as de-

coherence. This process is accompanied by the loss of information in the

quantum processors and is a major obstacle in experimental quantum infor-

mation processing and computation. One of the ways to fight this process

is to understand decoherence. Teklemariam et al., in 2003 [31], described

a way of introducing the artificial decoherence on a quantum system by

randomly perturbing an ancillary system. Recently, in a different context,

Alvarez et al. and Yuge et al., have independently proposed noise spec-

troscopy to characterize the noise acting on a quantum system [32, 33]. In

Chapter 6, I will describe the experimental implementation of such an en-

gineered noise introduced by random RF pulses on an ancillary spin using

an NMR spin-system. I will also describe the characterization of the engi-

neered noise by both noise spectroscopy and quantum process tomography.

Further, we supressed this induced noise using dynamical decoupling (DD)

which is a process of suppression of decoherence by systematic modulation

of system state. Chapter 6 also describes the first experimental study of

competition between the engineered decoherence and DD [14].
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Chapter 2

Quantum information processing

This chapter gives a brief introduction to the theory of quantum information pro-

cessing with a goal to provide a few useful techniques for implementing quantum

simulations. A typical quantum computation algorithm consists of an input, pro-

cessing and an output. Below is a brief summary of these three major steps:

1. State initialization: A quantum state |ψ(t)〉 contains the entire description

of the quantum system. As an input of any quantum algorithm, it is re-

quired that any given quantum system is initialized to a known state |ψ(0)〉.

2. Gate implementation: Processing of the information is done using quantum

gates. A quantum gate is realized by the unitary operator U(t) that evolves

the initial state |ψ(0)〉 to the final state |ψ(t)〉.

3. Measurements: The final state |ψ(t)〉 or the expectation value of any her-

mitian operators Â in the state |ψ(t)〉 that encodes the solution to the algo-

rithm is obtained by a measurement process.

With reference to the above steps, this chapter concentrates on the theory of

state description, gate operation and measurements. For extensive details about

these topics it is reccommended to refer to [6, 7].
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Chapter 2. Quantum information processing

2.1 Quantum States

This section explains the basic terminology and properties of the quantum states.

2.1.1 Single qubit

A qubit is a quantum counterpart of a classical bit. Physically, any two level

quantum system is a qubit. Mathematically, the most general state of a qubit is

represented as

|ψ〉 = α|0〉+ β|1〉, (2.1)

where α, β are the probability amplitudes with |α|2 + |β|2 = 1, and |0〉, |1〉 are

the orthogonal states and form a computational basis.

The geometric representation of a single qubit state (Eq. 2.1) is visualized by

Bloch sphere as shown in Fig. 2.1. Here α = cos( θ
2
) and β = eiφ sin( θ

2
) where

θ = [0, π] and φ = [0, 2π] are the points on the unit sphere. The state |ψ〉 can

exist anywhere in the sphere.

|ψ>θΦ
|0>

|1>

c

y

x

z

c

z

Figure 2.1: Bloch sphere representation of |ψ〉.

Thus as seen from Eq. 2.1, a qubit can exist in a linear superposition of |0〉

12



2.1. Quantum States

and |1〉. The complex numbers α and β have the information of the basis states

and thus a qubit can store 2 bits of information until measured. This is in con-

trast with the classical bits which can be either 0 or 1 and can have only one bit

of information at a time. This property of superposition enables quantum paral-

lelism that renders quantum computers more powerful than classical computers

in terms of the computational speed and storage capacity.

2.1.2 Multiple qubits

As discussed in section 1.1, a typical quantum computer requires mutiple in-

teracting qubits. Apart from the phenomenon of quantum superposition, such

quantum systems exhibit one of the most powerful properties called entangle-

ment.

Suppose there are two qubits described by the states |ψ1〉 = α1|0〉+ β1|1〉 and

|ψ2〉 = α2|0〉+ β2|1〉 where |α1|2 + |β1|2 = 1 and |α2|2 + |β2|2 = 1. The state of the

composite system is represented by

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = |ψ1〉|ψ2〉, (2.2)

where ⊗ is the tensor product. Hence |ψ〉 = α1α2|00〉 + α1β2|01〉 + β1α2|10〉 +

β1β2|11〉 with |α1α2|2 + |α1β2|2 + |β1α2|2 + |β1β2|2 = 1 and is described by 22 = 4

complex numbers. The states {|00〉, |01〉, |10〉, |11〉} form the computational basis

of this two qubit system.

In a similar way, an n-qubit system is represented by the state

|ψ〉⊗n = |ψ1〉|ψ2〉 · · · |ψn〉, (2.3)

One can observe that a total of 2n basis states is required to describe an n-qubit

state. Thus in order to describe an n-qubit state, one requires 2n probability

amplitudes indicating an exponential growth with the n.
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Chapter 2. Quantum information processing

2.1.3 Density operator formalism

Quantum state for an ensemble of quantum systems is generally described by

using the density operators [34]. In this section, I will introduce to the density

operator formalism.

2.1.3.1 Density operator

A density operator of an n-qubit system is defined as

ρ =
n∑
i

pi|ψi〉〈ψi|, (2.4)

where |ψi〉 is the state of the ith sub-system and pi’s are the corresponding prob-

abilities such that
∑n

i pi = 1.

Another description of a single qubit density operator expressed in Pauli op-

erator basis is given by

ρ =
1

2
(I + r · σ), (2.5)

where I is the Identity operator, r is the 3-dimentional unit vector and σ ∈

{X, Y, Z} are the Pauli operators defined by:

X =

 0 1

1 0

 ; Y =

 0 −i

i 0

 ; Z =

 1 0

0 −1

 ; (2.6)

Also, in the matrix representation

ρ =

 ρ00 ρ01

ρ10 ρ11

 . (2.7)

It is important to note that the diagonal elements ρ00, ρ11 correspond to the pop-

ulations and the off-diagonal elements ρ01, ρ10 correspond to the coherences of

the state. It should be noted that the populations add up to one and ρ01 = ρ†10

14



2.1. Quantum States

since ρ is hermitian.

One can also express the density operator of the composite system as ρ =

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

Most importantly, any operator ρ should satisfy the following properties:

• tr(ρ) = 1.

• ρ should be a positive operator (i.e., it should have non-negative eigen

values).

• ρ should be hermitian. i.e., ∀A,A = Ã∗.

2.1.3.2 Reduced density operator

A reduced density operator describes the state of the sub-system when the den-

sity operator of the composite system is known.

Suppose the composite system is in the state ρ12 which contains two sub-

systems namely 1 and 2. Then the sub-system states are given by

ρ1 = tr2(ρ12), (2.8)

ρ2 = tr1(ρ12), (2.9)

where the operation tri, with i = 1, 2, is called as partial trace. For example, the

partial trace over the sub-system 2, i.e., ρ2, is defined as

ρ2 = tr1(ρ12) = tr2(|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|) = |ψ1〉〈ψ1|tr(|ψ2〉〈ψ2|) = |ψ1〉〈ψ1|〈ψ2|ψ2〉.

2.1.3.3 State types

A state can be either pure, mixed, separable or entangled.

15
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When all the sub-systems are in the same state |ψ〉, the composite system

is known to be in pure state. It is required that the individual sub-systems in

Eq. 2.4 are pure but the composite system may not always be pure. When

different sub-systems have different states, the composite system is known to be

in a mixed state. The condition for the composite state ρ to be either pure or

mixed is defined as follows:

• Pure state: tr(ρ2) = 1.

