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Lecture 1

Introduction to Molecules and the
Born–Oppenheimer Approximation

1.1 Introduction

In these 8 lectures we will look at the physics of diatomic molecules and of laser systems. I would be very
grateful if any errors or unclear passages could be brought to my attention (email: simon.hooker@physics.ox.ac.uk).

1.1.1 Recommended books on diatomic molecules

• H. Haken and H. C. Wolf, ‘Molecular Physics and Elements of Quantum Chemistry.’ Covers our
syllabus, and much else besides.

• J. M. Brown, ‘Molecular Spectroscopy.’ A useful brief introduction.

• Bransden & Joachain, ‘Physics of Atoms and Molecules.’ Well beyond the level required. Chapters 10
and 11 (particularly sections 10.1 - 10.4, and 11.1 - 11.3) contain useful information for this course.

1.1.2 Recommended books on laser physics

• S. M. Hooker & C. E. Webb, ‘Laser Physics,’ Oxford University Press (2010). You can make up your
own mind about this . . .

• C.C. Davies, ‘Lasers and Electro-Optics: Fundamentals and Engineering,’ Cambridge University Press
(1996). Very readable, clear diagrams, excellent coverage of nearly all of the course material at about
the right level.

• O. Svelto, ‘Principles of Lasers,’ Plenum Press, Fourth Edition (1998). Readable, good coverage of
material at about the right level.

1.1.3 Initial observations

A diatomic molecule is formed from two atoms or ions. As we bring two atoms or ions closer together, the
electrons in closed shells will usually remain in closed shells and we therefore only need worry about the va-
lence electrons. At separations characteristic of a molecule, the valance electrons are often no longer uniquely
associated with one atom or the other, and instead are distributed throughout the molecule. The distribution
of the electrons within the molecule will determine whether or not the molecule remains bound and, if so,
the characteristics of the molecular state; these include, the equilibrium separation of the constituent atoms,
the absorption frequencies, and the energy required to dissociate the molecule.

1.1.4 Orders of magnitude

We will need to consider the following interactions:

• Electron-nuclear interaction:

− ZAe
2

4πε0 |r −RA|

1



2 LECTURE 1. INTRODUCTION TO MOLECULES

• Electron-electron interaction:
e2

4πε0 |r1 − r2|

• Nuclear-nuclear interaction:
ZAZBe

2

4πε0 |RA −RB|

Since the nuclear-nuclear, electron-nuclear and electron-electron separations are similar, the interactions
above have approximately the same magnitude. Hence the forces between electrons and nuclei are also
similar. However, since the masses of the nuclei are much greater than the electron mass, the velocities of
the nuclei are much lower than those of electrons. This fact will lead to a great simplification, known as the
Born-Oppenheimer approximtion.

Electronic energy

Suppose that the valence electrons of the molecule are confined to a region of size a. From the Uncertainty
Principle,

∆p ≈ ~
a
. (1.1)

Since the mean momentum must be zero, we have,

p2 ≈
(
~
a

)2

. (1.2)

We expect the electronic energy of the molecule, Ee, to be of the order of the kinetic energy of the electrons
and hence,

Ee ≈
p2

2m
=

~2

2ma2
. (1.3)

If we take a ≈ 2a0 ≈ 1 × 10−10 m, we find Ee ≈ 4 eV ≈ 30, 000 cm−1. Hence we expect the electronic
levels of molecules to have energies of several eV, or tens of thousands of wavenumbers (in units of cm−1),
just as in atoms.

The timescale of the electronic motion can be estimated as h/Ee, which is of order 1 fs.

Vibrational energy

The potential energy of vibrational motion has the form,

U(x) = (1/2)µω2
vx

2, (1.4)

where µ = MAMB/(MA +MB) is the reduced nuclear mass (we will return to this). Now, the molecule
will dissociate for extensions of order a, i.e. U(a) ≈ Ee. Hence,

U(a) ≈ Ee

⇒ 1

2
µω2

va
2 ≈ ~2

2ma2

⇒ ωv ≈

√
~2

µma4
.

We then find,

Ev ≈ ~ωv ≈
√
m

µ
Ee. (1.5)

Hence we conclude that vibrational energies are smaller than the electronic energy by a factor of order√
m/µ, i.e. about a factor of 100 smaller.
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Motion Energy Energy Period Spectral region
(cm−1)

Electronic 10 eVs 50,000 1 fs visible - ultraviolet
Vibrational 100 meV 1000 100 fs infra-red
Rotational 1 meV 10 10 ps far infra-red & microwave

Table 1.1: Orders of magnitude of the energies and time-scales of the electronic, vibrational, and rotational
motion of diatomic molecules.

Rotational energy

To estimate the energy associated with rotational motion we note that the angular momentum of the rotating
molecule is expected to be of order ~. Hence L = Iωr ≈ ~, where I = µa2 is the moment of inertia for
rotation about an axis passing through the centre of mass and perpendicular to the inter-nuclear axis. Hence,

Iωr = µa2ωr ≈ ~

⇒ ωr ≈
~
I

=
~
µa2

From this we deduce that the rotational energy is given by,

Er =
1

2
Iω2

r =
~2

2I
=

~2

µa2
≈ m

µ
Ee, (1.6)

i.e. another factor
√
m/µ smaller than the vibrational energy.

Hence, to summarize this section:

Ee � Ev � Er

Te � Tv � Tr

Table 1.1 presents typical values for the energies and timescales associated with the electronic, vibrational,
and rotational motion of diatomic molecules.

1.2 The molecular hydrogen ion

In order to develop a more quantitative understanding we will consider the simplest possible diatomic
molecule: the molecular hydrogen ion, comprising a pair of protons and a single electron. The co-ordinate
system we will use is illustrated in Fig. 1.1.

We will simplify things even further by considering the nuclei to be fixed in space. As such we will only
investigate the motion of the electrons in the fields of the nuclei, and we will ignore the vibrational and
rotational motion of the nuclei.

The Hamiltonian of the system is:

Ĥ = − ~2

2m
∇2
r −

e2

4πε0 |r −RA|
− e2

4πε0 |r −RB|
+

e2

4πε0 |R|
, (1.7)

RA

O

RB

R

r

rB
rA

e-

A

B

Figure 1.1: Co-ordinate system used to solve the Schrödinger equation for the molecular hydrogen ion
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where R = RA −RB.
Unusually for diatomic molecules this can be solved exactly (using confocal elliptic coordinates1). How-

ever it is more instructive to use a variational method since this is also used to solve more complicated
molecules.

We wish to solve,

Ĥψ(RA,RB , r) = E(R)ψ(RA,RB , r). (1.8)

At large internuclear separation R we expect that the electron will be associated with one nucleus or the
other. Hence

ψ(RA,RB , r)→ φ1s(r −RA) ≡ φ1s(rA) or ψ(RA,RB , r)→ φ1s(r −RB) ≡ φ1s(rB), (1.9)

where we have introduced the notation r−RA ≡ rA. It is clear that the two limiting wave functions above
are degenerate in energy.

We also note that inversion of the electron coordinates through the centre of mass (i.e. the midpoint
of the internuclear axis) leaves the Hamiltonian unchanged. This fact, and eqn (1.9) suggest that we form
even (known as “gerade”) and odd (known as “ungerade”) combinations of the two single-atom wave
functions:

ψg,u(RA,RB , r) = φ1s(r −RA)± φ1s(r −RB). (1.10)

These combinations, ψg,u(R, r), are not exact solutions of the Schrödinger equation, but they are sensible
trial wave functions which behave correctly in the limit of large internuclear separation and, as required,
have a definite inversion symmetry for all R.

We can now evaluate the energy,

E(R) <
〈ψ| Ĥ |ψ〉
〈ψ| ψ〉

. (1.11)

By the Ritz variational principle the ground state energy must be less than or equal to this value. Since
the wave functions φ1s(r −RA) and φ1s(r −RB) are known, then eqn (1.11) can be evaluated to give an
upper bound for the ground-state electronic energy as a function of the internuclear separation R. In practice
the required integrals are cumbersome, so here we will outline the key steps and draw some general solutions
from the results.

1.2.1 Evaluating E(R)

The denominator

Considering first the denominator, which we will call D, on substituting for ψg,u we find,

D = 〈φ1s(rA)± φ1s(rB) |φ1s(rA)± φ1s(rB)〉
= 〈φ1s(rA) |φ1s(rA)〉+ 〈φ1s(rB) |φ1s(rB)〉 ± 〈φ1s(rA) |φ1s(rB)〉 ± 〈φ1s(rB) |φ1s(rA)〉 .

