- (1) Consider a matrix A and let B = RREF(A).
 a) Is ker(A) necessarily equal to ker(B)? Explain.
 b) Is Im(A) necessarily equal to Im(B)? Explain.
- (2) Find a nontrivial linear relation among the vectors $(1,2)^t, (2,3)^t, (3,4)^t$.
- (3) Consider the vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n with $v_m = \vec{0}$. Are these vectors linearly independent?
- (4) Consider two subspaces V and W of Rⁿ.
 a) Is the intersection V ∩ W necessarily a subspace of Rⁿ?
 b) Is the union V ∪ W necessarily a subspace of Rⁿ?
- (5) Find a basis for the subspace of \mathbb{R}^3 defined by $2x_1 + 3x_2 + x_3 = 0$.
- (6) Consider a 5×4 matrix $A = [v_1 v_2 v_3 v_4]$. We are told that the vector $(1, 2, 3, 4)^t$ is in Ker(A). Express v_4 as a linear combination of v_1, v_2, v_3 .
- (7) Consider an $m \times n$ matrix A and an $n \times m$ matrix (with $n \neq m$) such that $AB = I_m$. (We say that A is a left inverse of B.) Are the columns of B linearly independent? What about the columns of A?
- (8) Consider an n×p matrix A and a p×m matrix B. We are told that the columns of A and the columns of B are linearly independent. Are the columns of the product AB linearly independent as well?