MTH 201 - ASSIGNMENT 5

(1) Find a basis for image and kernel of T_A for:

a)
$$A = \begin{bmatrix} 1 & 3 & 9 \\ 4 & 5 & 8 \\ 7 & 6 & 3 \end{bmatrix}$$
, b) $A = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 5 & 1 \\ 7 & 9 & 3 \end{bmatrix}$

- (2) For which values of the constant k do the vectors $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 2 & 3 & 4 & k \end{bmatrix}$ form a basis of \mathbb{R}^4 ?
- (3) Consider some mutually perpendicular unit vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n . Show that these vectors are necessarily linearly independent.
- (4) a) A subspace W of \mathbb{R}^n is called a hyperplane if W is defined by a homogeneous linear equation $c_1x_1 + c_2x_2 + \cdots + c_nx_n = 0$, where at least one of the coefficients c_i is nonzero. What is the dimension of a hyperplane in \mathbb{R}^n ? Justify your answer carefully. What is a hyperplane in \mathbb{R}^3 ? What is it in \mathbb{R}^2 ?
 - b) Consider a nonzero vector $v \in \mathbb{R}^n$. What is the dimension of the space (denoted v^{\perp}) of all vectors in \mathbb{R}^n that are perpendicular to v?
- (5) Determine whether the vector \vec{x} is in the span W of the vectors v_1, \ldots, v_m . (Proceed "by inspection" if possible, and use RREF form if necessary). If \vec{x} is in W, find the coordinates $[\vec{x}]_{\mathcal{B}}$ of \vec{x} with respect to the basis $\mathcal{B} = (v_1, \ldots, v_m)$.

a)
$$\vec{x} = \begin{bmatrix} 7 \\ 16 \end{bmatrix}$$
; $\vec{v}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$, b) $\vec{x} = \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}$; $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$

(6) find the matrix B of the linear transformation T(x) = Ax with respect to the basis $\mathcal{B} = (\vec{v_1}, \vec{v_2})$.

a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
; $\vec{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, b) $A = \begin{bmatrix} 13 & -20 \\ 6 & -9 \end{bmatrix}$; $\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$

(7) Do the even numbered problems from 1-38 in the following list of T/F Questions. Supply reasons, not just T/F.

TRUE OR FALSE?

- **1.** If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ and $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_m$ are any two bases of a subspace V of \mathbb{R}^{10} , then n must equal m.
- If A is a 5 × 6 matrix of rank 4, then the nullity of A is 1.
- 3. The image of a 3×4 matrix is a subspace of \mathbb{R}^4 .
- **4.** The span of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ consists of all linear combinations of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$.
- 5. If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent vectors in \mathbb{R}^n , then they must form a basis of \mathbb{R}^n .
- **6.** There exists a 5×4 matrix whose image consists of all of \mathbb{R}^5 .
- The kernel of any invertible matrix consists of the zero vector only.
- **8.** The identity matrix I_n is similar to all invertible $n \times n$ matrices.