Now,

〈φ1s(rA) |φ1s(rA)〉 = 〈φ1s(rB) |φ1s(rB)〉 = 1 (1.12)

and we define,

I(R) = 〈φ1s(rA) |φ1s(rB)〉 = (〈φ1s(rB) |φ1s(rA)〉)∗ . (1.13)

We may then write the denominator in the form:

D = 2 [1±< [I(R)]] . (1.14)

1If you are interested, see Bransden and Joachain
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The numerator

Substituting for ψg,u(R, r) we find that the numerator becomes,

〈φ1s(rA)± φ1s(rB)| Ĥ |φ1s(rA)± φ1s(rB)〉 = HAA +HBB ±HAB ±HBA (1.15)

= 2 [HAA ±< (HAB)] , (1.16)

which follows since HAA = HBB and HAB = H∗BA.
Hence we have,

E(R) ≤ HAA ±< (HAB)

1±< [I(R)]
. (1.17)

Evaluation of integrals

Let us first evaluate HAA and HAB . To do this we note that,

Ĥφ1s(rA) =

{
− ~2

2m
∇2
r −

e2

4πε0 |r −RA|

}
φ1s(rA) +

[
− e2

4πε0 |r −RB |
+

e2

4πε0R

]
φ1s(rA). (1.18)

Now, the term in curly brackets is the Hamiltonian for a hydrogen atom formed by the electron orbiting
nucleus A. Consequently we may write,

Ĥφ1s(rA) = E1sφ1s(rA) +

[
− e2

4πε0 |r −RB |
+

e2

4πε0R

]
φ1s(rA), (1.19)

where E1s is the ground-state energy of the hydrogen atom. Hence we have,

HAA = E1s + 〈φ1s(rA)| − e2

4πε0 |r −RB |
+

e2

4πε0R
|φ1s(rA)〉 (1.20)

= E1s +
e2

4πε0R
+ J (R), (1.21)

where,

J (R) = −
∫
φ1s(rA)∗

e2

4πε0 |r −RB |
φ1s(rA)dr (1.22)

=

∫
(−e) |φ1s(rA)|2 e

4πε0rB
dr (1.23)

=

∫
ρ(rA)

e

4πε0rB
dr. (1.24)

The integral J is known as the direct integral. Since ρ(rA) = (−e) |φ1s(rA)|2 is the charge density of a 1s
electron associated with nucleus A, we can see that the direct integral is simply the energy of the electrostatic
interaction between nucleus B and the hydrogen atom formed by a 1s electron orbiting nucleus A.

To evaluate HAB we note that form eqn (1.19),

Hφ1s(rB) = E1sφ1s(rB) +

[
− e2

4πε0 |r −RA|
+

e2

4πε0R

]
φ1s(rB). (1.25)

Hence,

HAB = 〈φ1s(rA)|E1s +
e2

4πε0R
|φ1s(rB)〉+K(R).

where,

K(R) = −〈φ1s(rA)| e2

4πε0rA
|φ1s(rB)〉 =

∫
[−eφ1s(rA)∗φ1s(rB)]

e

4πε0rA
dr. (1.26)

This is an exchange integral and it has no classical analogue. Note however, that the direct and exchange
integrals which appear in this treatment of the hydrogen ion are analogous to the direct and exchange
integrals arising in the treatment of the helium atom.
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2 4 6 8
R / a0 

0.1

0.0

0.2

0.3

0.4

0.5

0.6

-0.1(E
g,
u(
R
) 

- 
E

1
s)

 /
 (
e2

/4
π
ε

0
a 0

)
(a)

-3 -2 -1 0 1 2 3

z /a0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-3 -2 -1 1 2 3

z /a0

-0.5

0.5

Ψg,u(z)
|Ψg,u(z)|2

(b)

Figure 1.2: Calculated energy curves and wave functions for theH+
2 ion. (a) Energy curves Eg,u(R) calculated

from eqn (1.29). (b) The wave functions ψg,u(z) and |ψg,u(z)|2 plotted as a function of the distance z along
the nuclear axis for an internuclear separation R = 3a0, where a0 is the Bohr radius.

Form of potential energy curve

The integrals I(R), J (R), and K(R) can be evaluated upon substitution of the hydrogenic wave functions:

φ1s(rA) =

(
1

πa3
0

1/2
)

exp(−rA/a0). (1.27)

On doing this, and evaluating some tricky integrals, it is found that

Eg,u(R) ≤ E1s +
e2

4πε0R
+
J (R)±K(R)

1± I(R)
(1.28)

≤ E1s +
e2

4πε0R

(1 +R′) exp(−2R′)±
(
1− 2

3R
′2) exp(−R′)

1±
(
1 +R′ + 1

3R
′2
)

exp(−R′)
(1.29)

where R′ = R/a0. Figure 1.2(a) shows Eg,u(R) as a function of the internuclear separation R. We note
several key features:

• At large R both curves tend to E1s, the energy of a H atom in the ground state

• The even-parity state (‘g’) exhibits a minimum, i.e. it is bound. The corresponding wave function is
known as a bonding orbital.

• The odd-parity state does not possess a minimum, and forms instead a repulsive curve. The associated
wave function is an anti-bonding orbital. An H+

2 molecule in this state will rapidly dissociate,
converting the potential energy E(R) to kinetic energy of the constituents; at large R these will be a
hydrogen atom and a proton.

The differences in the potential curves may be understood by considering the form of the wave functions
ψg,u(z), which are plotted in Fig. 1.2(b). We see that ψg has a larger amplitude in the region between the
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two nuclei and hence an electron in this state has a relatively high probability of being between the nuclei.
When it is between the nuclei the electron interacts strongly with both nuclei, leading to strong binding. In
contrast, an electron in ψu has a distinctly lower probability of being between the nuclei — partly because
the wave function has a node at the centre of mass — and as a consequence we expect that the average
potential energy of electrons in this state will be less negative than for the gerade state.

This is the usual explanation given to explain the difference in energies between the two states. However,
other effects can play a role. In particular the spatial extent of the wave functions can differ; this means
that the kinetic energy of the state will be different, since the kinetic energy operator depends on the spatial
derivatives of the wave function. When deciding which states are more strongly bound, differences in both
the kinetic and potential energies of the states must be accounted for.2

2For details, see section 8.2, Atkins & Friedman, ‘Molecular Quantum Mechanics’ OUP.
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Lecture 2

The Born–Oppenheimer
Approximation

2.1 The Born-Oppenheimer approximation

Neglecting spin-orbit, spin-spin interactions etc, the Hamiltonian of a diatomic molecule can be written as,

Ĥ = T̂n + T̂e + V, (2.1)

where T̂n is the kinetic energy of the nuclei, T̂e the kinetic energy of the electrons, V is the potential energy.
Writing these out:

T̂n = − ~2

2M1
∇2
RA
− ~2

2M2
∇2
RB

KE of nuclei

T̂e =
∑
i

− ~2

2mi
∇2
ri KE of electrons

V =
∑
i

− Z1e
2

4πε0 |ri −RA|
− Z2e

2

4πε0 |ri −RB|
electron-nuclear interaction

+
∑
i

∑
j>i

e2

4πε0 |ri − rj |
electron-electron repulsion

+
Z1Z2e

2

4πε0 |RA −RB|
nuclear repulsion.

In the above equations the origin of co-ordinates is fixed in the laboratory, as shown in Fig. 2.1(a). If we
move the origin to the centre of mass of the two nuclei then the operator T̂n becomes,

T̂n = − ~2

2µ
∇2
R, (2.2)

where R = RA −RB, and the reduced mass is given by,

1

µ
=

1

MA
+

1

MB
. (2.3)

Note that now T̂n is simply the kinetic energy operator of a single particle, of mass µ, with a position vector
R.1 Figure 2.1 shows the relation between the COM and lab co-ordinate systems.

We wish to solve the Schrödinger equation,

ĤΨ(R, r1, r2, . . . rN ) = EΨ(R, r1, r2, . . .). (2.4)

1We have ignored the mass of the electrons, which will be small compared to µ. We have also ignored the motion of the
centre of mass; including this leads to multiplication of the molecular wave function by a term of the form exp (iK ·Rs) where
~K and Rs are the momentum and position of the centre of mass. For further details see Haken & Wolf, section 11.1.1 or
Bransden & Joachain section 10.2

9
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RA

O

RB
R
r

rB
rA

e-

A

B

e- e-
e-

RA

RB

R

r

rB
rA

e-

A

B

e- e-
e-

R

mass m

Figure 2.1: Co-ordinate systems. (a) the lab co-ordinate system; (b) the centre of mass co-ordinate system;
(c) co-ordinates of a single particle of mass µ.

For convenience we will introduce the shorthand r ≡ r1, r2, . . . rN , so that the molecular wave function may
be written as Ψ(R, r).

First we remind ourselves of the Schrödinger equation for fixed nuclei :

Ĥeψe(R, r) =
[
T̂e + V (R, r)

]
ψe(R, r) = Ee(R)ψe(R, r), (2.5)

where Ĥe is the Hamiltonian for fixed nuclei.
The electrons move much faster than the nuclei and hence they can follow, essentially instantaneously,

the nuclei as they move. We will therefore attempt to find solutions which may be written in the form,

Ψ(R, r) = ψn(R)ψe(R, r),

i.e. a product of a nuclear wave function ψn(R) and the electronic wave function ψe(R, r). We now make
the Born–Oppenheimer approximation and assume that electronic wave function depends only very
weakly on the internuclear separation R = RA −RB. If we ignore the dependence of ψe(R, r) on R the
Schrödinger equation then simplifies to:2

[
T̂n + T̂e + V

]
ψn(R)ψe(R, r) = Eψn(R)ψe(R, r) (2.6)

⇒ ψeT̂nψn + ψn

[
T̂e + V

]
ψe = Eψnψe (2.7)

⇒ 1

ψn
T̂nψn +

{
1

ψe

[
T̂e + V

]
ψe

}
= E (2.8)

From the Schrödinger equation for fixed nuclei, we see that the term in curly brackets is equal to Ee(R),
and hence eqn (2.8) becomes,

[
T̂n + Ee(R)

]
ψn = Eψn. (2.9)

To summarize, we have reduced the problem to two Schrödinger equations:

Ĥeψe(R, r) = Ee(R)ψe(R, r). electronic wave equation[
T̂n + Ee(R)

]
ψn(R) = Eψn(R). nuclear wave equation

(2.10)

(2.11)

Within the Born–Oppenheimer approximation, therefore, the energy levels and wave functions of the
molecule may be found (at least in principle) as follows:

• The Schrödinger equation for electrons moving in the field of the fixed nuclei is solved, yielding the
electronic energy Ee(R). Notice that the electronic energy can only depend on the magnitude of the
nuclear separation, R. The electronic wave function ψe(R, r) will also depend on the orientation
of R through a straightforward rotation of coordinate system.

