MTH201: EXTRA PROBLEMS FOR WEEK 1

(1) What is the maximum number of non-pivot and non-zero entries possible for a RREF matrix of size $m \times n$ and rank r with pivot sequence (p_1, p_2, \ldots, p_r) .

For which pivot sequence (with r fixed), is the above number maximum/minimum?

- (2) Given constants a and b, for which scalars c is the vector $(1, c, c^2)^t$ a linear combination of the vectors $(1, a, a^2)^t$ and $(1, b, b^2)^t$. (Recall a linear combinations of vectors \vec{u} and \vec{v} is a vector of the form $a\vec{u} + b\vec{v}$ where a and b are scalars.)
- (3) Find the polynomial $p(t) = a + bt + ct^2 + dt^3$ whose graph goes through the points (0,1),(1,0),(-1,0) and (2,-15). Your solution must involve bringing a 4×5 augmented matrix into RREF.

4) Do the following TIE problems with reasoning.

40 CHAPTER | Linear Equations

- **38.** If *A* and *B* are any two $n \times n$ matrices of rank n, then *A* can be transformed into *B* by means of elementary row operations.
- **39.** If a vector \vec{v} in \mathbb{R}^4 is a linear combination of \vec{u} and \vec{w} , and if A is a 5×4 matrix, then $A\vec{v}$ must be a linear combination of $A\vec{u}$ and $A\vec{w}$.
- **40.** If matrix *E* is in reduced row-echelon form, and if we omit a row of *E*, then the remaining matrix must be in reduced row-echelon form as well.
- **41.** The linear system $A\vec{x} = \vec{b}$ is consistent if (and only if) $\operatorname{rank}(A) = \operatorname{rank}\left[A \mid \vec{b}\right]$.
- **42.** If A is a 3 × 4 matrix of rank 3, then the system $A\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ must have infinitely many solutions.
- **43.** If two matrices A and B have the same reduced row-echelon form, then the equations $A\vec{x} = \vec{0}$ and $B\vec{x} = \vec{0}$ must have the same solutions.

- **44.** If matrix *E* is in reduced row-echelon form, and if we omit a column of *E*, then the remaining matrix must be in reduced row-echelon form as well.
- **45.** If A and B are two 2×2 matrices such that the equations $A\vec{x} = \vec{0}$ and $B\vec{x} = \vec{0}$ have the same solutions, then rref(A) must be equal to rref(B).
- **46.** A lower triangular 3×3 matrix has rank 3 if (and only if) the product of its diagonal entries is nonzero.
- **47.** If $ad-bc \neq 0$, then the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ must have rank 2.
- **48.** If vector \vec{w} is a linear combination of \vec{u} and \vec{v} , then $\vec{u} + \vec{v} + \vec{w}$ must be a linear combination of \vec{u} and $\vec{u} + \vec{v}$.
- **49.** If the linear system $A\vec{x} = \vec{b}$ has a unique solution and the linear system $A\vec{x} = \vec{c}$ is consistent, then the linear system $A\vec{x} = \vec{b} + \vec{c}$ must have a unique solution.
- **50.** A matrix is called a 0–1-matrix if all of its entries are ones and zeros. True or false: The majority of the 0–1-matrices of size 3×3 have rank 3.