In this assignment $\mathcal{P}_m = \{\sum_{i=0}^m a_i x^i : a_i \in \mathbb{R}\}.$

(1) Find the matrix A' of the linear transformation T(x) = Ax with respect to the basis $\mathcal{B} = (\vec{v}_1, \vec{v}_2).$

a) $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$; $\vec{v_1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, b) $A = \begin{bmatrix} 13 & -20 \\ 6 & -9 \end{bmatrix}$; $\vec{v_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$

(2) Are the following subsets of \mathcal{P}_2 subspaces of \mathcal{P}_2 . If so find the dimension by finding a basis.

a)
$$\{p(x) : p'(1) = p(2)\},$$
 b) $\{p(x) : \int_0^1 p(x)dx = 0\}$

(3) Let V be the vector space of all 2×2 real matrices. Find the dimension of the following subspaces by finding a basis:

a)
$$\{A : A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0_{2 \times 2}\}, \quad b) \{A : \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} | A = 0_{2 \times 2}\}.$$

- (4) Find the kernel, nullity, rank and image (in this order) of the linear transformation from $\mathcal{P}_2 \to \mathbb{R}^2$ given by $p(x) \mapsto (p(7), p(11))$.
- (5) Let V denote the vector space of infinite sequences of real numbers. We may also think of V as the vector space of functions from \mathbb{N} to \mathbb{R} . Let \mathcal{P} denote the vector space of all polynomials with real coefficients. Find the image and kernel of the linear transformation

$$T: \mathcal{P} \to V$$
 given by $p(x) \mapsto (p(0), p'(0), p''(0), \dots)$

(6) (*) Consider the basis $\{1, x, x^2/2, x^3/6, \ldots, x^m/m!\}$ for \mathcal{P}_m . Consider the following functions from \mathcal{P}_m to itself, where *a* is a fixed real number:

$$T(p(x)) = p'(x), \qquad S(p(x)) = p(x+a).$$

You may assume m = 2 below except in the parts f) and g).

- (a) Prove that T and S_a are linear transformations.
- (b) Find the matrix of T wrt the chosen basis.
- (c) Let m = 2. Find the matrix of S_a wrt the chosen basis. Guess/find the matrix of S_a for general m.
- (d) Let m = 2. Show that $T^i = 0$ if i > 2.
- (e) Using the previous part, it makes sense to talk about

$$\exp(aT) = I + aT + a^2T^2/2 + \dots + a^iT^i/i! + \dots$$

What is the matrix of $\exp(aT)$ wrt the chosen basis ?

- (f) Guess/find the answers to the previous parts for general m.
- (g) Relate the transformations $\exp(aT)$ and S_a . What's the interpretation ? $\ddot{\sim}$