• The total energy of the molecule E is found by solving the Schrödinger equation for the nuclei moving
in the potential Ee(R). Solution to this problem will yield the nuclear wave function ψn(R).

2See Haken & Wolf section 11.1 for a demonstration that the neglected terms are indeed usually small.
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2.1.1 Solution of the nuclear wave equation

As we have seen, the electronic energy Ee(R) acts as potential in which the nuclei (represented by a single
particle of mass µ) move. The potential is spherically symmetric and hence, just as for atoms, we write:

ψn(R) = ψ′v(R)ψr(Θ,Φ). (2.12)

This gives the usual separation into an angular equation and a radial equation,

[
− ~2

2µ

1

R2

∂

∂R

(
R2 ∂

∂R

)
+
J(J + 1)~2

2µR2
+ Ee(R)

]
ψ′v(R) = Eψ′v(R) (2.13)

where J(J + 1)~2 is the angular momentum of the nuclei rotating about the centre of mass.
As in atomic physics we can write a reduced radial wave function,

ψv(R) = Rψ′v(R), (2.14)

so that the radial equation becomes,

[
− ~2

2µ

d2

dR2
+
J(J + 1)~2

2µR2
+ Ee(R)

]
ψv(R) = Eψv(R) (2.15)

⇒
[
− ~2

2µ

d2

dR2
+ Veff(R)

]
ψv(R) = Eψv(R) (2.16)

This is a simple, one-dimensional Schrödinger equation for a particle of mass µ moving in an effective
potential,

Veff = Ee(R) +
J(J + 1)~2

2µR2
. (2.17)

Approximations for Veff

For any bound state we can expand Ee(R):

Ee(R) = Ee(R0) +
dEe

dR

∣∣∣∣
R0

(R−R0) +
1

2

d2Ee

dR2

∣∣∣∣
R0

(R−R0)
2

+ . . . (2.18)

The second term must be zero since by definition the potential has a minimum at R = R0, and hence

Ee(R) ≈ Ee(R0) +
1

2
K (R−R0)

2
, (2.19)

where K is the spring constant of the bond.
We can also approximate the centrifugal repulsion term by its value at the equilibrium separation R0:

J(J + 1)~2

2µR2
≈ J(J + 1)~2

2µR2
0

=
J(J + 1)~2

2IM
= BrJ(J + 1), (2.20)

where Br = ~2/2IM is known as the rotational constant.
With these approximations the effective potential becomes,

Veff = Ee(R0) +BrJ(J + 1)~2 +
1

2
K (R−R0)

2
= const +

1

2
K (R−R0)

2
, (2.21)

i.e. a harmonic potential raised by a constant energy Ee(R0) +BrJ(J + 1)~2. The solution to eqn (2.15) is
therefore a set of vibrational wave functions identical to the usual 1D harmonic oscillator wave functions,
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ψv(x) =

(
α√
π2vv!

)1/2

Hv(αx) exp

[
− (αx)2

2

]
(2.22)

where α =

√
µωv
~
, (2.23)

and x = R−R0.
The total energy3 of the molecule is equal to the energy of a harmonic oscillator, raised by the energy

Ee(R0) +BrJ(J + 1):

E = Ee(R0) + (v + 1/2)~ωv +BrJ(J + 1) where v = 0, 1, 2, 3, . . . J = 0, 1, 2, 3, . . . (2.24)

where ωv =
√
K/µ is the vibrational constant.

Note that ωv and Br are in general different for different electronic states, since they depend on the
electronic potential energy curve.

2.1.2 Summary

In making the Born–Oppenheimer approximation we wrote the molecular wave function as a product of
an electronic and vibrational wave function. By assuming that the electronic wave function depends only
weakly on the nuclear separation, the Schrödinger equation for the molecule could be separated into an
electronic wave equation describing the electronic motion in the field of fixed nuclei, with eigenvalue Ee(R),
and a nuclear equation describing the motion of the nuclei in the potential Ee(R). Since the potential in
which the nuclei move is spherically symmetric, the nuclear wave functions could be written as a product of
angular and radial parts. Hence the total energy of the molecule is the sum of three terms: an electronic
energy, a vibrational energy, and a rotational energy. As we argued in lecture 1, these three contributions to
the energy are significantly different in order of magnitude, such that Ee � Ev �� Er; indeed the validity
of the Born–Oppenheimer approximation depends on this being so.

2.2 Electronic structure of diatomic molecules

We now consider the electronic wave function in more detail. We note first that for an atom, within the

central-field approximation
[
l̂2, Ĥ

]
= 0 and

[
l̂z, Ĥ

]
= 0. Hence l and ml are good quantum numbers, and

the atomic orbitals can be labelled by |nlmlms〉. Note that there is degeneracy in ml, ms.
Now imagine forming a molecule by bringing two atoms A and B together. For large R the electron

orbitals will correspond to those for the separate atoms; for small R the orbitals will tend to those of the
combined atom.4 Now, as R is decreased from large values:

• The spherical symmetry of the atomic potential is removed.

• An additional electric field develops, which is symmetric about the internuclear axis (an axis we will
call z).

• Some or all of the valence electrons become associated with both nuclei.

• Levels which were degenerate in the isolated atoms can split.

As a consequence of the loss of spherical symmetry, l is no longer a good quantum number in a molecule

(i.e.
[
l̂2, Ĥ

]
6= 0). However, lz, the component of l along the internuclear axis, does commute with the

Hamiltonian and hence ml remains a good quantum number. The energy of molecular orbitals depends on
the magnitude of ml since this affects the spatial distribution of charge relative to the two nuclei. However,
the energy is independent of the sign of ml since the energy of the orbital is independent of the direction
of rotation about the internuclear axis. As a consequence, for molecular orbitals we introduce the quantum
number,

λ = |ml| = 0, 1, 2, . . . . (2.25)

These orbitals are doubly-degenerate (apart from λ = 0).
Molecular orbitals and electronic states are labelled by the following code:

3In other words, the eigenvalue of eqn (2.16) with Veff(R) given by eqn (2.21).
4For example, for the H+

2 ion the molecular orbitals at small R must look like those of the He+ ion.
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l or λ or Λ
0 1 2 3 . . .

atoms s p d f . . .
mol. orbitals σ π δ φ . . .
Electronic states Σ Π ∆ Φ . . .

Note molecular orbitals are labelled (nl)λ, where nl is the orbital of the united atom (ie. combined
nuclei) OR λ(nl), where nl is the orbital of the electron in the separated atoms.

2.2.1 Electronic states in multi-electron molecules

Just as for atoms, electron-electron repulsion means that the z-component of orbital angular momentum of
each electron, l̂z, no longer commutes with the Hamiltonian. However, the z-component, L̂z, of the total
orbital angular momentum L̂ does. Hence for multi-electron molecules the electronic levels are labelled by
the total orbital angular momentum along the internuclear axis Λ = 0, 1, 2, . . .

It is worth noting that the coupling of the individual orbital angular momenta to the internuclear axis
is usually stronger than the coupling of the li to each other: in this case in the vector model the li precess
independently about the internuclear axis, and the possible values of Λ is given by the algebraic sum of the
values of lz (which can be positive or negative). Hence a pair of π electrons can yield Λ = 2 or Λ = 0, but
not Λ = 1.

As in atoms, we may also form the total spin S =
∑
i si. The electron spins do not couple to the electric

field along the internuclear axis, and hence the total spin is calculated in the same way it would be for an
atom. The energies of the electronic states depend on S for the same reasons it does in atoms: the spatial
distribution of the electrons depends on the symmetry of the spatial part of the wave function, which in turn
depends on the symmetry of the spin wave function since the total wave function must be antisymmetric
with respect to electron label exchange.

Electronic levels of multi-electron molecules are labelled: 2S+1Λ, similar to the labelling of terms in an
atom.

Note that we have not considered magnetic interactions, of which there are several. For example, the
motion of the electrons about the internuclear axis gives rise to a magnetic field along this axis, and to
which the electron spin can couple (i.e. a spin-orbit interaction). The rotation of the molecule also creates
a magnetic field. As a consequence the orbital angular momentum, electron spin, and nuclear rotation can
couple in numerous ways depending on the relative strengths of their interactions. These coupling schemes,
known as Hund’s cases, are beyond the level of the present course.

