63. Exploring Structural Features
of Folded Peptide Architectures in the Construction of Nanomaterials;
Misra, R., Reja, R. M., Narendra, L. V., Gijo, G., Ragothama, S., Gopi,
H. N. Chem Commun. 2016, Just Accepted.(DOI: 10.1039/C6CC04502B)
62. Non-classical Helices with cis Carbon-Carbon Double Bonds in the Backbone: Structural Features of α,γ-Hybrid Peptide Folamers; Kumar, M. G., Thombare, V. J., Katariya, M. M., Veeresh. K., Raja, K. M. P., Gopi, H. N. Angew. Chem. Int., Ed. 2016, 55, 7847-7851.
61. Structural Features and Molecular Aggregations of Designed Triple-Stranded β-Sheets in Single Crystals; Bandyopadhyay, A., Misra, R., Gopi, H. N. Chem Commun. 2016, 52, 4938-4941.
60. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery; Reja, R. M., Khan, M., Singh, S. K., Misra, R., Shiras, A., Gopi, H. N. Nanoscale, 2016, 8, 5139-5145.
59. γ- and β-Peptide Foldamers from Common Multifaceted Building Blocks: Synthesis and Structural Characterization; Kumar, M. G., Gopi, H. N. Org. Lett., 2015, 17, 4738-4741.
58. Engineering polypeptide folding through trans double bonds: transformation of miniature β-meanders to hybrid helices, Kumar; M. G., Benke, S. N., Raja, K. M., Gopi, H. N. Chem Commun. 2015, 51, 13397-13399.
57. Design of stable β-hairpin mimetics through backbone disulfide bonds; Kumar, M. G., Mali, S. M.,Raja, K. M., Gopi, H. N. Org. Lett., 2015, 17, 230-233.
56. Synthesis of Tetrasubstituted Symmetrical Pyrazines from β-Keto γ-Amino Esters: A Mild Strategy for Self-Dimerization of Peptides; Kumar, M. G., Thombare, V. J., Bhaisare, R. D., Adak, A., Gopi, H. N. Eur. J. Org. Chem. 2015, 1, 135-141.
55. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices; Jadhav, S. V., Misra, R., Gopi, H. N. Chem. -Eur. J. 2014, 20, 16523-16528. (Selected as Very Important Paper)
54. HBTU mediated 1-hydroxybenzotriazole (HOBt) conjugate addition: synthesis and stereochemical analysis of β-benzotriazole N-oxide substituted γ-amino acids and hybrid peptides; Mali, S.M., Kumar, M. G., Katariya, M. M., Gopi, H. N. Org. Biomol. Chem. 2014, 12, 8462-8472.
53. Thioacetic acid/NaSH-mediated synthesis of N-protected amino thioacids and their utility in peptide synthesis; Mali, S. M., Gopi, H.N. J. Org. Chem. 2014, 79, 2377-2383.
52. Exploring β-Hydroxy γ-Amino Acids (Statines) in the Design of Hybrid Peptide Foldamers; Bandyopadhyay, A., Malik, A., Kumar, M. G., Gopi, H. N. Org. Lett., 2014, 16, 294-297.
51. γ-Amino acid mutated α- coiled coils as mild thermal triggers for liposome delivery; Jadhav, S. V., Singh, S. K., Reja, R. M., Gopi, H. N. Chem Commun. 2013, 49, 11065-11067.
50. Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides; Shankar, S. S., Benke, S. N., Nagendra, N., Srivastava, P. L., Thulasiram, H.V., Gopi, H. N. J. Med. Chem. 2013, 56, 8468-8474.
49. Efficient access to enantiopure γ4-residues with proteinogenic side chains and structural investigation of γ4-Asn and γ4-Ser in hybrid peptide helices; Jadhav, S. V., Misra, R., Singh, S. K., Gopi, H. N. Chem. -Eur. J. 2013, 19, 5955.
48. Remarkable Thermoresponsive Nanofibers from γ- Peptides; Jadhav, S. V., Gopi, H. N. Chem Commun. 2013, 49, 9179-9181.
47. Thioacids Mediated Selective and Mild N-Acylation of Amines; Mali, S. M., Bhaisare, R. D., Gopi, H. N. J. Org. Chem. 2013, 78, 5550-5555.