• Mixed state: tr(ρ2) < 1.

Geometrically, the states on the surface of the bloch sphere of Fig. 2.1 are pure

states and any other states inside the surface of the bloch sphere correspond to

the mixed states.

An interesting consequence of ensemble quantum systems is the property of

entanglement. If an n-qubit density matrix is expressed as

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, (2.10)

then such a state is known to be seperable state. And if

ρ 6= ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, (2.11)

then such a state is known as entangled state.

It should be noted that suppose the composite system is described by a seper-

able state then its reduced density operator will be a pure state and if the com-

posite system is described by an entangled state then its reduced density operator

will be a mixed state.

16



2.2. Quantum gates

2.2 Quantum gates

A quantum gate is an operation that evolves the quantum state from a specific

initial state to a final state.

2.2.1 State evolution

Any closed quantum system with initial state |ψ(0)〉 evolves under a time depen-

dent Hamiltonan H(t) according to

|ψ(t)〉 = U(t)|ψ(0)〉, (2.12)

where U(t) = T e
∫ t
0 −iH(t′)dt′ is a unitary operator. Here h̄ is set to unity and T is

the time ordering operator

Similarly, the evolution of the state in terms of n−qubit density operator ρ(0)

is obtained by combining equations 2.4 and 2.12 and is described as

ρ(t) =
n∑
i

pi[U(t)|ψi(0)〉][〈ψi(0)|U †]

ρ(t) = U(t)ρ(0)U(t)† (2.13)

One of the main features of unitary operators is that they preserve the proba-

bilities and coherence of the quantum states over time. In other words, unitarity

imposes reversibility criteria which means that one should be able to get back

the initial state ρ(0) starting from ρ(t):

U(t)†ρ(t)U(t) = U(t)†[U(t)ρ(0)U(t)†]U(t) = ρ(0),

since UU † = U †U = I.

In the language of quantum computation, a unitary operator U(t) correspond-

17



Chapter 2. Quantum information processing

ing to the transformation

ρ(0)
U(t)−−→ ρ(t)

is a quantum gate. Below, I will explain the quantum gates with reference to the

circuit model of quantum computation.

2.2.2 Single qubit gates

Any unitary U transforms the quantum system from one state to another. Geo-

metrically, U rotates any state vector |ψ(0)〉 to |ψ(t)〉 in the bloch sphere. Thus

each single qubit U corresponds to a rotation about the axis n̂ and is given by

Rθ
n̂ = e−iθn̂·~σ/2 = cos

(
θ

2

)
I− i sin

(
θ

2

)
(nxX + nyY + nzZ), (2.14)

where n̂ = {nx, ny, nz} is the 3-dimensional unit vector and θ is the rotational

angle.

Any single qubit operator can be contructed using Eq. 2.14. Some standard

quantum gates like Hadamard (H) and phase gate (S) are listed below:

H =
1√
2

 1 1

1 −1

 ; S =

 1 0

0 i

 ; (2.15)

Quantum operators with multiple non-commuting rotations should be care-

fully implemented in a specific time order. For convenience, the operators are

acted from left to right in a quantum circuit. For example, as shown in Fig. 2.2,

H corresponds to the rotation about X-axis with θ = 180◦ followed by a rotation

about Y -axis with θ = 90◦. Thus, H = R
π/2
y Rπ

x.

18
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H  =
 

R
X

π
R

Y

π/2 0| |+
√2 

Figure 2.2: Single qubit Hadamard gate. Here the rotations are of the form of
Eq. 2.14 and are implemented from left to right.

2.2.3 Two-qubit gates

A two qubit gate U12 exploits the knowlegde of single qubit gates as well as

the interaction between the two qubits. Such gates play an important role in

quantum computation as they can entangle the qubits. The circuit representation

of U12 is shown in figure 2.3.

U
12

Figure 2.3: A general two qubit gate

A standard two qubit gate is a controlled-NOT (CNOT) gate represented by

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ; UCNOTU
†
CNOT = I. (2.16)

Figure 2.4 gives the circuit representation of UCNOT . Qubit 1 is the control

and the qubit 2 is the target with A and B as inputs. In convention, a filled

circle indicates control and the cross indicates the target. The action of UCNOT is

19
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1

2

A

B

A

B A⊕

Figure 2.4: CNOT gate

written as

|A,B〉 −→ |A,B ⊕ A〉,

where A,B ∈ {0, 1} and ⊕ is the addition modulo 2.

2.2.4 Universal gates

In order to realize arbitrary computation, one needs a universal set of gates. Just

like a combination of NAND gates is universal in classical computation, there

exists a set of quantum gates which are universal.

Any arbitrary single qubit gates along with CNOT gates form a universal set of

quantum gates.

Specifically, one can consider Hadamard, phase gate, CNOT and pi/8 gates

as a set of universal quantum gates. A more general observation is that any

arbitrary single and two qubit gates can form universal quantum gates.

2.3 Measurements

Measurements are an important part of any algorithm and is a necessary step

to extract any useful information. This step requires that the measuring device

interacts with the quantum system, thus making the quantum system as an open

quantum system. In general, measurments operations are nonunitary.

Suppose {Mm} is the set of measurement operators that act on the state

20



2.3. Measurements

space of the system being measured. Here m is the measurement outcome of the

operator that is measured. Let |ψ〉 be the state just before the measurement and

the action of the measurement operators on |ψ〉 is defined as

|ψ〉′ =
Mm|ψ〉√

p
, (2.17)

where |ψ〉′ is the state after the measurement and p = 〈ψ|M †
mMm|ψ〉 is the prob-

ability of obtaining the outcome m. Here
∑

m p(m) = 1, and
∑

mM
†
mMm = I.

2.3.1 Projective measurements

Another class of measurements are projective measurements which is described

by Hermitian operator M as

M =
∑
m

mPm, (2.18)

where Pm = |m〉〈m| with {|m〉} being the eigen states of M and m are its eigen

values.

The probability of obtaining the outcome m after |ψ〉 is measured is given by

p(m) = 〈ψ|Pm|ψ〉, (2.19)

and thus the measured state has the form

Pm|ψ〉√
p(m)

. (2.20)

Further it should be noted that for projective measurements, Mm should sta-

isfy the following conditions:

•
∑

mM
†
mMm = I

• MmM
′
m = δm,m′Mm
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Measurements are non-unitary operations. For example, the measurement op-

erators for single qubit are |0〉〈0| and |1〉〈1|. One can verify that each of these

operators is Hermitian but is not unitary.

2.3.2 Ensemble average measurements

In many cases, one is intertested in obtaining the expectation value of an arbi-

trary operator A. The way to measure such an operator is to prepare a large

number of quantum systems in the same initial states and the outcome corre-

sponds to the probability weighted eigen values of A in some final state. It is

definedS as follows:

〈A(t)〉 = Tr[A(t)ρ(t)], (2.21)

where ρ(t) is the normalized final state. It is important that the operator A is

hermitian since its eigen values are real. While the eigen values can take discrete

values, the expectation values can take continuous values.

2.4 Quantum algorithms

2.5 Summary

22



Chapter 3

Liquid-state NMR quantum

simulators

3.1 Nuclear magnetic resonance

When a quantum particle with non-zero nuclear spin angular momentum is

placed in an external static magnetic field (B0), there is an interaction between

the particle and the field. This interaction leads to the splitting of the energy

levels of the quantum particle, a phenomenon known as “Zeeman effect”. Thus

in the presence of B0 along the z−axis, the splitting of the levels correspond to

the following quantized energies:

Em = −µzB0; µz = γh̄m. (3.1)

Here γ is the gyromagnetic ratio of the nuclei and the magnetic quantum number

m = [−I,−I + 1, · · · , I − 1, I] takes 2I + 1 values where I is the nuclear spin

quantum number.