2.2.2 Symmetries of electronic states

For any diatomic molecule Ĥ is unaffected by a reflection of the coordinate system in a plane which contains
the internuclear axis. Let Ây be the operator for reflection in the plane y = 0. It can be shown that,

ÂyL̂z = −L̂zÂy (2.26)

⇒
[
ÂyL̂z

]
6= 0 if L̂z 6= 0. (2.27)

Hence we cannot form simultaneous eigenfunctions of Ây, L̂z, and Ĥ for states with Λ 6= 0. We therefore

choose to form simultaneous eigenfunctions of L̂z, and Ĥ, i.e. states labelled by Λ (or λ) and energy. However,
for σ states (λ = 0), simultaneous eigenfunctions can be formed, to give the following non-degenerate states:

σ+, σ− or Σ+,Σ−. (2.28)

Homonuclear molecules

Homonuclear molecules have an additional centre of symmetry at the centre of mass, i.e. Ĥ is not changed
under the parity operation ri → −ri. As we already saw for the case of the hydrogen molecular ion, in
homonuclear molecules the levels are labelled “g” (gerade) if the electronic wave function does not change
sign under the parity operator and “u” (ungerade) if the wave function does change of sign.

As an example of the labelling of electronic wave functions, and their associated potential curves, Fig.
2.2 shows the potential curves for the H2 molecule. Note that it is common for the lowest bound electronic
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(a) (b)
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10

E
/e
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Figure 2.2: Electronic potential curves of the H2 molecule. (a) The 1Σ+
g and 3Σ+

u potential curves arising
from the lowest-energy configuration, which at the limit of large R forms two ground-state hydrogen atoms.
The dashed and solid potential curves arise from different approximations used to calculate them. (b) The
ground and some of the excited electronic potential curves.

curve to be labelled “X”, and for the excited curves to be labelled “A”, “B”, “C” etc., but be aware that
this convention is not always followed.



Lecture 3

Radiative Transitions and Spin
Statistics

3.1 Radiative transitions in molecules

The rate of electric dipole transitions is proportional to,

|D21|2 =
∣∣∣〈Ψ′

∣∣∣−D · Ê0

∣∣∣Ψ′′〉∣∣∣2 , (3.1)

where (as is conventional in molecular physics) single and double primes indicate the upper and lower level

respectively, Ê0 is a unit vector pointing in the direction of the electric field of the radiation, and the dipole
operator is given by (we’ll leave the hat off the operator D since we will later use D̂ to indicate a unit vector
in the direction of D),

D = e

Z1RA + Z2RB −
∑
j

rj

 = Dn + De. (3.2)

We investigate this by writing out the integrals:

D21 =

∫ ∫
ψe′(R, r)ψn′(R)

[
D · Ê0

]
ψe′′(R, r)ψn′′(R)dτedτn

=

∫
ψn′(R)

{∫
ψe′(R, r)Dψe′′(R, r)dτe

}
· Ê0ψn′′(R)dτn,

It is useful first to consider the term in curly brackets:

Dε′,ε′′(R) =

∫
ψe′(R, r)Dψe′′(R, r)dτe (3.3)

≈Dε′,ε′′(R0) =

∫
ψe′(R0, r)Dψe′′(R0, r)dτe, (3.4)

where the approximation is valid because we expect the electronic wave function to be a slow function of R
(Born–Oppenheimer approximation).

We now have,

D21 ≈Dε′,ε′′(R0)

∫
ψ′n(R)

[
D̂ · Ê0

]
ψ′′n(R)dτn, (3.5)

where D̂ is the unit vector in the direction of Dε′,ε′′(R).

If we now substitute for the nuclear wave functions,

15
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D21 ≈Dε′,ε′′(R0)

∫
1

R
ψv′(R)

1

R
ψv′′(R)R2dR

∫
ψr′(Θ,Φ)

[
D̂ · Ê0

]
ψr′′(Θ,Φ) sin ΘdΘdΦ (3.6)

≈
electronic︷ ︸︸ ︷
Dε′,ε′′(R0)

Iv, vibl︷ ︸︸ ︷∫
ψv′(R)ψv′′(R)dR

Ir, rotational︷ ︸︸ ︷∫
ψr′(Θ,Φ)

[
D̂ · Ê0

]
ψr′′(Θ,Φ) sin ΘdΘdΦ, (3.7)

3.1.1 Transitions involving no change of electronic state

Transitions of this type are only observed in heteronuclear molecules, since for homonuclear molecules
Dε′,ε′′(R) = 0 because:

• Dn = 0, since RA = −RB

• De will give zero contribution since electronic wave functions have a definite parity.

There are two types of transitions which can occur with no change of electronic state.

Pure rotational transitions

For these transitions there is no change of vibrational state (as well as no change of electronic state). Hence
the integral Iv = 1 because the upper and lower vibrational wave functions are identical.

The strength of the transitions are therefore determined by the integral involving the rotational transi-
tions. The selection rules are found to be:

∆J = ±1. (3.8)

Note that for pure rotational transitions absorption correspond to ∆J = +1, and emission to ∆J = −1.
(For pure rotational transitions ∆J = 0 corresponds to no transition at all!)

Ro-vibrational transitions

Transitions may also occur when both the rotational and vibrational quantum numbers change (whilst the
electronic state of the two levels is the same).

If the Born-Oppenheimer approximation holds rigorously, then these transitions are forbidden since within
an electronic state the vibrational wave functions are orthogonal and hence Iv = 0. However, in practice
Dε′,ε′′(R) is not independent of R and instead,

Dε′,ε′′(R) = Dε′,ε′′(R0) +
dDε′,ε′′

dR

∣∣∣∣
R0

(R−R0) + . . . . (3.9)

This additional dependence on R−R0 introduces new terms proportional to:

∫
ψv′(R)(R−R0)ψv′′(R)dR (3.10)

which is non-zero for v′′ = v′ ± 1, corresponding to a selection rule ∆v = ±1. Higher-order terms in the
expansion of eqn (3.9) will give rise to transitions governed by selection rules ∆v = ±2, ∆v = ±3 etc. These
higher-order transitions will generally be weaker.

For Σ electronic states the selection rule for the rotational quantum number is ∆J = ±1. This leads to
two branches: the P-branch, for which ∆J = +1, and the R-branch, for which ∆J = −1. Here the sign
of ∆J is defined for the transition in emission, i.e. ∆J = J ′′ − J ′.

For electronic states with Λ 6= 0, ro-vibrational transitions with ∆J = 0 are allowed in addition to ∆J =
±1 transitions. These form a Q-branch lying between the P- and R-branches; the Q-branch transitions all
have the same frequency, determined by the difference in energy of the vibrational levels.
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Figure 3.1: Illustration of the Franck-Condon principle.

3.1.2 Change of electronic state

If the transition involves a change in electronic state then Dε′,ε′′(R) can be non zero for homonuclear
molecules as well as for heteronuclear molecules since the upper and lower electronic wave functions will be
different.

The selection rules may be deduced by considering eqn (3.7). Here we simply state them:

∆S = 0

∆Λ = 0,±1

∆J = 0,±1 but ∆J 6= 0 if Λ = Λ′ = 0

Σ+ → Σ+ and Σ− → Σ−

g→ u,

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

where the last two lines apply only to Σ states and homonuclear molecules respectively.
For transitions between a given pair of electronic levels, the strength of different vibrational bands —

i.e. different pairs of vibrational quantum number for the upper and lower level — depends on the Franck-
Condon factor qv′,v′′ where,

qv′,v′′ =

∣∣∣∣∫ ψv′(R)ψv′′(R)dR

∣∣∣∣2 , (3.16)

which follows directly from eqn (3.7). Note that now the vibrational wave functions belong to different
electronic states and hence the Franck-Condon factor is not necessarily zero.

The Franck-Condon principle says that the vibrational band will be strong if there is a large overlap of the
vibrational wave functions in the upper and lower levels, and will be weak if that is not the case. Figure 3.1
shows schematically how the Franck-Condon factors determine the relative strength of vibrational bands.
Imagine first absorption from the lower electronic level, which will occur predominantly from the lowest
vibrational level (v′′ = 0) since that will have by far the largest thermal population. The vibrational wave
function for the v′′ = 0 level will be Gaussian curve centred on the equilibrium internuclear separation, R0,
of the lower electronic level. If the two electronic levels had the same equilibrium internuclear separation, the
strongest overlap of the upper and lower level vibrational wave functions would occur for the v′ = 0← v′′ = 0
transition since the two v = 0 vibrational wave functions would comprise two Gaussian functions of similar
width centred at the same value of R0. However, Since the two electronic levels have different values of
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R0, the overlap of the vibrational wave functions is maximized (in this example) for the v′ = 2 ← v′′ = 0
transition since the peak of the lower vibrational wave function approximately coincides with the large peak
in the v′ = 2 vibrational wave function of the upper electronic state.

By a similar argument, emission from the v′ = 2 vibrational level will be dominated by transitions to
both the v′′ = 0 level and the v′′ = 5 level since the vibrational overlaps are large for both pairs of vibrational
wave functions. See Section 8.3.2 for another example of the Franck-Condon Principle.

Note that it is often said that the strongest vibrational bands occur for “vertical” transitions, i.e. transi-
tions for which R does not change, because the vibrational motion is “frozen” during the radiative transition.
However, this is not the case since the “duration” of the transition can be taken to be of the order of the
radiative lifetime of the transition, which is typically 10 - 100 ns, or longer. This is long compared to the
vibrational frequency, which is of the order of 100 fs.

3.2 Effect of nuclear spin

In atoms the coupling of the nuclear spin to the magnetic field generated by the spins and orbital motion
of the electrons causes hyperfine structure. The same phenomenon also occurs in molecules, leading to a
small splitting of energy levels. We will ignore this hyperfine structure and concentrate instead on a much
more profound effect which arises in homonuclear diatomic molecules because of the requirement that the
total wave function of the molecule must have a definite symmetry with respect to exchange of the nuclei.
In particular, if the nuclei are bosons the wave function must be symmetric with respect to exchange; if the
nuclei are fermions it must be antisymmetric.