164 CHAPTER 3 Subspaces of R" and Their Dimensions

- 9. If $2\vec{u} + 3\vec{v} + 4\vec{w} = 5\vec{u} + 6\vec{v} + 7\vec{w}$, then vectors \vec{u} , \vec{v} , \vec{w} must be linearly dependent.
- The column vectors of a 5 × 4 matrix must be linearly dependent.
- If matrix A is similar to matrix B, and B is similar to C, then C must be similar to A.
- 12. If a subspace V of \mathbb{R}^n contains none of the standard vectors $\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n$, then V consists of the zero vector only.
- 13. If vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4 are linearly independent, then vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 must be linearly independent as well.
- 14. The vectors of the form $\begin{bmatrix} a \\ b \\ 0 \\ a \end{bmatrix}$ (where a and b are arbitrary real numbers) form a subspace of \mathbb{R}^4 .
- **15.** Matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- **16.** Vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ form a basis of \mathbb{R}^3 .
- **17.** If the kernel of a matrix *A* consists of the zero vector only, then the column vectors of *A* must be linearly independent.
- **18.** If the image of an $n \times n$ matrix A is all of \mathbb{R}^n , then A must be invertible.
- **19.** If vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ span \mathbb{R}^4 , then n must be equal to 4.
- **20.** If vectors \vec{u} , \vec{v} , and \vec{w} are in a subspace V of \mathbb{R}^n , then vector $2\vec{u} 3\vec{v} + 4\vec{w}$ must be in V as well.
- **21.** If *A* and *B* are invertible $n \times n$ matrices, then *AB* must be similar to *BA*.
- **22.** If *A* is an invertible $n \times n$ matrix, then the kernels of *A* and A^{-1} must be equal.
- **23.** Matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- **24.** Vectors $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$, $\begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}$, $\begin{bmatrix} 9\\8\\7\\6 \end{bmatrix}$, $\begin{bmatrix} 5\\4\\3\\2 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\-1\\-2 \end{bmatrix}$ are linearly
 - independent.
- **25.** If a subspace V of \mathbb{R}^3 contains the standard vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3$, then V must be \mathbb{R}^3 .
- **26.** If a 2 × 2 matrix *P* represents the orthogonal projection onto a line in \mathbb{R}^2 , then *P* must be similar to matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

- **27.** If A and B are $n \times n$ matrices, and vector \vec{v} is in the kernel of both A and B, then \vec{v} must be in the kernel of matrix AB as well.
- 28. If two nonzero vectors are linearly dependent, then each of them is a scalar multiple of the other.
- **29.** If $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are any three distinct vectors in \mathbb{R}^3 , then there must be a linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 such that $T(\vec{v}_1) = \vec{e}_1, T(\vec{v}_2) = \vec{e}_2$, and $T(\vec{v}_3) = \vec{e}_3$.
- **30.** If vectors \vec{u} , \vec{v} , \vec{w} are linearly dependent, then vector \vec{w} must be a linear combination of \vec{u} and \vec{v} .
- **31.** \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- 32. If an $n \times n$ matrix A is similar to matrix B, then $A + 7I_n$ must be similar to $B + 7I_n$.
- **33.** If *V* is any three-dimensional subspace of \mathbb{R}^5 , then *V* has infinitely many bases.
- **34.** Matrix I_n is similar to $2I_n$.
- **35.** If AB = 0 for two 2×2 matrices A and B, then BA must be the zero matrix as well.
- **36.** If A and B are $n \times n$ matrices, and vector \vec{v} is in the image of both A and B, then \vec{v} must be in the image of matrix A + B as well.
- **37.** If *V* and *W* are subspaces of \mathbb{R}^n , then their union $V \cup W$ must be a subspace of \mathbb{R}^n as well.
- **38.** If the kernel of a 5×4 matrix A consists of the zero vector only and if $A\vec{v} = A\vec{w}$ for two vectors \vec{v} and \vec{w} in \mathbb{R}^4 , then vectors \vec{v} and \vec{w} must be equal.
- **39.** If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n$ are two bases of \mathbb{R}^n , then there exists a linear transformation T from \mathbb{R}^n to \mathbb{R}^n such that $T(\vec{v}_1) = \vec{w}_1, T(\vec{v}_2) = \vec{w}_2, \ldots, T(\vec{v}_n) = \vec{w}_n$.
- **40.** If matrix A represents a rotation through $\pi/2$ and matrix B a rotation through $\pi/4$, then A is similar to B.
- **41.** There exists a 2×2 matrix A such that im(A) = ker(A).
- 42. If two n × n matrices A and B have the same rank, then they must be similar.
- **43.** If *A* is similar to *B*, and *A* is invertible, then *B* must be invertible as well.
- **44.** If $A^2 = 0$ for a 10×10 matrix A, then the inequality rank $(A) \le 5$ must hold.
- **45.** For every subspace V of \mathbb{R}^3 , there exists a 3×3 matrix A such that $V = \operatorname{im}(A)$.
- **46.** There exists a nonzero 2×2 matrix A that is similar to 2A.
- 47. If the 2×2 matrix R represents the reflection about a line in \mathbb{R}^2 , then R must be similar to matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.