The energy difference between the states m and m + 1 can be obtained by

calculating ∆E = Em+1 − Em using Eq. 3.1 and the corresponding frequency
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Chapter 3. Liquid-state NMR quantum simulators

ω0 = ∆E/h̄ given by

ω0 = γB0. (3.2)

This frequency is known as the Larmor frequency and plays a major role is

addressing different nuclear spin species. A resonant absorption of energy is

acheived when such an NMR active spin with definite ω0 is perturbed by an ex-

ternal periodic field with same frequency as ω0. This phenomenon is called as

nuclear magnetic resonance (NMR).

Nuclei which exhibit this phenomenon are called as NMR active nuclei. Some

common examples include 1H,13C,14N,19F, etc and their intrinsic properties are

listed in table 3.1.

Nucleus I γ (Ts)−1
1H 1/2 2.6752× 108

13C 1/2 6.728× 107

14N 1 1.934× 107

19F 1/2 2.5181× 108

31P 1/2 1.0841× 108

Table 3.1: NMR active nuclei and their intrinsic properties.

The rest of this thesis deals with nuclear spins corresponding to I = 1/2.

3.2 NMR qubits

3.2.1 Single qubit

A single spin-1/2 nuclei in a molecule placed in B0 has a unique ω0 and repre-

sents a qubit as shown in figure 3.1.

The internal Hamiltonian of such a single qubit system is given by

H0 = ω0Iz, (3.3)

where the spin operator Iz = σz/2. The eigen states of H0 are |0〉 and |1〉 with
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the energy difference given by h̄ω0.

B
0

ΔE=ћω
0

NMR Qubit

|1>

|0>

  Sample

Figure 3.1: Zeeman splitting of a spin-1/2 nuclei.

A typical liquid state NMR sample consists of an avagadro number of molecules.

The inter-molecular couplings are neglected by adding suitable solvents to the

NMR sample. Despite this large number of molecules, an NMR active nuclei

in each of the molecules has the same ω0 and thus when viewed in frequency

domain the entire sample is considered as a single qubit NMR system.

3.2.2 Multiple qubits

A molecule may contain multiple coupled spin-1/2 nuclei. The spins can be ei-

ther of the same or different species and hence categorized as homonuclear or

heteronuclear molecules respectively. In isotropic liquids state, the intermolecu-

lar and intramolecular dipolar couplings are averaged out due to the rapid mo-

tions of the molecules and thus only the scalar couplings that are mediated by

the electrons in the intramolecular nuclear bonds are present. Thus the internal

Hamiltonian for multiple qubits in the lab frame is given by

H0 =
n∑
i=1

ωiI
i
z + 2π

n∑
i<j

JijI
i · Ij, (3.4)
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where n is the number of qubits, Jij are the scalar couplings and ωi are the

larmor frequencies.

If |ωi − ωj| � 2πJij then the spins are strongly coupled else they are weakly

coupled. Under the weak coupling limit, Eq. 3.4 reduces to

H0 =
n∑
i=1

ωiI
i
z + 2π

n∑
i<j

JijI
i
zI
j
z . (3.5)

3.3 State initialization

3.4 NMR gates

3.5 NMR measurements
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Implementations: Unitary Control
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Chapter 4

Freezing a quantum magnet by

repeated quantum interference

This chapter is about the work on experimental realization of a new quantum

phenomenon known as dynamical many-body freezing using a 3-qubit NMR sim-

ulator [12].

4.1 Introduction

When a classical system is perturbed by an external periodic drive with frequen-

cies much higher than the characteristic frequencies of the system, the system

does not get sufficient time to adjust itself within the drive period. In other

words, the system does not respond to the external drive and hence freezes for

all such drive frequencies. However, a recent theoretical study showed that when

a quantum many-body system, particularly a 1-dimensional spin chain, is driven

by a periodic field with a frequency much higher than the characteristic frequen-

cies of the system, the system exhibits a peculiar response behaviour as opposed

to the calssical case [30]. Under the above mentioned case and for specific drive

parameters, the systems freezes for all times and for arbitrary initial states due
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System Low ω regime High ω regime
Classical Responds Freezes
Quantum Responds Freezes & Responds

Table 4.1: Difference between classical and quantum many-body response un-
der the influence of external periodic field with ω being its frequency. The terms
’low’ and ‘high’ are with respect to the characteristic frequencies of the system
under consideration.

to the phenomenon of dynamical many-body freezing (DMF) [12]. Moreover,

unlike classical case, it was also shown that the quantum many-body systems re-

sponded as well as froze even in the above mentioned scenario. The comparison

between the clasical and quantum case is briefly summarized in table 4.1 and

the same comparison in the specific case of fast external drives is shown in the

Fig. 4.1. As was previously studied, this non-monotonicity in the response of the

quantum many-body systems under the an external periodic drive is attributed

to the phenomenon of quantum interference [30]. In this chapter, I will explain

the experimental demonstration of this phenomenon that was carried out in our

lab [12].

Freezing of the particle under the action of external periodic drive was pre-

viously observed. Examples include dynamical localization of a single particle

[35] and coherent destruction of tunneling of a single particle [36]. However

the phenomenon of dynamical many-body freezing differs from the above as fol-

lows: It is a quantum many-body problem. The freezing occurs for all times and

for arbitrary initial states for specific drive parameters.

The motivation to demonstrate this phenomenon is two fold:

• The field of driven quantum many-body systems is still largely unexplored.

Despite the experimental challenges, we successfully simulated this phe-

nomenon using a 3-qubit NMR simulator for the first time.

• The experimental feasibility of controlling the quantum systems by tuning

the drive parameters opens up the possibilities of a novel quantum control
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Figure 4.1: Classical (top row) and quantum (bottom row) systems under the
influence of fast drives corresponding to high ω regime. Each smiley represents
a many-body system. The horizontal axis corresponds to the drive frequency
(ω). The superscripts in the smilies refer to the response: while three ‘z’s in the
superscripts represent fully frozen systems, the absence of superscript represent
a responding system and the two ‘z’s correspond to intermidiate cases. The
classical systems freezes for all high frequencies but in the quantum case, the
systems freeze and respond non-monotically.

techniques.

Below, I shall explain the basic theoretical outline of the phenomenon of

DMF through numerical simulations. I will also numerically show how the main

quantity of interest deviates in the presence of experimental errors and how it

can be overcome.

4.2 Numerical simulations

4.2.1 Quantifying freezing

This section gives the necessary details required to quantify the amount of freez-

ing. We consider a quantum many-body system in one dimension that is evolving

under a specific Hamiltoninan starting from an arbitrary initial state. By moni-
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toring the magnetization corresponding to the instantaneous states at regular in-

tervals, we quantify the amount of freezing for specific Hamiltonian parameters

by calculating the long time average of the magnetization, called as dynamical

order parameter Q [30]. We see that the non-monotonic response of the driven

quantum many-body system by a periodic field in captured by Q.