Let the total molecular wave function be written as

Ψtot = Ψ(R, r)χN(1, 2), (3.17)

where Ψ(R, r) is the wave function of the molecule we have considered so far, including the electron spin,
and χN(1, 2) is the nuclear spin wave function.

Exchange of the nuclei corresponds to the operation R → −R. As shown in Fig. 3.2 the operation
R→ −R corresponds to:

• Rotation by 180◦ of the molecule about an axis normal to the internuclear axis. Let us call this rotation
axis y.

• Reflection in a plane containing the internuclear axis (i.e. y → −y).

• Inversion of electron co-ordinates (ri → −ri).

By considering these processes in turn it is easy to see that the electronic wave functions have the
following symmetry with respect to exchange of the nuclei:1

Symmetric: Λ−u ,Λ
+
g (3.18)

Antisymmetric: Λ−g ,Λ
+
u (3.19)

The vibrational wave function depends only on |R−R0| and so is unaltered by R→ −R. Similarly the
electronic spin wave function is unchanged by the operation R→ −R.

The rotational wave functions have the following symmetries:

Symmetric: J is even (3.20)

Antisymmetric: J is odd (3.21)

We can therefore summarize the symmetry properties of the wave function Ψ(R, r) as follows:
g+ g− u+ u−

J even S A A S
J odd A S S A

1Previously we argued that for Λ > 0 simultaneous eigenfunctions of the Hamiltonian, L̂z and Ây could not be formed.
It is beyond the present syllabus, but for completeness we note that interactions between the rotational and electronic motions
can lift the two-fold degeneracy of Λ > 0 levels to form states with definite reflection symmetry. In such cases the electronic
states are labelled as in eqns (3.18) and (3.19) even if Λ > 0. For example, magnetic interactions can form non-degenerate Π+

g ,

Π−g , Π+
u and Π−u states.
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Operation Effect on ψe

A B

1

2

1

2

rotate by π none

"+" states: no change

"-" states: change sign

"g" states: no change

"u" states: change sign

reflect in plane

containing inter-nuclear

axis

invert electrons

through COM

B A

B A

B A

1

2

1

2

Figure 3.2: Effect of exchange of nuclei on electronic wave functions.

These symmetry requirements lead to some profound effects, as discussed below.

3.2.1 Examples

Nuclei with I = 0

In this case the total molecular wave function must be symmetric with respect to exchange of the nuclei.
In addition, since I = 0, only one nuclear spin wave function exists — this is symmetric with respect to
exchange of nuclei. As a consequence, only half of the rotational levels can exist!

For example, 16O has a ground state of 3Σ−g , which is antisymmetric on exchange of nuclei. Hence
only rotational levels with odd J can exist ; even-J levels are missing. It is therefore found that alternate
transitions in the rotational fine structure are missing. However, if one of the nuclei is replaced by 17O, there
is no longer a requirement for the wave function to have a definite symmetry with respect to exchange of
nuclei, and the missing lines are restored.

Molecular hydrogen

As a second example we consider 1H2, which has I = 1/2 and hence can have a total nuclear spin T = 0 or
T = 1. Transitions between T = 0 and T = 1 states are extremely rare, and hence hydrogen behaves as if
there are two types of H2 molecule: “ortho-hydrogen” (T = 1) and “para-hydrogen” (T = 0).

The ground electronic state of H2 is Σ+
g and hence only the following combinations have the required

anti-symmetry with respect to exchange of the nuclei:

T = 0 : ‘para’ χA
N =

1√
2

[↑↓ − ↓↑] even J (3.22)

T = 1 : ‘ortho’ χS
N =


↑↑
1√
2

[↑↓ + ↓↑]
↓↑

odd J (3.23)

The statistical weight of ortho-hydrogen (T = 1) is 3 times that of para (T = 0), leading to a 3:1 ratio
of intensities in the rotational fine structure.

In general, for a diatomic molecule with identical nuclei of spin I, the intensities of the rotational fine
structure have a ratio of (I + 1)/I. This forms the basis of an important method of determining nuclear
spins.
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Lecture 4

Conditions for optical gain

4.1 Review of Einstein description

As you will have seen, the interaction of radiation and matter may be described by a semi-classical treatment.
Providing the linewidth of the transition is sufficiently large, and the intensity of the radiation is not too
high, the semi-classical treatment gives identical results to the Einstein treatment. In practice the Einstein
approach is found to be valid for the conditions found inside virtually all lasers, leading to the use of so-called
rate equations to describe the population densities in the energy levels of the laser.

Einstein considered two levels of an atom, an upper level of energy E2, and a lower level of energy
E1. He identified three processes by which radiation could interact with atoms in these levels. The first is
spontaneous emission, in which an atom in the upper level decays to the lower level by the emission of a
photon with energy ~ω21 = E2 − E1. The spontaneously emitted photon can be emitted in any direction.

The second and third processes are absorption, in which an atom in the lower level is excited to the
upper level by the absorption of a photon of energy ~ω21; and stimulated emission, in which an incident
photon of energy ~ω21 stimulates an atom in the upper level to decay to the lower level by the emission of a
second photon of energy ~ω21. The stimulated photon is emitted into the same mode as the incident photon,
and hence has the same frequency, direction, and polarization as the incident photon. This third process,
stimulated emission, is the key to the operation of the laser.

It seems reasonable that the rate of spontaneous emission should be independent of the conditions of
the radiation field in which the atom finds itself. Furthermore, it is clear that the rates at which absorption
and stimulated emission occur must depend in some way on the density of photons of energy ~ω21, or,
equivalently, on the energy density of the radiation field at ω21 . In three postulates Einstein went further
and stated that the rates of absorption and stimulated emission are linearly dependent on the energy density
at ω21. The Einstein postulates may be stated as follows:

1. The rate per unit volume at which atoms in the upper level 2 decay spontaneously to the lower level 1
is equal to N2A21, where N2 is the number of atoms per unit volume in level 2, and A21 is a constant
characteristic of the transition;

2. The rate per unit volume at which atoms in the lower level are excited to the upper level by the
absorption of photons of energy ~ω21 is equal to N1B12ρ(ω21), where N1 is the number of atoms per
unit volume in level 1, ρ(ω21) is the energy density of radiation of angular frequency ω21 and B12 is a
constant characteristic of the transition;

3. The rate per unit volume at which atoms in the upper level decay to the lower level by the stimulated
emission of photons of energy ~ω21 is equal to N2B21ρ(ω21), where B21 is a constant characteristic of
the transition.

The coefficients A21, B12, and B21 are known as the Einstein A and B coefficients. The three
fundamental interactions between atoms and radiation are shown schematically in Fig. 4.1.

Note: The energy density ρ(ω21) appearing in the definition of the Einstein coefficients is a spectral
quantity, but the population densities are total population densities (having units of atoms per unit volume).
Hence the units of A21 are simply s−1, whilst those of B12 and B21 are m3 J−1 rad s−2 .

There is an important subtlety here. We have assumed that the levels of the atom have perfectly defined
energies, and as such only interact with radiation at exactly ω21. In practice, however, the atomic levels will
always be broadened to some extent. We will see later how to adapt the Einstein approach to deal with
broadened levels.
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Figure 4.1: Illustration of the interaction of radiation with two levels of an atom by spontaneous emission,
absorption, and stimulated emission. For each process the transition rates are given in terms of the Einstein
coefficients and the number densities N2 and N1 of atoms in the upper and lower levels. The photons have
energy ~ω21 and the figure should be read from left to right. For example, in the case of stimulated emission
an incident photon of energy ~ω21 stimulates an excited atom to make a transition to the lower level, emitting
a second photon in the process.

4.1.1 Relations between the Einstein coefficients

As you saw in an earlier lecture, relations between the Einstein coefficients may be found by considering the
case of an atom in thermal equilibrium with a radiation field of temperature T . This approach leads to the
following relations:

g1B12 = g2B21

A21 =
~ω3

21

π2c3
B21,

(4.1)

(4.2)

where gi is the degeneracy of level i. It is important to realize that, by construction, the Einstein coefficients
are properties of the atomic levels, and not the radiation field. As such, these relations hold for any radiation
field (not just blackbody) and whether or not the atoms are in thermal equilibrium.

4.2 Conditions for gain

As we will see more formally later, for light amplification by the stimulated emission of radiation we require
the rate of stimulated emission to be greater than the rate of absorption:

N2B21ρ(ω21) > N1B12ρ(ω21)

⇒ N2

g2
>
N1

g1
Condition for optical gain (4.3)

In other words, the population per state must be greater in the upper level than in the lower level, a
situation called a population inversion.

We should realize that a population inversion is unusual. If the level populations, for example, were
in thermal equilibrium at temperature T the populations of the levels would be described by a Boltzmann
distribution:

N2

N1
=
g2

g1
exp

(
−E2 − E1

kBT

)
, (4.4)
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Figure 4.2: Comparison of the populations per state for (a) an atom in thermal equilibrium; (b) an atom
with a population inversion between levels 2 and 1.
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Figure 4.3: Rate equation analysis of the condition for establishing steady-state gain on the transition 2→ 1.

or,

N2/g2

N1/g1
= exp

(
−E2 − E1

kBT

)
. (4.5)

from which it is clear that for a system in thermal equilibrium the population per state of an upper level
is always lower than that for any lower-lying level. Figure 4.2 illustrates schematically the distribution over
levels for (a) thermal equilibrium and (b) a population inversion between levels 2 and 1.