46. A designed three-stranded β-sheet in an α/β hybrid peptide; Sonti, R., Gopi, H. N., Muddegowda, U., Ragothama, S., Balaram, P. Chem. Eur. –J. 2013, 19, 5955-5965.
45. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides; Kumar, M. G., Mali, S. M., Gopi, H. N. Org. Biomol. Chem. 2013, 11, 803-813.
44. Protein secondary structure mimetics: Crystal conformations of α/γ4-hybrid peptide 12-helices with proteinogenic side chains and their analogy with α-and β-peptide helices; Jadhav, S. J., Bandyopadhyay, A., Gopi, H. N. Org. Biomol. Chem. 2013, 11, 509-514.
43. Thiazole-Carbonyl Interactions: A Case Study Using Phenylalanine Thiazole Cyclic Tripeptides; Mali, S. M., Schneider, T. F., Bandyopadhyay, A., Jadhav, S. J., Werz, D. B., Gopi, H. N. Cryst. Growth Des. 2012, 12, 5643-5648.
42. α/γ4-Hybrid peptide helices: synthesis, crystal conformations and analogy with the α-helix; Bandyopadhyay, A., Jadhav, S. V., Gopi, H. N. Chem. Commun, 2012, 48, 7170 –7172.
41. Copper(II) mediated facile and ultra fast peptide synthesis in methanol; Mali, S. M., Jadhav, S. V., Gopi, H. N. Chem. Commun, 2012, 48, 7085-7087.
40. Hybrid Peptides: Direct Transformation of α/α, β-Unsaturated γ-Hybrid Peptides to α/γ-Hybrid Peptide 12-Helices; Bandyopadhyay, A., Gopi, H. N. Org. Lett., 2012, 14, 2270-2273.
39. Antiviral breadth and combination potential of peptide triazole HIV-1 entry inhibitors; McFadden, K., Fletcher, P., Rossi, F., Kantharaju, Umashankara, M., Pirrone, V., Rajagopal, S., Gopi, H., Krebs. F. C., Martin-Garcia, J., Shattock, R. J., Chaiken, I. Antimicrob Agents Chemother., 2012, 56, 1073-1080.
38. A facile transformation of amino acids to functionalized coumarins; Bandyopadhyay, A., Gopi, H. N. Org. Biomol. Chem., 2011, 9, 8089-8095.
37. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselectivity and their conformational analysis in peptides; Mali, S. M., Bandyopadhyay, A., Jadhav, S. V., Kumar, M. G., Gopi, H. N. Org. Biomol. Chem., 2011, 9, 6566-6574.
36. Synthesis and structural investigations of functionalizable hybrid β-hairpin; Bandyopadhyay, A., Mali, S.M., Lunawat, P., Raja, K. M., Gopi, H. N. Org. Lett., 2011, 13, 4482-4485.
35. A facile synthesis and crystallographic analysis of N-protected β-amino alcohols and short peptaibols; Jadhav, S. V., Bandyopadhyay, A., Benke, S. N, Mali, S. M., Gopi, H. N. Org. Biomol. Chem., 2011, 9, 4182-4187.
34. Tin(II) chloride assisted synthesis of N-protected γ-amino β-keto esters through semipinacol rearrangement; Bandyopadhyay, A., Agrawal, N., Mali, S. M., Jadhav, S. V., Gopi, H. N. Org. Biomol. Chem., 2010, 8, 4855-4860.
33. Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120 Gopi, H., Cocklin, S., Pirrone, V., McFadden, K., Tuzer, F., Zentner, I., Ajith, S., Baxter, S., Jawanda, N., Krebs, F. C. and Chaiken, I. M. J. Mol. Recognit., 2009, 22, 169-174.
32. Structure-based rationale for interleukin 5 receptor antagonism; Ishino, T., Harrington, A. E., Gopi, H., Chaiken, I. Curr. Pharm. Des., 2008, 14, 1231-1239.