Consider an infinite one dimensional Ising spin chain subjected to a trans-

verse periodic field. Such a system is described by the Hamiltonian

H(t) = −1

2
[J

n−1∑
i

σzi σ
z
i+1 + h0 cos(ωt)

n∑
i

σxi ], (4.1)

where n = ∞ is the number of spins, J is the coupling between the nearest

neighbouring spins, h0 is the drive amplitude and ω is the drive frequency.

Starting from an initial state ρ(0), the infinite one dimensional spin chain

evolves under the action of the Hamiltonian H(t). The final state is ρ(t) and we

study the response of the system in terms of its transverse magnetization mx(t).

As previously mentioned, the quantity that characterizes the strength of freezing

is Q which is defined as a long time average of mx(t) and is given by

Q = lim
T →∞

1

T

T∫
0

mx(t)dt, (4.2)

where T is the total evolution time.

The freezing case requires that mx(t) remains the same as mx(0) for all times

t. Thus it implies that Q = 1 for the freezing case. However, when mx(t) oscil-

lates, Q < 1 and thus corresponds to the non-freezing case.

A closed form for Q was analytically derived by A. Das [30] for an infinite

spin Ising chain and is given by

Q∞ =
1

1 + |J0(2h0/ω)|
, (4.3)
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where J0 is the zeroth order Bessel’s function. Thus the non-monotonic feature

of J0 imposes non-monotonicity in Q.

Fig. 4.2 shows the numerical plot for Q vs ω. The solid line corresponds to

the n = ∞ case. This plot considers the high frequency regime where ω values

are much higher than the maximum characteristic frequency of the system given

by 2J .

2 4 6 8 10 12 14 16 18 20 22
0.6

0.7

0.8

0.9

1

ω (rad/s)

Q

 

 

3 spin chain
infinite spin chain

Figure 4.2: The non-monotonic behaviour ofQwith ω for finite and infinite spin
chain in the high frequency regime. The simulation is done for the parameters
corresponding to h0 = 5π and J = h0/20, both in units of rad/s, that are
consistent with strong (h0 � J ) and fast (ω � 2J ) drive scenario.

Similarly, the analytical form for Q for a finite spin chain (n = 3) was shown

to be

Q3 =
1 + |J0(2h0/ω)|
1 + 3|J0(2h0/ω)|

. (4.4)

As seen from Fig. 4.2, the Q vs ω plot for n = 3 is similar to that of the infinite

spin chain. This feature of Q being independent of n as is refelcted in Eq. 4.3 and

4.4 allowed us to study this phenomenon on a small scale 3-qubit NMR quantum

simulator.
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4.2.2 Experimental challenges
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Figure 4.3: Numerical simulation of the evolution of magnetization for ω = 8.4
and in the presence of errors for h0 = 5π and J = h0/20 starting from an initial
state ρ(0) =

∑3
i σ

x
i /2.

The heart of quantum simulation protocol lies in the efficient implementa-

tion of the dynamics corresponding to a specific Hamiltonian. Here, the Hamil-

tonian of interest is given by Eq. 4.1 and the corresponding unitary operator

is U(t) = T e−i
∫ t
0 H(t′)dt′ where T is the time ordering operator. In NMR setup,

this U(t) is realized by RF pulses which are specified by definite amplitudes and

phases. However, in practice, realizing U(t) with a specific implementation time

t is a challenging problem due to inherent decoherence and due to external im-

perfect pulses. While imperfect pulses are due to RF inhomogeinity, the decay in

magnetization is due to the decoherence.

Fig. 4.3 shows the numerical simulation of mx(t) in the presence of errors.

By incorporating 20% RF inhomogeneity and a decay constant with T2 = 10s,

we see that the non-freezing point corresponding to ω = 8.4 rad/s is adversely

affected by the errors with no sign of oscillations in mx(t). Similarly, Fig. 4.4

shows how the effect of RF inhomogeneity changes the freezing points. While

the plots with only T2 decay still captures the response correctly, the plots with
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Figure 4.4: Numerical simulation for Q vs ω by incorporating errors for h0 = 5π
and J = h0/20 starting from an initial state ρ(0) =

∑3
i σ

x
i /2.

T2 decay and RF inhomogeneity show an erratic response. This indicates that

the pulses imperfections produce worse effects as compared to the decoherence

effects.

Thus experimental implementaion of this phenomenon demands for an efficient

control technique that are robust against RF inhomogeneities.

4.2.2.1 Overcoming the challenge

In order to circumvent the above problem, we used an optimal control algorithm

called GRadient Ascent Pulse Engineering (GRAPE). This algorithm generates

high fidelity, robust amplitudes and phase modulated RF pulses.

Consider an n− qubit NMR system defined by the Hamiltonian:

H = H0 +
m∑
k=1

uk(t)Hk, (4.5)

where H0 is the internal Hamiltonian and Hk is the control Hamiltonian corre-

sponding to the
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4.3 Quantum simulation

The simulation protocol for a 3-qubit simulator involves the following main

steps:

1. Initial state preparation:

We performed two sets of experiments with different initial states ρ(0), i.e.,

for ρ(0) =
∑3

i σ
x
i /2 and for ρ(0) =

∑3
i [σ

x
i /2+σzi

√
3/2]. These correspond to

the initial transverse magnetization values mx(0) = 1 and mx(0) = 0.5 re-

spectively. Note: General form ofmx(t) is given bymx(t) = Tr[ρ(t)(
∑3

i σ
x
i /2)].

2. Unitary implementation:

The unitary U(t) corresponding toH(t) given by Eq. 4.1 is U(t) = T e−i
∫ t
0 H(t′)dt′

where T is the time ordering operator. In order to be consistent with the

fast drive, we specifically chose the Hamiltonian parameters as follows:

h0 = 5π, J = h0/20. Note that ω � 2J , the maximum characteristic

frequency of the system under consideration.

The idea is to simulate the solid curve in Fig. 4.2 experimentally. Suppose

we consider a particular value of ω and observe the 3-qubit system. We im-

plemented this dynamics by generating the corresponding U(τ) for a time

τ = 2π/ω. Since the terms in H(t) do not commute with each other, the

imlpementation of U(t) requires descritization of t into smaller time inter-

vals. We discretized τ into 11 equal intervals and thus U(τ) = U11 · · ·U2U1

where each Uj = e−iH(m)m with m = τ/11. Thus the dynamics was realized

by implementing U(τ) j times with j = 0, 1, · · · , N where N = 30 for a

total time of T = jτ . Thus ρ(0) evolves under U(jτ) as

ρ(jτ) = U(jτ)ρ(0)U(jτ)† = U(τ)jρ(0)[U(τ)†]j (4.6)

3. Read-out:
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We measured mx(jτ) at regular intervals t = jτ with j = 0, 1, · · · , N which

is given by

mx(jτ) = Tr[ρ(jτ)
3∑
i

σxi /2], (4.7)

and hence Q becomes

Q =
1

N + 1

N∑
j=0

mx(jτ). (4.8)

Below, I will explain how this protocol was used to simulate this dynamics

using a 3-qubit NMR simulator in liquid state.

4.4 Experiments and Results

Our quantum simulator consisted of three 19F nuclear spins in the molecule ti-

fluoroiodoethylene and its properties are shown in Fig. 4.5. The molecule is

dissolved in acetone-D6 and all the experiments were carried out in Bruker 500

MHz NMR spectrometer at an ambient temperature of 290 K.