4.2.1 Conditions for steady-state inversion

Having demonstrated that a population inversion cannot exist under conditions of thermal equilibrium,
it is useful to explore the conditions under which a population inversion can be produced. Figure 4.3
shows schematically the kinetic processes which affect the populations of the upper and lower levels of a
laser transition. We suppose that atoms in the upper level are produced, or ‘pumped’ at a rate R2 (units
of atoms m−3 s−1), and that the lifetime of the upper level is τ2. Note that the pump rate includes all
processes that excite the upper level such as direct optical pumping, electron collisional excitation, and
radiative and non-radiative cascade from higher-lying levels. The lifetime τ2 is the lifetime against all types
of decay (radiative, collisional de-excitation, etc.) and includes radiative decay to level 1. It is known as the
fluorescence lifetime, since it is the lifetime with which the strength of the fluorescence on any radiative
transition from level 2 would be observed to decay. We define the pump rate and lifetime of the lower laser
level in a similar way, but do not include spontaneous emission on the laser transition itself in R1. That
contribution to the population of level 1 will be handled explicitly, for reasons that will be clear below.

The evolution of the population densities in the two levels may then be written as,
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dN2

dt
= R2 −

N2

τ2
(4.6)

dN1

dt
= R1 +N2A21 −

N1

τ1
. (4.7)

Note that the symmetry of the two equations is broken by the spontaneous emission term, N2A21. It is
straightforward to solve the above for steady-state conditions by setting dN2/dt = dN1/dt = 0. We find,

N2 = R2τ2 (4.8)

N1 = R1τ1 +R2τ2A21τ1. (4.9)

For optical gain we require N2/g2 > N1/g1 which yields the following condition for a steady-state
population inversion:

R2

R1

τ2
τ1

g1

g2

[
1− g2

g1
A21τ1

]
> 1. Steady-state inversion (4.10)

As discussed in Section 4.2.2, the term in square brackets must be less than or equal to unity. By
considering the case when it takes its largest value (i.e. 1), we conclude that for a steady-state population
inversion to be achieved at least one of the following must be true:

Selective pumping R2 > R1: in which the upper laser level is pumped more rapidly than the lower laser
level;

Favourable lifetime ratio τ2 > τ1: in which the lower laser level decays more rapidly than the upper level,
which keeps the population of the lower level small;

Favourable degeneracy ratio g1 > g2: which ensures that the population per state of the lower laser level
is small.

4.2.2 Necessary, but not sufficient condition

As mentioned above, the factor in square brackets in eqn (4.10) must be less than one; in fact it can be
negative as well as positive, and is independent of the pumping rates, depending only on the parameters
of the laser transition. In other words, for some systems no matter how selective the pumping is it is not
possible to achieve a steady-state population inversion. The reason for this somewhat surprising result is
that increasing the population of the upper laser level by pumping harder also increases the rate at which
the lower level is populated by spontaneous emission on the laser transition itself.

This final factor in eqn (4.10) therefore yields a necessary, but not sufficient condition for achieving
a steady-state population inversion. The condition that this factor is positive can be re-written as,

A21 <
g1

g2

1

τ1
. necessary, but not sufficient condition (4.11)

Hence the rate of spontaneous decay from the upper to the lower laser level must be smaller than the total
rate of decay from the lower laser level (multiplied by a factor of g1/g2). In other words, the lower level has
to empty sufficiently quickly for population not to build up by spontaneous emission on the laser transition.

It should be stressed that satisfying eqn (4.11) does not ensure that a steady-state population inversion
will be achieved on a given transition. For example the pumping may not preferentially populate the upper
laser level, or the lifetime ratio may be very unfavourable. However, unless eqn (4.11) is satisfied, no
pumping technique, no matter how selective, will be able to create a steady-state population inversion on
the transition.1

1Of course, it might be that a population inversion is created for a short period — a “transient” inversion — but it will not
be possible to generate a steady-state inversion unless eqn (4.11) is satisfied.



Lecture 5

Line broadening

5.1 Introduction

So far we have assumed that the upper and lower levels of a transition are infinitely sharp, and consequently
the radiation emitted in transitions between them is monochromatic. In reality, of course, that is not the
case and for any given transition a number of mechanisms can lead to broadening of the radiation emitted.

5.2 Homogeneous line broadening

5.2.1 Natural broadening

According the quantum model of atoms and molecules considered so far, the energy levels of these systems
are stationary states. Consequently an atom in such a state would remain in the state forever, unless it was
subject to a perturbation of some kind. However, we know from experiment that atoms and molecules in
excited states can decay spontaneously in the absence of an external field. The resolution of this discrepancy
requires that we also treat the radiation field quantum mechanically; this is beyond the present course, and
hence we will introduce radiative decay phenomenologically.

We saw earlier in the course that an electromagnetic wave, with a frequency reasonably close to the
transition frequency ω21 causes the wave function of a two-level atom to become,

ψ(r, t) = c1(t)φ1(r) exp(−iE1t/~) + c2(t)φ2(r) exp(−iE2t/~), (5.1)

where E1 and E2 are the energies of the upper and lower levels and c1 and c2 describe how the probability
of finding the atom in a given state varies with time.

It is interesting to consider the following matrix element:

p(t) = 〈ψ(r, t)| − er |ψ(r, t)〉 (5.2)

= exp

(
i
E2 − E1

~
t

)
〈c1φ1| − er |c2φ2〉+ c.c. (5.3)

+ |c1|2 〈φ1| − er |φ1〉+ |c2|2 〈φ2| − er |φ2〉 (5.4)

= exp

(
i
E2 − E1

~
t

)
〈c1φ1| − er |c2φ2〉+ c.c., (5.5)

where c.c. means complex conjugate of the preceding term, and the last line follows from the fact that
〈φ1| − er |φ1〉 = 〈φ2| − er |φ2〉 = 0. The quantity p(t) corresponds to a dipole moment oscillating at the
transition frequency ω21 = (E2 −E1)/~. Hence we can consider an atom1 undergoing a radiative transition
as forming an electric dipole oscillating at the transition frequency ω21.

We now assume that the effect of spontaneous decay of the upper and lower levels leads to exponential
damping of p(t) i.e.

p(t) = p(0) exp
(
−γ

2
t
)

cos(ω0t). (5.6)

1From hereon we will use the term ‘atoms’ to refer to both atoms and molecules, unless otherwise specified.
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Figure 5.1: Illustrating how a damped oscillating electric field from a damped oscillating dipole (a) gives
rise to a frequency spectrum with a Lorentzian profile (b).

We would therefore expect that in the far-field the electric field radiated by the atom will be proportional
to dp/dt, and hence will be of the form:

E(t) = E(0) exp
(
−γ

2
t
)

sin(ω0t). (5.7)

The frequency distribution of the oscillating electric field is given by the Fourier Transform of E(t), which
we will denote by Eω. We see immediately that the spectrum will consist of a range of frequencies owing
to the fact that the electric field is not a pure harmonic wave. Now, the signal from any detection system
able to measure the emitted spectrum will be proportional to |Eω|2. By calculating the Fourier Transform
we find,

|Eω|2 ∝ gL(ω − ω0) =
1

π

γ/2

(ω − ω0)2 + (γ/2)2
. (5.8)

The function gL(ω − ω0) is known as the lineshape function and is normalized2 such that
∫∞

0
gL(ω −

ω0)dω = 1. The full-width at half-maximum (FWHM)) of the lineshape is found straightforwardly from eqn
(5.8) to be,

∆ωN = γ. (5.9)

The width ∆ωN is known as the natural (or lifetime) broadened linewidth, for the reasons outlined
below.

Relation to the lifetimes of the levels

For eqn (5.9) to be useful we need to relate the damping constant γ to measured properties of the transition.
To do this we first consider an ensemble of atoms all initially excited to an upper level k. As illustrated in
Fig. 5.2, the atoms can decay spontaneously to a range of lower levels . . . l,m, n . . .. The rate equation for
the population of atoms in level k is simply,

dNk
dt

= −NkAkl −NkAkm −NkAkn − . . .

= −Nk
∑

Ei<Ek

Aki. (5.10)

Hence the population of atoms in the excited level decays exponentially according to,

Nk(t) = Nk(0) exp

(
− t

τ rad
k

)
, (5.11)

where the radiative lifetime is given by,

2Actually the function gL(x) is normalized such that
∫∞
−∞ gL(x)dx = 1. In eqn (5.8) the argument of gL(x) extends only to

−ω0. However, since the linewidth is always very small compared to ω0, extending the lower limit to −∞ will have negligible
effect on the integral.
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Figure 5.2: Radiative decay of an excited level k to lower levels . . . l,m, n . . .

