TRUE OR FALSE? Do the even numbered problems

- 1. The polynomials of degree less than 7 form a sevendimensional subspace of the linear space of all polynomials.
- 2. The function T(f) = 3f 4f' from C^{∞} to C^{∞} is a linear transformation.
- 3. The lower triangular 2 × 2 matrices form a subspace of the space of all 2 × 2 matrices.
- 4. The kernel of a linear transformation is a subspace of the domain.
- 5. The space $\mathbb{R}^{2\times 3}$ is five-dimensional.
- 6. If f_1, \ldots, f_n is a basis of a linear space V, then any element of V can be written as a linear combination of f_1, \ldots, f_n .
- 7. The space P_1 is isomorphic to \mathbb{C} .
- 8. If the kernel of a linear transformation T from P_4 to P_4 is {0}, then T must be an isomorphism.
- 9. If W_1 and W_2 are subspaces of a linear space V, then the intersection $W_1 \cap W_2$ must be a subspace of V as well.
- 10. If T is a linear transformation from P_6 to $\mathbb{R}^{2\times 2}$, then the kernel of T must be three-dimensional.
- 11. All bases of P_3 contain at least one polynomial of degree ≤ 2 .
- 12. If T is an isomorphism, then T^{-1} must be an isomorphism as well.

- 13. The linear transformation T(f) = f + f'' from C^{∞} to C^{∞} is an isomorphism.
- 14. All linear transformations from P_3 to $\mathbb{R}^{2 \times 2}$ are isomorphisms.
- **15.** If T is a linear transformation from V to V, then the intersection of im(T) and ker(T) must be $\{0\}$.
- 16. The space of all upper triangular 4×4 matrices is isomorphic to the space of all lower triangular 4×4 matrices.
- 17. Every polynomial of degree 3 can be expressed as a linear combination of the polynomial (t-3), $(t-3)^2$, and $(t-3)^3$.
- 18. If a linear space V can be spanned by 10 elements, then the dimension of V must be ≤ 10 .
- **19.** The function $T(M) = \det(M)$ from $\mathbb{R}^{2 \times 2}$ to \mathbb{R} is a linear transformation.
- **20.** There exists a 2×2 matrix A such that the space V of all matrices commuting with A is one-dimensional.
- **21.** The linear transformation $T(M) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} M$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$ has rank 1.
- 22. If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element f in the domain of T such that T(f) = 3f.