(a) (b)

C

I

F2F1

F3

C

F1 F2 F3  
11860.8 69.9 47.4 F1 

 0 -128.3 F2 

  -17379.1 F3 
 

Figure 4.5: Molecular structure of tifluoroiodoethylene.
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The internal Hamiltonian for this NMR system is given by

H0 = −π
3∑
i=1

νiσ
z
i +

π

2

3∑
i,j=1
i<j

Jijσ
z
i σ

z
j , (4.9)

where the first term is the Zeeman Hamiltonian and the second term is the spin-

spin interaction Hamiltonian.

We see that H0 in Eq. 4.9 is different from H(t) in Eq. 4.1. Thus the sim-

ulation problem boils down to the realization of H(t) using H0 and external RF

controls. The first step is to cancel the evolution of the Zeeman Hamiltonian in

Eq. 4.9.
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Chapter 6

Engineered decoherence:

Characterization and suppression

6.1 Introduction

Quantum devices which are perfectly isolated from their environment follow

unitary dynamics wherein the probabilities and coherences of the density oper-

ators are preserved throughout the state evolution. This is the ideal case that is

strongly desired in the field of quantum computation and communication. How-

ever, in practice, no quantum device is perfectly isolated from its environment.

This leads to inevitable interactions between a quantum system and the envi-

ronment which ultimately entangles the two. For sufficiently large times and for

large environmental size, the evolution of quantum system becomes non-unitary

leading to an irreversible information transfer from the quantum system to the

environment.

The most common information losses correspond to the coherence decay, also

known as phase decoherence, and energy dissipation of the quantum systems.

The decay constants T1 and T2 are associated with energy dissipation and deco-

herence processes respectively, that are borrowed from NMR terminology (sec-
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Chapter 6. Engineered decoherence: Characterization and suppression

tion. ref) [37]. In general, T1 > T2 which implies that the quantum systems lose

phase information faster than their energy. Hence in any quantum information

protocol it is important to implement the gates within the time scale of T2. The

very fact that the phenomenon of decoherence has been a severe threat to the

physical realization of a quantum computer has lead towards several theoretical

and experimental studies on decoherence [31, 38, 39, 40, 41, 42, 43].

In this chapter, I will explain our work that deals with the understanding of

phase decoherence and is organized into three parts:

1. We experimentally simulated artificial phase decoherence. Although, in

practice, one does not have any control over the environment, emulation

of decoherence gives a direct control over it. By systematically controlling

the environment one can study its effects on the system coherences.

2. we suppressed the induced decoherence using standard dynamical decou-

pling (DD) sequences. The simultaneous competition between the DD se-

quences and the decoherence process might give insight into the decoher-

ence process and ways to improve DD sequences.

3. We characterized the amount of the induced decoherence in the system

qubits using noise spectroscopy (NS) and quantum process tomography

(QPT). NS gives the frequency distribution of the noise and QPT gives the

entire information of the noise process for a specific noise frequency.

We implemented the above steps using a 2-qubit NMR simulator. The model

considered one qubit as a system qubit and the other as an environment qubit.

Additional decoherence, apart from the inherent decoherence, was induced us-

ing random classical fields on the enviromnet qubit [31]. We studied the effect

of controlled noise on the system qubit. In the following sections, I will introduce

to decoherence model, DD sequences, NS, QPT, and experiments, and results.
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6.2 Decoherence models

In this section, I will explain the phase decoherence model with ZZ type system-

environment interaction.

6.2.1 Zurek’s decoherence model

This model was given by Zurek [44] and is explained below.

Consider an n qubit composite system consisting of two subsystems. One

qubit is considered as the system of interest and the rest of the qubits are con-

sidered as the environment. The total Hamiltonian and the correspoding unitary

operator is respectively given by

HSE =
n∑
j=2

J1jZ1Zj and USE(t) = e−iHSEt. (6.1)

Here J1j is the coupling between the system (represented by subscript 1) and the

environment (represented by subscript j). Zurek showed that the Hamiltonian

with ZZ type system-environment interaction leads to phase decoherence.

Let the combined system start with a separable state:

|ψ(0)〉SE = |ψ(0)〉S ⊗ |ψ(0)〉E. (6.2)

Here the pure state |ψ(0)〉S = a|0〉1 + b|1〉1 with |a|2 + |b|2 = 1 is the system state

and |ψ(0)〉E = Πn
j=2(αj|0〉j+βj|1〉j) with |αj|2+|βj|2 = 1 is the environment state.

The evolution of |ψ(0)〉SE under the USE entangles the system and the envi-

ronment as below:
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|ψ(t)〉SE = USE(t)|ψ(0)〉SE

= a|0〉1Πn
j=2(αje

−iJ1jt|0〉j + βje
iJ1jt|1〉j)

+ b|1〉1Πn
j=2(αje

iJ1jt|0〉j + βje
−iJ1jt|1〉j) (6.3)

The corresponding density operator is given by ρSE(t) = |ψ(t)〉SE〈ψ(t)|SE and

the system density operator ρS(t) is obtained by tracing out the environment

subsystem from ρSE(t), i.e., ρS(t) = TrE[ρSE(t)]. The quantity that we are inter-

ested in is the coherence part of the density operator. As was already mentioned

in Eq. 2.7, the off-diagonal term ρ01S encodes the coherence information and this

matrix element in Z basis is given by

ρ01S (t) =1 〈0|ρSE(t)|1〉1

= ab · Πn
j=2(|αj|2e−2iJ1jt + |βj|2e2iJ1jt)

= ab · z(t), (6.4)

where {|0〉1, |1〉1} are the basis states of the system qubit and z(t) is called as

the decoherence factor. As seen from the above equation, |z(t)| → 0 implies the

decay in the coherences of the initial system state |ψ(0)〉S after time t. Further,

it can also be noted that irreversible decoherence can occur when n → ∞, i.e.,

when the environmental size is large.

6.2.2 Simulation of decoherence

As was already discussed, Zurek’s decoherence model requires large environ-

mental size for irreversible phase damping. However, an important question in

experimental realization is whether one can still simulate the same process us-

ing only finite sized environment. In this section, I will give a brief review of the
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methods given by Teklemariam et al. [31] to emulate artificial decoherence even

when the environment size is finite. Such finite sized decoherence simulation al-

lows for the direct control over the environment that can be eaisily implemented

in laboratory with a goal to study the deoherence process.

The model given by Teklemariam et al. differs from the Zurek’s model as fol-

lows: Suppose, the dimension of the Hilbert space of the quantum system is 2n.

The model considers its interaction with environment described by a maximum

Hilbert space dimension of 22n. This greatly restricts the size of the environ-

ment for very small n but favors experimental studies on decoherence. Further,

in order to mimic infinite sized environment and to induce irreversible phase

damping from the system qubits, this model uses additional stochiastic classical

fields on the environment.

For the sake of simplicity, consider a two qubit system-environment model

initially in the product state,

ρSE(0) = ρS(0)⊗ ρE(0), (6.5)

Initailly the composite system is assumed to be a closed system and the total

Hamiltonian is given by

H = π(νSZS + νEZE +
J

2
ZSZE), (6.6)

where νS and νE are the resonant frequenceis of the system (S) and the environ-

ment (E) qubits respectively, and J is the strength of the coupling between the

two. We consider the Hamiltonian in the rotating frames where νS = νE = 0.

The state ρSE(0) evolves under the propagator U(T ) for a total time T which is

given by

U(T ) = e−iHT (6.7)

that entangles S and E as was discussed in section 6.2.1.
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Suppose, E is perturbed by random classical fields without externaly disturb-

ing S. These perturbations are called as kicks and each kick operator Km corre-

sponds to the rotation of E with an arbitrary rotation angle εm about y-axis. For

the mth kick, we have Km = IS ⊗ e−iεmYE where IS is the Identity on the system

and εm is chosen randomly between [−α, α] with α being a small angle.