31. Structural determinants for affinity enhancement of a dual antagonist peptide entry inhibitor of human immunodeficiency virus type-1; Gopi, H., Umashankara, M., Pirrone, V., LaLonde, J., Madani, N., Tuzer, F., Baxter, S., Zentner, I., Cocklin, S., Jawanda, N., Miller, S. R., Schön, A., Klein, J. C., Freire, E., Krebs, F. C., Smith, A. B., Sodroski, J. and Chaiken, I. J. Med. Chem., 2008, 51, 2638-2647.
30. Breadth of inhibition of the peptide HIV-1 entry inhibitor HNG-105; Cocklin, S., Gopi, H., Cicala, C., Baxter, S., Arthos, J., Wyatt, R. and Chaiken, I. M. J. Virol, 2007, 81, 3645-3648.
29. Recombinant Allosteric Lectin Antagonist of HIV-1 Envelope gp120 Interactions; McFadden, K., Cocklin, S., Gopi, H., Baxter, S., Shattock R. and Chaiken, I. Proteins, 2007, 67, 617-629.
28. Hybrid peptide hairpins containing α- and ω-amino acids: Conformational analysis of decapeptides with unsbstituted β, γ and δ-amino acids at positions 3 and 8; Roy, R. S., Gopi, H. N., Raghothama, S. R., Karle, I. L. and Balaram, P. Chemistry –A European Journal, 2006, 12, 3295-3302.
27. Copper(II) Click chemistry on azidoproline: High-affinity dual antagonist for HIV-1 envelope glycoprotein gp120; Gopi, H. N., Tirupula K.C., Baxter, S., Ajith, S. and Chaiken, I. M. ChemMedChem, 2006, 1, 54-57.
26. Peptide hairpins with strand segments containing α- and β-amino acid residues: Cross-strand aromatic interactions of facing Phe residues; Roy, R. S., Gopi, H. N., Raghothama, S. R., Gilardi, R. D., Karle, I. L. and Balaram, P. Biopolymers (Peptide Science), 2005, 80, 787-799.
25. An efficient synthesis of a probe for protein function: 2, 3- Diaminopropionic acid with orthogonal protecting groups; Englund, E. A., Gopi, H. N. and Appella, D. H. Org. Lett., 2004, 6, 213-215.
24. Proteolytic stability of b-peptide bonds probed using quenched fluorescent substrates incorporating a hemoglobin cleavage site; Gopi, H. N., Ravindra, G., Pal, P. P., Pattanaik, P., Balaram, H. and Balaram, P. FEBS Lett., 2003, 535, 175-178.
23. Stage-specific profiling of Plasmodium falciparum proteases using an internally quenched multispecificity protease substrate; Pattanaik, P., Jain, B., Ravindra, G., Gopi, H. N., Pal, P. P., Balaram, H. and Balaram, P. Biochem. Biophy. Res. Commun., 2003, 309, 979- 984.
22. Crystal structure of a hydrophobic 19-residue peptide helix containing three centrally located D-amino acids; Karle, I. L., Gopi, H. N. and Balaram, P. Proc. Natl. Acad. Sci., USA, 2003, 100, 13946-13951.
21. β-Hairpins generated from hybrid peptide sequences containing both α- and β-amino acids; Gopi, H. N., Roy, R. S., Raghothama, S. R., Karle, I. L. and Balaram, P. Helv. Chim. Acta, 2002, 85, 3313-3330.
20. A crystalline β-hairpin peptide nucleated by a type I’ Aib-DAla β-turn: Evidence for cross strand aromatic interactions; Aravinda, S., Shamala, N., Rajkisore, R., Gopi, H. N. and Balaram, P. Angew. Chem. Int., Ed., 2002, 41, 3863-3865.
19. Infinite pleated β-sheet formed by the β-hairpin Boc-βPhe-βPhe-DPro-Gly-βPhe-βPhe-OMe.; Karle, I. L., Gopi, H. N. and Balaram, P. Proc. Natl. Acad. Sci., USA, 2002, 99, 5160-5164.
18. Peptide hybrids containing α- and β-amino acids: Structure of a decapeptide β-hairpin with two facing β-phenylalanine residues; Karle, I. L., Gopi, H. N. and Balaram, P. Proc. Natl. Acad. Sci., USA, 2001, 98, 3716-3719.