1

τ rad
k

=
∑

Ei<Ek

Aki. (5.12)

Clearly the energy stored in atoms in the upper level will decay according to exp(−t/τ rad
k ). Remembering

that a classical dipole has an energy proportional to p(t)2, and hence has an energy which decays as exp(−γt),
and taking into account the effect of the decay of the lower level, we conclude that the natural linewidth of
the transition k → j is given by

∆ωN = γ =
1

τ rad
k

+
1

τ rad
j

Natural linewidth (5.13)

We note that the upper level of any radiative transition must have a finite lifetime. Hence, irrespective
of the lifetime of the lower level, radiative transitions must have a minimum spectral width determined by
eqn (5.13). Since it is an intrinsic property of the transition, the broadening arising from the finite lifetime
of the upper and lower levels is often known as natural broadening,

5.2.2 Pressure broadening

Radiation emitted by a sample of atoms in the gaseous phase will be homogeneously broadened as a result
of collisions with other atoms, electrons, ions etc. This is known as pressure broadening.

We may extend the simple model above to the case of pressure broadening in an intuitively obvious way.
We suppose that a radiating atom emits a damped wave of the form of eqn (5.7) until such time it experiences
a collision at a time τi whereupon the atom stops radiating. As before, the frequency distribution of the
radiated wave is given by the Fourier transform of the radiated electric field. Now, however, the spectrum
will be modified and, in particular, will depend on how long the atom radiates before it makes a collision.
From our knowledge of Fourier Transforms we can guess that if τi is short the spectrum will be wide in
frequency, whereas if the atom radiates for a long time before suffering a collision the frequency width will
essentially be the natural width.

Now, the spectrum observed from a macroscopic sample of atoms will be given by averaging the spec-
tra over the distribution of times between collisions. From Kinetic Theory we know that these times are
distributed according to

P (τi)dτi = exp

(
− τi
τc

)
dτi
τc
, (5.14)

where τc is the mean time between collisions.
Working through this analysis we find that the lineshape is once more Lorentzian, but now the width is

modified to,

∆ωp = γ +
2

τc
. Pressure-broadened linewidth (5.15)
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Figure 5.3: A simple model of collision broadening. A damped oscillating dipole is subject to a collision,
leading to the electric field shown in (a). When averaged over the distribution of collision times, this gives
rise to a frequency spectrum with a Lorentzian profile (b).

Note the factor of 2 in the second term.

Clearly the linewidth in this case increases as the mean time between collisions decreases. Typically τc
is inversely proportional to the pressure of the gas, in which case the increase in linewidth is proportional
to pressure. For obvious reasons, this type of broadening is known as pressure broadening. The process
is illustrated schematically in Fig. 5.3

It is important to note that collisions which do not de-excite the atom, but only perturb the phase of
the atomic wave functions, also cause spectral broadening. In many circumstances these phase-changing
collisions occur more frequently than those causing the atom to change energy level, and hence are more
important in determining the width of the spectral line.

5.2.3 Phonon broadening

In many solid-state lasers the active species are ions doped into a crystalline host. The energy level structure
of ions in a crystalline environment is generally different (sometimes very different) than that of an isolated
ion owing to interactions with the surrounding ions of the lattice. These interactions can be described
in terms of a crystal electric field which, for a perfect crystal at zero temperature, will have a symmetry
reflecting that of the crystal lattice.

The crystal field splits and shifts the energy levels from their positions in the isolated ion to give a rich
energy level structure. Since the positions of the energy levels depends on the locations of the neighbouring
ions, thermal motion of the crystal lattice causes the energy levels of the dopant ion to fluctuate about
their zero-temperature positions. The time-scale of thermal oscillations of the lattice is very fast (of order
picoseconds, as for diatomic molecules), and hence the energy levels appear to be smeared out, or broadened.
Broadening of a large number of close-lying levels split by the crystal field can give rise to broad, essentially
continuous energy bands.

The thermal vibrations of the lattice are quantized, the quantum of acoustic energy being termed a
phonon. As such this thermal broadening can also be described as a collision process, analogous to pressure
broadening, in which phonon collisions cause broadening by: (i) removing population from the levels by
absorption or emission of phonons; (ii) perturbing the phase of the wave functions of the levels. Phase-
changing collisions are usually more rapid than population-changing collisions, and hence typically dominate
phonon broadening. Thermal broadening in crystals is therefore often known as phonon broadening.

A third type of phonon broadening occurs in vibronic transitions in which the transition from an upper
to a lower level occurs through the simultaneous emission of a photon and one or more phonons. Since the
energy taken up by the phonon(s) can vary, the energy of the photon must change to conserve energy; this
leads to extensive broadening, which is utilized in several wavelength tunable lasers such as Ti:sapphire.

It is also worth noting that collisions of phonons with ions in excited states can cause the ion to decay
to lower-lying levels without the emission of radiation. In non-radiative decays of this type the energy
difference is carried away by lattice phonons. As we will see, non-radiative decay plays a crucial role in
forming and maintaining the population inversion in many solid-state laser systems.

Finally we note that, as we might expect, both the degree of phonon broadening and the non-radiative
decay rates of excited ions depend strongly on the temperature and material of the lattice.
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Figure 5.4: The formation of an inhomogeneously broadened spectral line by Doppler-broadened gas atoms.
Radiation emitted by the atoms in the z-direction is detected by the spectrometer. The distribution of atomic
velocities in the z-direction (a) leads, via the Doppler effect, to a distribution of frequencies measured by
the spectrometer, and hence broadening of the spectral line (b).

5.3 Inhomogeneous broadening

The homogeneous broadening mechanisms discussed above affect all atoms in a sample equally, so that the
distribution of frequencies emitted by any atom in the sample is the same. However, other broadening
mechanisms exist which cause the transition frequency of different atoms to be shifted by different amounts.
Such broadening mechanisms are said to be inhomogeneous, the broadening being characterized by a
distribution of transition frequencies gD(ω − ω0).3

Inhomogeneous broadening will always be associated with some homogeneous broadening since natu-
ral broadening is always present, and the atoms may also be subject to other homogeneous broadening
mechanisms such as phonon broadening. However, it should be clear that when, as is often the case, the
frequency width of the inhomogeneous distribution gD(ω−ω0) is much greater than that of the homogeneous
distribution gH(ω − ω0) the observed transition lineshape will simply be the inhomogeneous lineshape.

5.3.1 Doppler broadening

For gas lasers the most important line broadening mechanism is very often Doppler broadening, which
arises from a combination of the Doppler effect and the thermal motion of the atoms.

Imagine using a spectrometer to measure the emission spectrum on a certain transition from a gaseous
sample of atoms, as illustrated schematically in Fig. 5.4. We ignore homogeneous broadening and assume
that stationary atoms emit a single frequency ω0. Consider now the radiation emitted by those atoms
travelling with a velocity vz towards the spectrometer. The observed frequency ω, i.e. that measured by the
spectrometer, will be shifted from the frequency ω0 emitted by a stationary atom according to,

ω − ω0 =
vz
c
ω0, (5.16)

where we have ignored relativistic effects since for all cases of interest to lasers vz � c.
We see that those atoms moving towards the spectrometer will appear to emit higher frequencies, whilst

the frequencies measured for those atoms moving away from the spectrometer will be lower than ω0. As-

3We have used the superscript ‘D’ rather than ‘I’ to distinguish the inhomogeneous lineshape from the homogeneous lineshape
in order to avoid possible confusion with the use of the subscript ‘I’ used to indicate saturation effects. The inhomogeneous
lineshape defined here applies to any form of inhomogeneous broadening, not just Doppler broadening.
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suming that the sample is in thermal equilibrium with temperature T , the proportion P (vz)dvz of atoms
with a z-component of velocity in the range vz to vz + dvz is given by the Maxwellian distribution:

P (vz)dvz =

√
M

2πkBT
exp

(
− Mv2

z

2kBT

)
dvz, (5.17)

where M is the mass of each atom, and kB the Boltzmann constant.
Substitution of eqn (5.16) into eqn (5.17) gives the observed lineshape gD(ω − ω0):

gD(ω − ω0)dω =

√
M

2πkBT
exp

(
−Mc2

2kBT

[
ω − ω0

ω0

]2
)

c

ω0
dω. (5.18)

This is a Gaussian distribution with a full-width at half maximum, known as the Doppler width, given
by:

∆ωD = 2
√

2 ln 2
ω0

c

√
kBT

M
,

∆ωD

ω0
=

∆νD

ν0
= 7.16× 10−7

√
T

A
,

Doppler width
(5.19)

(5.20)

where in eqn (5.20) the temperature is in Kelvin and the atomic mass A has units of grammes per mole.
It is usually more convenient to re-write the lineshape4 in terms of ∆ωD, i.e.

gD(ω − ω0) =
2

∆ωD

√
ln 2

π
exp

(
−
[
ω − ω0

∆ωD/2

]2

ln 2

)
,

Normalized Gaussian lineshape

(5.21)

where the distribution is normalized so that
∫∞

0
gD(ω − ω0)dω = 1.

5.3.2 Broadening in amorphous solids

As discussed above, transitions within ions doped into a solid will be broadened by phonon interactions. If
the host is a good quality single crystal, this broadening is homogeneous. However if the solid is highly non-
uniform, active ions in different locations will experience different environments. Of particular importance
is the local value of the strain of the crystal lattice since this affects the local crystal field experienced by
the ion, which in turn affects the energy levels of the ion through the Stark effect. Other aspects of the
local environment which can affect the transition frequencies of an active ion are the presence of impurity
ions, or variations in the orientation of the crystal lattice. Since such affects change the centre frequency
of the active ions according to their location in the medium, the broadening of the frequency response of a
macroscopic sample is inhomogeneous.