The kicks are assumed to be instantaneous with the kick rate Γ = k/T where

k is the total number of kicks. Under this action, Eq. 6.7 is modified to incorpo-

rate its dependency on the random angles εm and is given by

Uk(T ) = KkU(δ)Kk−1U(δ) · · ·K1U(δ); δ =
T

k
. (6.8)

A state ρSE(0) evolves under this operator as ρSE(T ) = Uk(T )ρSE(0)Uk(T )† and

the system and environment states are given by ρS(T ) = TrE[ρSE(T )] and ρE(T ) =

TrS[ρSE(T )] respectively.

An ensemble realization over many random εm ∈ [−α, α] leads to an average

behavior represented by

ρ̄s(T ) =

∫ α

−α

dεk
2α
· · ·
∫ α

−α

dε1
2α

TrE[UkρS(0)U †k ]. (6.9)

Teklemariam et al. showed that [31],

ρ̄S(T ) =
∑
r,s=0,1

Drs(k, T )ρrsS (0)|r〉〈s|, (6.10)

with |r〉, |s〉 ∈ {|0〉, |1〉} being the eigenstates of ZS and Drs(k, T ) is the decoher-

ence factor which is given by

Drs(k, T ) = TrE[Ok(ρE(0))]. (6.11)

Here O is the superoperator that is neither trace preserving nor Hermitian and

its action is defined as O(ρE) = cVKρEVK + dY VKρEVKY with VK = e−iπJδZE/2,
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c+d = 1, c−d = γ, and γ = sin(2α)/(2α). This indicates that for a specific value

of ε, J and γ, one can simulate a unique type of phase decoherence.

Teklemariam et al. showed that for smaller ε’s and for lower Γ, the deco-

herence rate 1/T2 was proportional to Γ. However, for certain Γ value, 1/T2

saturated and for a much higher Γ value, 1/T2 decreased exponentially with Γ.

Thus the former case correspond to the decoherence inducing effect while the

latter case corresponded to noise decoupling effect. This latter case was not ex-

plored in our work due to the experimental limitations considering the fact that

very high kick rates could damage the RF-coils in NMR setup.

6.3 Suppressing Decoherence

Preserving the qubit information against noise is one of the important steps in

quantum information processing. Different techniques have been developed to

suppress decoherence like dynamical decoupling (DD) [45, 46], quantum error

correction [47], use of robust approaches such as adiabatic quantum compu-

tation [48], or encoding quantum information in decoherence-free subspaces

[49]. In this chapter, I will explain two standard DD techniques that are utilized

in our work in order to suppress the inherent as well as induced artificial deco-

herence. One of the major advantages of this technique is that unlike the other

techniques, DD does not require extra qubits and it can be combined with other

quantum gates leading to fault tolerant quantum computation [50, 51].

I will first explain a way to suppress the static noise, a technique known

as Hahn echo sequence. However, in practice, the noise is time-dependent. I

will explain two standard DD techniqes for suppressing time-dependent noise,

namely CPMG and Uhrig DD sequences. All these techniques are explained in

the case of NMR setp-up.
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6.3.1 Hahn Echo

A technique to suppress time-independent noise in a single qubit was given by

Hahn [52]. Suppose the static magnetic field B0 has a spatial inhomogeneity

(NMR set-up). This small change in B0 changes the larmor frequencies of the

nuclei and hence different nuclei experience different larmor frequencies (sec-

tion ref). However the desired scenario is the case wherein all the nuclei coher-

ently behave as one single nuclei and precess with the same larmor frequency.

In order to achieve this, Hahn gave a sequence as shown in Fig. 6.1.

x

y
τ90o

y

180o

x

x x

y y

y

x

τ

x

y

Figure 6.1: Evolution of the net magnetization (indicated by arrows) under the
Hahn echo sequence. The dotted arow represents slow precessing spins and the
solid arrow represents fast preseccing spins. In this case, the precession of the
nuclei about the z-axis is assumed to be clockwise.

As shown in Fig. 6.1, the arrow represents the net magnetization of the

single qubit nuclei in the NMR system and is initially oriented about the z-axis.

The effect of the pulse sequence is explained as follows: The initial π/2 pulse

about the y-axis rotates the nuclei to x-axis. This is follwed by free evolution

of the spins for a time τ during which different nuclei will pick up different

larmor frequencies in the presence of B0 inhomogeneity. The nuclei fan-out with

a range of larmor frequencies. The slow moving components are represented by
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dotted arrow and the fast moving are components represented by solid arrow. A

π pulse about the x-axis rotates the spins and during the free evolution for time

τ , the faster moving components catch-up with the slower moving components.

Finally, all the spins are along the x-axis.

6.3.2 CPMG DD sequence

The term CPMG refers to Car-Purcell-Meiboom-Gill, named after the people who

came up with a decoherence suppression technique when the noise is time-

dependent [45]. This method is similar to Hahn echo except that CPMG DD

consists of a train of equidistant π pulses that are applied on the system qubit as

shown in Fig. 6.2. The π pulses are applied at regular intervals τ .
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Figure 6.2: The top and bottom figures correspond to the CPMG DD pulse
sequence in the absence and presence of kicks respectively for a cycle time of
tc and for N = 7. The solid bars indicate the π pulses that are applied on the
system qubit and the vertical lines indicate the kicks on the enviroment qubit.

A CPMG sequences with a τ value much shorter than the noise correlation

time can suppress the corresponding noise. In general, the smaller the value

τ , the larger the bandwidth of noise that is suppressed, and thus increases the

efficiency of DD.

It is important to note that the phases of π pulses are chosen such that the

initial state is stationary under the pulses, so that the DD sequence is robust

against pulse errors. In other words, if the magnetization just before the CPMG
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sequence is about x-axis then the π pulses in Fig. ?? are appied about the x-axis

and vice versa.

6.3.3 Uhrig DD sequence

Uhrigh DD (UDD) is another technique to suppress low-frequency noise [46].

Unlike CPMG DD, here the π pulses are not equidistant but the π pulse spacing

is given by

tj = tc sin2

[
πj

2(N + 1)

]
, (6.12)

where N is the total number of π pulses and tc is the cycle time and Fig. 6.3

shows the pulse sequence for N = 7.
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Figure 6.3: The top and bottom figures correspond to the UDD pulse sequence
in the absence and presence of kicks respectively for a cycle time of tc and for
N = 7. The solid bars indicate the π pulses that are applied on the system qubit
at instants ti with i = 1, 2, · · · , N and the vertical lines indicate the kicks on
the enviroment qubit. In both the cases only the T2 of the system is measured.
While the top figure is used to suppress the inherent decay, the bottom figure is
used to suppress the inherent decay and the induced decay.

6.4 Characterizing decoherence

In this section, I will show how decoherence can be characterized using two

techniques, i.e. by NS and QPT. NS gives the noise information in the qubit

for different noise frequencies. Recently, NS has emerged to be of particular
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interest in quantum information processing due to its use in optimizing the DD

sequences [53, 54, 55]. QPT gives the entire process. In our work, the process is

decoherence process at particular noise frequency. This technique also quantifies

the type of induced noise, e.g. bit flip or phase flip.