17. Synthesis of alkyl and aryl esters of N-protected beta-homoamino acids from N-protected alpha-aminodiazoketones; Vasanthakumar, G., R, Gopi H. N, Suresh Babu V. V. Protein Peptide Letters, 2002, 9, 529-532.
16. Convenient and simple homologation of Nα-urethane protected α-amino acids to their β-homologues with concomitant o-nitrophenyl ester formation; Ananda, K., Gopi, H. N. and Suresh Babu, V. V. Ind. J. Chem., 2001, 40B, 790-795.
15. Convenient and efficient synthesis of Boc-/ Z- / Fmoc-β-amino acids employing protected α-amino acid fluorides; Mali Ananda, K., Gopi, H. N. and Suresh Babu, V. V. J. Pept. Res., 2000, 55, 295-299.
14. Zinc promoted simple synthesis of oligomer free Nα-Fmoc-amino acids using Fmoc -chloride as an acylating agent under neutral conditions; Gopi, H. N. and Suresh Babu, V. V. J. Pept. Res., 2000, 55, 295-299.
13. Synthesis of Boc- and Z-protected amino acid fluorides employing DAST as fluorinating agent; Suresh Babu, V. V., Gopi, H .N. and Ananda, K. Ind. J. Chem., 2000, 39B, 384-386.
12. Convenient and simple homologation of Nα-urethane protected α-amino acids to their β- homologues with concomitant pentafluorophenyl ester formation; Gopi, H. N. and Suresh Babu, V.V. Letters in Peptide Science, 2000, 7, 165-169.
11. Wolff rearrangement of N-protected α-aminodiazoketones in presence of substituted phenol as a method for the synthesis of 2, 4, 5-trichlorophenyl esters of Fmoc- /Boc- /Z- β-homoamino acids; Gopi, H. N., Ananda, K. and Suresh Babu, V. V. Protein and Peptide Letters., 2000, 7, 33- 36.
10. Homologation of α-amino acids to β-amino acids using Fmoc-amino acid pentafluorophenyl esters Suresh Babu, V. V. Gopi, H. N. and Ananda, K. J. Pept. Res., 1999, 58, 308-313.
9. Synthesis of β-amino acids using Boc-/Z-amino acid pentafluorophenyl esters; Suresh Babu, V. V. and Gopi, H. N. Letters in Peptide Science., 1999, 6, 173-178.
8. Fmoc-peptide acid chlorides in fragment coupling: Synthesis of β-casomorphin by 3+2 divergent approach; Suresh Babu, V. V., Gayathiri, K. and Gopi, H. N. Syn. Commun., 1999, 29, 79-91.
7. Zinc promoted simple synthesis of Z-amino acids under neutral conditions; Gopi, H. N., Ananda, K. and Suresh Babu, V. V. Protein and Peptide Letters., 1999, 6, 233- 236.
6. Rapid and efficient synthesis of peptide fragments containing α-amino isobutyric acid using Fmoc-amino acid chlorides/potassium salt of 1-hydroxybenzotriazole; Suresh Babu, V. V. and Gopi, H. N. Tetrahedron Lett., 1998, 39, 1049-1050.
5. Synthesis of peptides employing Fmoc –amino acid chlorides and commercial zinc dust; Gopi. H. N. and Suresh Babu, V. V. Tetrahedron Lett., 1998, 39, 9769-9770.
4. Synthesis of peptides mediated by potassium salt of 1-hydroxy-7-aza-benzotriazole; Gopi, H. N. and Suresh Babu, V.V. Ind. J. Chem., 1998, 37B, 394-396.
3. Fmoc-peptide acid chlorides: Preparation, characterization and utility in peptide synthesis; Gayathiri, K., Gopi, H. N. and Suresh Babu, V.V. Ind. J .Chem., 1998, 37B, 151-154.
2. Synthesis of [Leu5] enkephalin using Fmoc-amino acid chloride / KOAt; Gopi, H. N. and Suresh Babu, V. V. J. Ind. Chem. Soc., 1998, 75, 511-513.
1. Rapid and efficient synthesis of peptides containing α,α-dialkyl amino acids employing KOBt.; Ananda, K., Gopi, H. N. and Suresh Babu, V.V. Letters in Peptide Science., 1998, 5, 277- 283.