6.4.1 Noise spectroscopy

NS gives the frequency distribution of the noise which essentially contains the

information about qubit noise content. Yuge et al. [33] and Alvarez et al. [32]

independently proposed the method to experimentally measure the noise spec-

trum. Noise spectrum is defined by the quantity S(ω) which is a function of noise

frequency ω. Higher the value of S(ω), higher is the noise content in the system

of interest.

We utilize the method given by Yuge et al.. Fig. 6.8 shows the pulse se-

quence to measure S(ω). This sequence is basically CPMG sequence and is used

    1H
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Figure 6.4: Pulse sequence to measure S(ω).

to measure the decay constant T2. As already mentioned in section 6.3.2, CPMG

sequence increases T2 by suppresses the noise and this depends on the value of

τ where τ is the time interval between the consecutive π pulses. Thus by varying

τ , one can have a distribution of T2 values. Further, it was shown that [33]

S(ω) =
π2

4T2(ω)
, (6.13)
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where ω = π/τ . Thus by scanning a range of ω and by measuring T2(ω), one can

obtain S(ω).

6.4.2 Quantum process tomography

QPT is a technique to reconstruct the entire quantum process [6].

Consider a quantum operation E which transforms the initial state ρ to a final

state ρ′ as follows:

ρ′ = E(ρ). (6.14)

E can be any process which can either be unitary or non-unitary. The goal of

quantum process tomography is to determine E [6, 56].

Suppose,

E(ρ) =
∑
j

EjρE
†
j ; where Ej =

∑
m

ejmẼm. (6.15)

Here Ẽm are the fixed set of operators and ejm are the complex numbers. Hence

E(ρ) =
∑
mn

ẼmρẼn
†
χmn; χmn =

∑
j

ejme
∗
jn. (6.16)

Thus one can see that for a fixed set of operators Ẽj, one needs to determine the

coefficients of χ. This is known as χ matrix representation.

After some algebra, one can deduce that

∑
mn

βmnpq χmn = λpq (6.17)

where,

• λpq = Tr[ρ
′
pρq].

• βmnrs = Tr[ẼmρrẼnρs].
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In order to calculate λpq, one needs to know the final state ρ′. This charac-

terization of ρ′ is done by using quantum state tomography (QST) [6, 57, 58].

Since a single unknown quantum state cannot be characterized, QST involves

the preparation of a large number of copies of ρ. For the sake of simplicity, I will

briefly explain this procedure for a single qubit case.

As already mentioned in equation 2.5, a single qubit density operator has the

form

ρ =
1

2
(I +

∑
i

riσi); where ri = 〈σi〉 = Tr[ρσi].

Here, σi ∈ {X, Y, Z}. For the spin operators I/
√

2, X/
√

2, Y/
√

2 and Z/
√

2, it

follows that

ρ =
Tr[ρ]I + Tr[Xρ]X + Tr[Y ρ]Y + Tr[Zρ]X

2
(6.18)

Thus characterizing ρ involves the measurements of the average value of the

operator corresponding to I, X, Y and Z which are given by Tr[ρ], Tr[Xρ], Tr[Y ρ]

and Tr[Zρ] respectively.

Thus, by solving β and λ, one can obtain the χ matrix. For an n- qubit system,

χ will have 24n − 22n independent real parameters.

6.5 Experiments and results

The experiments were carried out on 13C1HCl3 molecule dissolved in CDCl3 at an

ambient temperature of 300 K. The nuclei 13C and 1H form the two qubit system.

The molecule and its properties are shown in Fig. 6.5.

We chose 1H as our system qubit and 13C as our environment qubit. Here, I

will explain the three parts of our experimental work, i.e., introducing artificial

phase decoherence in 1H by randomly perturbing 13C, Suppressing the decoher-

ence in 1H and finally characterizing the decoherence process that is induced in
1H.
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Figure 6.5: 13C1HCl3 as NMR quantum simulator. The chemical shifts of 1H
and 13C are 104.7 Hz and 0 Hz respectively. The J -coupling between the two
is 209.4 Hz. The T1 for 1H and 13C is 4.1s and 5.5s respectively, and T2 for the
same is 2.9s and 0.8s respectively.

The NMR Hamiltonian is similar to Eq. 6.19 and is given by

H = π(νHZH + νCZC +
J

2
ZHZC), (6.19)

where νH and νC are the chemical shifts of the system (1H) and the environment

(13C) qubits respectively, and J is the sclar coupling.

We prepared 1H qubit in the initial state ρH(0) = IH/2 + pHXH by applying a

π/2 pulse about the y-axis on the thermal equilibrium state IH/2 + pHZH . Here

pH ∼ 10−5 is the spin polarization. Also 13C qubit was prepared in the initial

thermal equilibrium state ρC(0) = IC/2 + pCZC where pC ∼ 10−5 .

Evolution under the action of kicks as explained in section 6.2.2 was realized

by perturbing the 13C qubit. These kicks were RF-pulses with random rotation

angles and random phases. The experimental realization of artificial decoher-

ence as explained in [31] is shown in Fig. 6.6.

We performed different sets of experiments with kicks corresponding to εm ∈

[0, 1◦], [0, 2◦] and random phases between 0 and 2π, while allowing the 1H qubit

to evolve freely.

Decoherence is observed by measuring its transverse magnetizationMx(mtc) =

Tr[ρH(mtc)XH ] after m cycles each of duration tc with m = 0, 1, · · · , N where
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Figure 6.6: Method to introduce artificial decoherence. The filled bar on the
system qubit corresponds to the RF pulse with rotation angle 90◦ about y-axis.
This pulse prepares the system qubit in the required initial state. The verti-
cal lines on the environment qubit are the random kicks applied for time tc.
The inset in the lower right corner represents the expected magnetization decay
wherein the solid line corresponds to inherent decay and the dotted line corre-
sponds to the inherent decay as well as decay due to the artificial decoherence.

N is total number of cycles. Fig. 6.7 shows the results of the experiment for

ε ∈ [0◦, 1◦] and Γ = 25 kicks/ms (indicated by stars). As can be seen from the

figure, the decay of magnetization is higher than that without kicks (indicated by

filled circles) indicating that we introduced additional decoherence apart from

the natural relaxation processes.

After emulating decoherence in 1H, we suppressed it by using CPMG DD and

UDD sequences. Figs. 6.2 and 6.3 shows the pulses sequences for implementing

CPMG and Uhrig DD in the presence of kicks. While the π pulses were applied

on 1H, the kicks were applied on 13C simultaneously. The experimental results

as shown in Fig. 6.7 (indicated by open circles and boxes) show that the DD

sequences were successful in suppressing decoherence even in the presence of

kicks. Here, the efficiency of CPMG and UDD sequences are almost identical. It

may be noted that detailed comparative studies of CPMG and UDD under natural

relaxation processes have been studied elsewhere [59, 60]

As the last step, we characterized decoherence using NS and QPT. The way
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Figure 6.7: Decay of Mx(t) under various cases. The numbers in the legend
represent the T2 values for the corresponding cases. The kick parameters are
ε = [0◦, 1◦], Γ = 25 kicks/ms, and tc = 22.4 ms and τ = 3.2 ms.

to measure S(ω) as given in section 6.4.1 but in the presence of kicks on 13C as

shown in Fig. 6.8. T2 of 1H for each τ is obtained by fitting the experimental

magnetization values to the decay model given by Mx(t) = Mx(0)e−t/T2, where

Mx(0) is the initial transverse magnetization. By vayring τ , we measured T2(ω)

where ω = π/τ for various kick parameters.