62. Non-classical Helices with cis Carbon-Carbon Double Bonds in the Backbone: Structural Features of α,γ-Hybrid Peptide Folamers; Kumar, M. G., Thombare, V. J., Katariya, M. M., Veeresh. K., Raja, K. M. P., Gopi, H. N. Angew. Chem. Int., Ed. 2016, 55, 7847-7851.
61. Structural Features and Molecular Aggregations of Designed Triple-Stranded β-Sheets in Single Crystals; Bandyopadhyay, A., Misra, R., Gopi, H. N. Chem Commun. 2016, 52, 4938-4941.
60. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery; Reja, R. M., Khan, M., Singh, S. K., Misra, R., Shiras, A., Gopi, H. N. Nanoscale, 2016, 8, 5139-5145.
59. γ- and β-Peptide Foldamers from Common Multifaceted Building Blocks: Synthesis and Structural Characterization; Kumar, M. G., Gopi, H. N. Org. Lett., 2015, 17, 4738-4741.
58. Engineering polypeptide folding through trans double bonds: transformation of miniature β-meanders to hybrid helices, Kumar; M. G., Benke, S. N., Raja, K. M., Gopi, H. N. Chem Commun. 2015, 51, 13397-13399.
57. Design of stable β-hairpin mimetics through backbone disulfide bonds; Kumar, M. G., Mali, S. M.,Raja, K. M., Gopi, H. N. Org. Lett., 2015, 17, 230-233.
56. Synthesis of Tetrasubstituted Symmetrical Pyrazines from β-Keto γ-Amino Esters: A Mild Strategy for Self-Dimerization of Peptides; Kumar, M. G., Thombare, V. J., Bhaisare, R. D., Adak, A., Gopi, H. N. Eur. J. Org. Chem. 2015, 1, 135-141.
55. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices; Jadhav, S. V., Misra, R., Gopi, H. N. Chem. -Eur. J. 2014, 20, 16523-16528. (Selected as Very Important Paper)
54. HBTU mediated 1-hydroxybenzotriazole (HOBt) conjugate addition: synthesis and stereochemical analysis of β-benzotriazole N-oxide substituted γ-amino acids and hybrid peptides; Mali, S.M., Kumar, M. G., Katariya, M. M., Gopi, H. N. Org. Biomol. Chem. 2014, 12, 8462-8472.
53. Thioacetic acid/NaSH-mediated synthesis of N-protected amino thioacids and their utility in peptide synthesis; Mali, S. M., Gopi, H.N. J. Org. Chem. 2014, 79, 2377-2383.
52. Exploring β-Hydroxy γ-Amino Acids (Statines) in the Design of Hybrid Peptide Foldamers; Bandyopadhyay, A., Malik, A., Kumar, M. G., Gopi, H. N. Org. Lett., 2014, 16, 294-297.
51. γ-Amino acid mutated α- coiled coils as mild thermal triggers for liposome delivery; Jadhav, S. V., Singh, S. K., Reja, R. M., Gopi, H. N. Chem Commun. 2013, 49, 11065-11067.
50. Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides; Shankar, S. S., Benke, S. N., Nagendra, N., Srivastava, P. L., Thulasiram, H.V., Gopi, H. N. J. Med. Chem. 2013, 56, 8468-8474.
49. Efficient access to enantiopure γ4-residues with proteinogenic side chains and structural investigation of γ4-Asn and γ4-Ser in hybrid peptide helices; Jadhav, S. V., Misra, R., Singh, S. K., Gopi, H. N. Chem. -Eur. J. 2013, 19, 5955.
48. Remarkable Thermoresponsive Nanofibers from γ- Peptides; Jadhav, S. V., Gopi, H. N. Chem Commun. 2013, 49, 9179-9181.
47. Thioacids Mediated Selective and Mild N-Acylation of Amines; Mali, S. M., Bhaisare, R. D., Gopi, H. N. J. Org. Chem. 2013, 78, 5550-5555.
46. A designed three-stranded β-sheet in an α/β hybrid peptide; Sonti, R., Gopi, H. N., Muddegowda, U., Ragothama, S., Balaram, P. Chem. Eur. –J. 2013, 19, 5955-5965.
45. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides; Kumar, M. G., Mali, S. M., Gopi, H. N. Org. Biomol. Chem. 2013, 11, 803-813.
44. Protein secondary structure mimetics: Crystal conformations of α/γ4-hybrid peptide 12-helices with proteinogenic side chains and their analogy with α-and β-peptide helices; Jadhav, S. J., Bandyopadhyay, A., Gopi, H. N. Org. Biomol. Chem. 2013, 11, 509-514.
43. Thiazole-Carbonyl Interactions: A Case Study Using Phenylalanine Thiazole Cyclic Tripeptides; Mali, S. M., Schneider, T. F., Bandyopadhyay, A., Jadhav, S. J., Werz, D. B., Gopi, H. N. Cryst. Growth Des. 2012, 12, 5643-5648.
42. α/γ4-Hybrid peptide helices: synthesis, crystal conformations and analogy with the α-helix; Bandyopadhyay, A., Jadhav, S. V., Gopi, H. N. Chem. Commun, 2012, 48, 7170 –7172.
41. Copper(II) mediated facile and ultra fast peptide synthesis in methanol; Mali, S. M., Jadhav, S. V., Gopi, H. N. Chem. Commun, 2012, 48, 7085-7087.
40. Hybrid Peptides: Direct Transformation of α/α, β-Unsaturated γ-Hybrid Peptides to α/γ-Hybrid Peptide 12-Helices; Bandyopadhyay, A., Gopi, H. N. Org. Lett., 2012, 14, 2270-2273.
39. Antiviral breadth and combination potential of peptide triazole HIV-1 entry inhibitors; McFadden, K., Fletcher, P., Rossi, F., Kantharaju, Umashankara, M., Pirrone, V., Rajagopal, S., Gopi, H., Krebs. F. C., Martin-Garcia, J., Shattock, R. J., Chaiken, I. Antimicrob Agents Chemother., 2012, 56, 1073-1080.
38. A facile transformation of amino acids to functionalized coumarins; Bandyopadhyay, A., Gopi, H. N. Org. Biomol. Chem., 2011, 9, 8089-8095.
37. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselectivity and their conformational analysis in peptides; Mali, S. M., Bandyopadhyay, A., Jadhav, S. V., Kumar, M. G., Gopi, H. N. Org. Biomol. Chem., 2011, 9, 6566-6574.
36. Synthesis and structural investigations of functionalizable hybrid β-hairpin; Bandyopadhyay, A., Mali, S.M., Lunawat, P., Raja, K. M., Gopi, H. N. Org. Lett., 2011, 13, 4482-4485.
35. A facile synthesis and crystallographic analysis of N-protected β-amino alcohols and short peptaibols; Jadhav, S. V., Bandyopadhyay, A., Benke, S. N, Mali, S. M., Gopi, H. N. Org. Biomol. Chem., 2011, 9, 4182-4187.
34. Tin(II) chloride assisted synthesis of N-protected γ-amino β-keto esters through semipinacol rearrangement; Bandyopadhyay, A., Agrawal, N., Mali, S. M., Jadhav, S. V., Gopi, H. N. Org. Biomol. Chem., 2010, 8, 4855-4860.
33. Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120 Gopi, H., Cocklin, S., Pirrone, V., McFadden, K., Tuzer, F., Zentner, I., Ajith, S., Baxter, S., Jawanda, N., Krebs, F. C. and Chaiken, I. M. J. Mol. Recognit., 2009, 22, 169-174.
32. Structure-based rationale for interleukin 5 receptor antagonism; Ishino, T., Harrington, A. E., Gopi, H., Chaiken, I. Curr. Pharm. Des., 2008, 14, 1231-1239.
31. Structural determinants for affinity enhancement of a dual antagonist peptide entry inhibitor of human immunodeficiency virus type-1; Gopi, H., Umashankara, M., Pirrone, V., LaLonde, J., Madani, N., Tuzer, F., Baxter, S., Zentner, I., Cocklin, S., Jawanda, N., Miller, S. R., Schön, A., Klein, J. C., Freire, E., Krebs, F. C., Smith, A. B., Sodroski, J. and Chaiken, I. J. Med. Chem., 2008, 51, 2638-2647.