Fig. 6.9 shows the noise spectral density distribution for various kick pa-

rameters. For comparison, we have also measured S(ω) in the absence of kicks

(indicated by filled triangles). As expected, the S(ω) plot in the presence of kicks

has higher values than that due to the inherent decay indicating that the effect

of kicks is to induce noise. Generally, the noise spectra for the inherent noise has

a Gaussian profile [61] and the results agree in the case of S(ω) of inherent de-

cay. However, an interesting characteristic features in the noise spectral density

at higher kick-rate (50 kicks/ms) were observed. Similar features were earlier

observed by Suter and co-workers due to a decoupling sequence being applied

on environment spins [32].

Fig. 6.10 shows the comparison between the theoretical S(ω) using the meth-

ods given by Teklemariam et al. and Yuge at el. vs the experiemental S(ω) with
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Figure 6.8: Measuring NS in the presence of kicks. The pulses on 1H is basically
CPMG sequence to measure T2.

for kick-rate of 25 kicks/ms and kick-angles in the range 0 to 2 degrees. To obtain

the experimental S(ω) due to kicks alone, we subtracted the intrinsic spectral

density of the system qubit (with no kicks) from the total spectral density with

kicks. A fair agreement between the numerically simulated curve and the exper-

imental data confirms the relevance of the model in low Γ regime as given in

[31].

We also characterized the induced phase decoherence by QPT and the general

protocol was given in section 6.4.2. The single qubit QPT protocol consisted of

the initial preparation of the four states as follows: ρj = |ψj〉〈ψj|, with |ψj〉 ∈

{|0〉, |1〉, (|0〉 + |1〉)/
√

2, (|0〉 − i|1〉)/
√

2}. The fixed set of operators as Ẽp were

chosen from the set {E,X,−iY, Z}, where E is the identity matrix and X, Y , Z

are the Pauli matrices. The goal is to obtain the χ matrix which corresponds to

kick induced noise process.

Fig. 6.11 shows the experimental QPT of the phase decoherence process for

various kick parameters. The top figures correspond to the entire χ matrix ex-

pressed in the basis of {E,X,−iY, Z}. Among these figure are QPT of NOOP

which is an Identity operator, i.e., no kicks and no DD, only kicks, UDD with
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Figure 6.10: The experimental S(ω) (dots) vs the theoretical S(ω) (solid curve)
corresponding to the kick parameters Γ = 25 kicks/ms and εm ∈ [0◦, 2◦].

kicks and CPMG DD with kicks. As evident, the Identity process has only EE

component while the QPT in the presence of kicks has additional components in

the χ matrix. As was already explained in section 6.2.1, the system-environment

interaction of the type ZZ gives rise to phase decoherence which corresponds

to ZZ components in the figure, thus indicating that the decoherence that we
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induced and studied was indeed phase decoherence. The extra components like

EX, XE and XX arise due to the nonidealities in the π pulses in the DD se-

quences that introduce NOT operations.

6.6 Conclusion
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[34] L. Landau, “Das dämpfungsproblem in der wellenmechanik,” Zeitschrift für

Physik, vol. 45, no. 5-6, pp. 430–441, 1927.

[35] D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle

moving under the influence of an electric field,” Phys. Rev. B, vol. 34, pp.

3625–3633, Sep 1986.

[36] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, “Coherent destruction of

tunneling,” Phys. Rev. Lett., vol. 67, pp. 516–519, Jul 1991.

[37] J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton, Protein

NMR spectroscopy: principles and practice. Academic Press, 1995.

70



Bibliography

[38] W. H. Zurek, S. Habib, and J. P. Paz, “Coherent states via decoherence,”

Physical Review Letters, vol. 70, no. 9, p. 1187, 1993.

[39] J. Poyatos, J. Cirac, and P. Zoller, “Quantum reservoir engineering with

laser cooled trapped ions,” Physical review letters, vol. 77, no. 23, p. 4728,

1996.

[40] C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M.

Itano, C. Monroe, and D. J. Wineland, “Decoherence of quantum superpo-

sitions through coupling to engineered reservoirs,” Nature, vol. 403, no.

6767, pp. 269–273, 2000.

[41] J. P. Paz and W. H. Zurek, “Quantum limit of decoherence: Environ-

ment induced superselection of energy eigenstates,” Physical Review Letters,

vol. 82, no. 26, p. 5181, 1999.

[42] J. P. Paz, “Quantum engineering: protecting the quantum world,” Nature,

vol. 412, no. 6850, pp. 869–870, 2001.

[43] L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state

quantum systems,” Phys. Rev. A, vol. 58, pp. 2733–2744, Oct 1998.

[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevA.58.2733

[44] W. H. Zurek, “Environment-induced superselection rules,” Physical Review

D, vol. 26, no. 8, p. 1862, 1982.

[45] S. Meiboom and D. Gill, “Modified spin-echo method for measuring nuclear

relaxation times,” Review of scientific instruments, vol. 29, no. 8, pp. 688–

691, 1958.

[46] G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse sequences,”

Physical Review Letters, vol. 98, no. 10, p. 100504, 2007.

71

http://link.aps.org/doi/10.1103/PhysRevA.58.2733


Bibliography

[47] J. Preskill, “Reliable quantum computers,” in Proceedings of the Royal Soci-

ety of London A: Mathematical, Physical and Engineering Sciences, vol. 454,

no. 1969. The Royal Society, 1998, pp. 385–410.

[48] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation

by adiabatic evolution,” arXiv preprint quant-ph/0001106, 2000.

[49] D. A. Lidar and K. B. Whaley, “Decoherence-free subspaces and subsys-

tems,” in Irreversible Quantum Dynamics. Springer, 2003, pp. 83–120.

[50] H. K. Ng, D. A. Lidar, and J. Preskill, “Combining dynamical decoupling

with fault-tolerant quantum computation,” Physical Review A, vol. 84, no. 1,

p. 012305, 2011.

[51] J. Zhang, A. M. Souza, F. D. Brandao, and D. Suter, “Protected quantum

computing: interleaving gate operations with dynamical decoupling se-

quences,” Physical review letters, vol. 112, no. 5, p. 050502, 2014.

[52] E. L. Hahn, “Spin echoes,” Physical review, vol. 80, no. 4, p. 580, 1950.

[53] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J.

Bollinger, “Optimized dynamical decoupling in a model quantum memory,”

Nature, vol. 458, no. 7241, pp. 996–1000, 2009.

[54] M. Biercuk, A. Doherty, and H. Uys, “Dynamical decoupling sequence con-

struction as a filter-design problem,” Journal of Physics B: Atomic, Molecular

and Optical Physics, vol. 44, no. 15, p. 154002, 2011.

[55] Y. Pan, Z.-R. Xi, and J. Gong, “Optimized dynamical decoupling sequences

in protecting two-qubit states,” Journal of Physics B: Atomic, Molecular and

Optical Physics, vol. 44, no. 17, p. 175501, 2011.

72



Bibliography

[56] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determina-

tion of the dynamics of a quantum black box,” Journal of Modern Optics,

vol. 44, no. 11-12, pp. 2455–2467, 1997.

[57] K. Vogel and H. Risken, “Determination of quasiprobability distributions in

terms of probability distributions for the rotated quadrature phase,” Phys.

Rev. A, vol. 40, pp. 2847–2849, Sep 1989.

[58] U. Leonhardt, Measuring the quantum state of light. Cambridge university

press, 1997, vol. 22.
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