30. Breadth of inhibition of the peptide HIV-1 entry inhibitor HNG-105; Cocklin, S., Gopi, H., Cicala, C., Baxter, S., Arthos, J., Wyatt, R. and Chaiken, I. M. J. Virol, 2007, 81, 3645-3648.
29. Recombinant Allosteric Lectin Antagonist of HIV-1 Envelope gp120 Interactions; McFadden, K., Cocklin, S., Gopi, H., Baxter, S., Shattock R. and Chaiken, I. Proteins, 2007, 67, 617-629.
28. Hybrid peptide hairpins containing α- and ω-amino acids: Conformational analysis of decapeptides with unsbstituted β, γ and δ-amino acids at positions 3 and 8; Roy, R. S., Gopi, H. N., Raghothama, S. R., Karle, I. L. and Balaram, P. Chemistry –A European Journal, 2006, 12, 3295-3302.
27. Copper(II) Click chemistry on azidoproline: High-affinity dual antagonist for HIV-1 envelope glycoprotein gp120; Gopi, H. N., Tirupula K.C., Baxter, S., Ajith, S. and Chaiken, I. M. ChemMedChem, 2006, 1, 54-57.
26. Peptide hairpins with strand segments containing α- and β-amino acid residues: Cross-strand aromatic interactions of facing Phe residues; Roy, R. S., Gopi, H. N., Raghothama, S. R., Gilardi, R. D., Karle, I. L. and Balaram, P. Biopolymers (Peptide Science), 2005, 80, 787-799.
25. An efficient synthesis of a probe for protein function: 2, 3- Diaminopropionic acid with orthogonal protecting groups; Englund, E. A., Gopi, H. N. and Appella, D. H. Org. Lett., 2004, 6, 213-215.
24. Proteolytic stability of b-peptide bonds probed using quenched fluorescent substrates incorporating a hemoglobin cleavage site; Gopi, H. N., Ravindra, G., Pal, P. P., Pattanaik, P., Balaram, H. and Balaram, P. FEBS Lett., 2003, 535, 175-178.
23. Stage-specific profiling of Plasmodium falciparum proteases using an internally quenched multispecificity protease substrate; Pattanaik, P., Jain, B., Ravindra, G., Gopi, H. N., Pal, P. P., Balaram, H. and Balaram, P. Biochem. Biophy. Res. Commun., 2003, 309, 979- 984.
22. Crystal structure of a hydrophobic 19-residue peptide helix containing three centrally located D-amino acids; Karle, I. L., Gopi, H. N. and Balaram, P. Proc. Natl. Acad. Sci., USA, 2003, 100, 13946-13951.
21. β-Hairpins generated from hybrid peptide sequences containing both α- and β-amino acids; Gopi, H. N., Roy, R. S., Raghothama, S. R., Karle, I. L. and Balaram, P. Helv. Chim. Acta, 2002, 85, 3313-3330.
20. A crystalline β-hairpin peptide nucleated by a type I’ Aib-DAla β-turn: Evidence for cross strand aromatic interactions; Aravinda, S., Shamala, N., Rajkisore, R., Gopi, H. N. and Balaram, P. Angew. Chem. Int., Ed., 2002, 41, 3863-3865.
19. Infinite pleated β-sheet formed by the β-hairpin Boc-βPhe-βPhe-DPro-Gly-βPhe-βPhe-OMe.; Karle, I. L., Gopi, H. N. and Balaram, P. Proc. Natl. Acad. Sci., USA, 2002, 99, 5160-5164.
18. Peptide hybrids containing α- and β-amino acids: Structure of a decapeptide β-hairpin with two facing β-phenylalanine residues; Karle, I. L., Gopi, H. N. and Balaram, P. Proc. Natl. Acad. Sci., USA, 2001, 98, 3716-3719.
17. Synthesis of alkyl and aryl esters of N-protected beta-homoamino acids from N-protected alpha-aminodiazoketones; Vasanthakumar, G., R, Gopi H. N, Suresh Babu V. V. Protein Peptide Letters, 2002, 9, 529-532.
16. Convenient and simple homologation of Nα-urethane protected α-amino acids to their β-homologues with concomitant o-nitrophenyl ester formation; Ananda, K., Gopi, H. N. and Suresh Babu, V. V. Ind. J. Chem., 2001, 40B, 790-795.
15. Convenient and efficient synthesis of Boc-/ Z- / Fmoc-β-amino acids employing protected α-amino acid fluorides; Mali Ananda, K., Gopi, H. N. and Suresh Babu, V. V. J. Pept. Res., 2000, 55, 295-299.
14. Zinc promoted simple synthesis of oligomer free Nα-Fmoc-amino acids using Fmoc -chloride as an acylating agent under neutral conditions; Gopi, H. N. and Suresh Babu, V. V. J. Pept. Res., 2000, 55, 295-299.
13. Synthesis of Boc- and Z-protected amino acid fluorides employing DAST as fluorinating agent; Suresh Babu, V. V., Gopi, H .N. and Ananda, K. Ind. J. Chem., 2000, 39B, 384-386.
12. Convenient and simple homologation of Nα-urethane protected α-amino acids to their β- homologues with concomitant pentafluorophenyl ester formation; Gopi, H. N. and Suresh Babu, V.V. Letters in Peptide Science, 2000, 7, 165-169.
11. Wolff rearrangement of N-protected α-aminodiazoketones in presence of substituted phenol as a method for the synthesis of 2, 4, 5-trichlorophenyl esters of Fmoc- /Boc- /Z- β-homoamino acids; Gopi, H. N., Ananda, K. and Suresh Babu, V. V. Protein and Peptide Letters., 2000, 7, 33- 36.
10. Homologation of α-amino acids to β-amino acids using Fmoc-amino acid pentafluorophenyl esters Suresh Babu, V. V. Gopi, H. N. and Ananda, K. J. Pept. Res., 1999, 58, 308-313.
9. Synthesis of β-amino acids using Boc-/Z-amino acid pentafluorophenyl esters; Suresh Babu, V. V. and Gopi, H. N. Letters in Peptide Science., 1999, 6, 173-178.
8. Fmoc-peptide acid chlorides in fragment coupling: Synthesis of β-casomorphin by 3+2 divergent approach; Suresh Babu, V. V., Gayathiri, K. and Gopi, H. N. Syn. Commun., 1999, 29, 79-91.
7. Zinc promoted simple synthesis of Z-amino acids under neutral conditions; Gopi, H. N., Ananda, K. and Suresh Babu, V. V. Protein and Peptide Letters., 1999, 6, 233- 236.
6. Rapid and efficient synthesis of peptide fragments containing α-amino isobutyric acid using Fmoc-amino acid chlorides/potassium salt of 1-hydroxybenzotriazole; Suresh Babu, V. V. and Gopi, H. N. Tetrahedron Lett., 1998, 39, 1049-1050.
5. Synthesis of peptides employing Fmoc –amino acid chlorides and commercial zinc dust; Gopi. H. N. and Suresh Babu, V. V. Tetrahedron Lett., 1998, 39, 9769-9770.
4. Synthesis of peptides mediated by potassium salt of 1-hydroxy-7-aza-benzotriazole; Gopi, H. N. and Suresh Babu, V.V. Ind. J. Chem., 1998, 37B, 394-396.
3. Fmoc-peptide acid chlorides: Preparation, characterization and utility in peptide synthesis; Gayathiri, K., Gopi, H. N. and Suresh Babu, V.V. Ind. J .Chem., 1998, 37B, 151-154.
2. Synthesis of [Leu5] enkephalin using Fmoc-amino acid chloride / KOAt; Gopi, H. N. and Suresh Babu, V. V. J. Ind. Chem. Soc., 1998, 75, 511-513.
1. Rapid and efficient synthesis of peptides containing α,α-dialkyl amino acids employing KOBt.; Ananda, K., Gopi, H. N. and Suresh Babu, V.V. Letters in Peptide Science., 1998, 5, 277- 283.
1. “Dual Inhibitors of HIV-1 gp-120 interactions”; Gopi, H. N. and Chaiken, I. M. US Patent Publication No. 20100099188 April, 2010