These effects are particularly important for ions doped in glasses, such as Nd3+ ions in the Nd:glass
laser, since in a glassy material the local environment varies very widely with position, leading to substantial
inhomogeneous broadening. Very often the distribution of centre frequencies is found to follow a Normal,
i.e. Gaussian, distribution, in which case the transition lineshape is also Gaussian.

5.4 Homogeneous vs inhomogeneous broadening

Line broadening mechanisms can be divided into two classes: homogeneous broadening and inhomo-
geneous broadening. A homogeneous broadening mechanism is one which affects all atoms in the sample
equally, and consequently all atoms will interact with a beam of radiation of frequency ω with the same
strength.

In contrast, an inhomogeneous broadening mechanism causes the frequency of a transition to be different
for different ‘types’ of atom; the distribution of different ‘types’ leads to an observed broadening when the
emission or absorption of the whole sample is viewed. For example, in Doppler broadening the transition
frequency of an atom depends on its velocity with respect to the observer (or a beam of radiation). The

4Whilst we have considered the lineshape of the radiation emitted from the sample, we could also have considered the
absorption spectrum that would be measured and we would have found the same distribution gD(ω − ω0).
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spectrum emitted by a sample of moving atoms will be broadened according to the distribution of relative
velocities.

The key test in deciding if a broadening mechanism is homogeneous or inhomogeneous is whether a
narrow-band beam of radiation will interact with all atoms equally (homogenous) or not (inhomogeneous).
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Lecture 6

The optical gain cross-section

6.1 Homogeneous broadening and the Einstein coefficients

Our original discussion of the Einstein treatment assumed that the energy levels were perfectly sharp. We
now discuss how to adapt this approach to the more realistic case in which the transition is broadened. We
will only consider the case of homogeneous broadening.

For a system of homogeneously broadened atoms, all atoms will interact with a beam of radiation of
angular frequency ω with the same strength. However, the strength of the interaction will depend on the
detuning of ω from ω0, the centre frequency of the transition.

We can account for this by incorporating the frequency dependence into spectral lineshapes:

1. The rate per unit volume at which atoms in the upper level decay to the lower level by spontaneous
emission of photons with angular frequencies lying in the range ω to ω + δω is equal to

N2A21gA(ω − ω0)δω,

where N2 is the density of atoms in the upper level and gA(ω − ω0) is the lineshape for spontaneous
emission.

2. The rate per unit volume at which atoms in the lower level are excited to the upper level by the
absorption of photons with angular frequencies lying in the range ω to ω + δω is equal to

N1B12gB(ω − ω0)ρ(ω)δω,

where N1 is the density of atoms in the lower level, gB(ω − ω0) is the lineshape for absorption, and
ρ(ω) is the spectral energy density of the radiation.

3. The rate per unit volume at which atoms in the upper level decay to the lower level by stimulated
emission of photons with angular frequencies lying in the range ω to ω + δω is equal to

N2B21gB′(ω − ω0)ρ(ω)δω,

where gB′(ω − ω0) is the lineshape for stimulated emission.

For the moment, we have allowed the frequency dependence of the three processes to be different. Notice
also that the lineshapes must be normalized, which ensures that when integrated over the entire lineshape
of the transition the total rates of spontaneous emission, absorption, and stimulated emission agree with the
Einstein coefficients. For example, the total rate of spontaneous emission at all frequencies is given by,

∫ ∞
0

N2A21gA(ω − ω0)dω = N2A21. (6.1)

Similar relations hold for the lineshapes for absorption and stimulated emission.
The question remains, how are the different lineshapes related? By considering the rate of emission

and absorption of photons with angular frequencies lying in the range ω to ω + δω for a system of matter
in thermal equilibrium with radiation, as in our earlier derivation of the relations between the Einstein
coefficient, we may derive relations between the rates of the three fundamental processes:

33
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I(ω,z) I(ω,z + δz)

z + δz

gH(ω − ω0)

ωω0

I(ω,z)

z

Figure 6.1: Derivation of the optical gain cross-section for a homogeneously-broadened transition.

g1B12gB(ω − ω0) = g2B21gB′(ω − ω0) (6.2)

A21gA(ω − ω0) =
~ω3

0

π2c3
B21gB′(ω − ω0). (6.3)

We see immediately that the lineshapes for absorption and spontaneous and stimulated emission are
identical; in other words the three processes all have the same frequency dependence.

But what is that frequency dependence? In Lecture 2 we derived the lineshapes gH(ω−ω0) for spontaneous
emission in the presence of various types of homogeneous broadening. However, by the definitions above,
spontaneous emission has a lineshape given by gA(ω − ω0). Hence we see that the lineshapes gA(ω − ω0) =
gB(ω − ω0) = gB′(ω − ω0) are just equal to the emission lineshape gH(ω − ω0). For example, for lifetime-
broadened transitions gH(ω − ω0) would be the Lorentzian function of eqn (5.8).

6.2 Optical gain

We are now in a position to describe how a beam of radiation may be amplified.
Suppose that the beam propagates along the z−axis through a medium with population densities N2

and N1 in the upper and lower levels respectively. In general the radiation will have a finite spectral width,
and is described by a spectral intensity I(ω, z) and energy density ρ(ω, z). We take the laser transition to
be homogeneously broadened so that all atoms interact with the beam equally.

We consider the amplification of the beam as it passes through the small region lying between the planes
z = z and z = z + δz, as illustrated schematically in Fig. 6.1. As the beam passes through the medium it
loses energy owing to absorption by atoms in the lower laser level, but gains energy by stimulated emission
from atoms in the upper laser level. The net rate at which atoms are transferred from the upper to the lower
laser level by the stimulated emission of photons with angular frequencies lying between ω and ω + δω is,

[N2B21 −N1B12]gH(ω − ω0)ρ(ω, z)δω ·Aδz (6.4)

where A is the area of the beam. Each such transfer releases an energy of ~ω to the beam, and hence, within
this frequency range, the power gained by the beam is,

[N2B21 −N1B12]gH(ω − ω0)ρ(ω, z)δω ·Aδz · ~ω. (6.5)

For the frequency interval under consideration, the power carried into the region by the beam is I(ω, z)Aδω,
and hence the power gained by the beam can also be written as,

[I(ω, z + δz)− I(ω, z)]Aδω. (6.6)

Equating eqns. (6.5) and (6.6) we find, straightforwardly,

∂I

∂z
= [N2B21 −N1B12]gH(ω − ω0)

~ω
c
I(ω, z), (6.7)
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where we have used the fact that for a beam of radiation I(ω, z) = ρ(ω, z)c. This result is usually tidied in
the following form:

∂I

∂z
= N∗σ21(ω − ω0)I(ω, z), (6.8)

where we have used the relation between the Einstein B-coefficients and defined the population inversion
density as,

N∗ = N2 −
g2

g1
N1, (6.9)

and the optical gain cross-section as1,

σ21(ω − ω0) =
~ω0

c
B21gH(ω − ω0) (6.10)

⇒ σ21(ω − ω0) =
π2c2

ω2
0

A21gH(ω − ω0) (6.11)

The advantage of writing our result in the form of eqn (6.8) is that the right-hand side is now factored
into terms which depend on (i) the population densities of the upper and lower levels; (ii) the atomic physics
of the transition; (iii) the spectral intensity of the beam.

6.2.1 Small-signal gain coefficient

Equation (6.8) is very often re-written as,

1

I

∂I

∂z
= α21(ω − ω0) (6.12)

where α21(ω − ω0) is known as the small-signal gain coefficient (units m−1), and is given by,

α21(ω − ω0) = N∗σ21(ω − ω0). (6.13)

We will see later that it is important to recognize that the small-signal gain coefficient is in general also
a function of the beam intensity. The reason for this is that at very high intensities the increased rate of
stimulated emission will reduce the population inversion, a process known as gain saturation.

For the moment we will neglect that complication and assume that the population inversion is positive
and independent of intensity or position. Then, integrating eqn (6.12) we find,

I(ω, z) = I(ω, 0) exp[α(ω − ω0)z], (6.14)

We see that the beam of radiation grows exponentially with propagation distance. The reason for the
energy gain of the beam is straightforward: the rate of stimulated emission from the upper level is greater
than the rate of absorption from the lower level.

The small-signal gain coefficient (often loosely called ‘the gain coefficient’) is important in determining the
performance of a laser system. Since the gain coefficient is proportional to the population inversion density,
it is strongly dependent upon the operating conditions of the laser. For example, in a neodymium-doped
yttrium aluminium garnet (Nd:YAG) laser the gain coefficient will depend on many parameters of the laser
design including the strength of the optical pumping and the concentration of Nd3+ ions in the YAG crystal.
In contrast the optical gain cross-section is a more fundamental parameter of the laser transition since it
depends only on the physics of the laser transition and therefore is largely independent of the pumping
conditions.

1Once again we will set ω ≈ ω0 in the factors multiplying the lineshape
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6.2.2 Absorption and Beer’s Law

It is worth recognizing that we can define the cross-section in various ways. The gain cross-section defined
in eqn (6.10) takes the form it does because of the way we defined the population inversion. We defined
N∗ = N2 − (g2/g1)N1 since, as laser physicists, we hope that N∗ will be positive. Clearly in the ideal case
the population in the lower level will be small, and then N∗ ≈ N2.

If we studied absorption, however, we would generally be interested in the lower level population. To
illustrate this, suppose that the population inversion where negative and independent of intensity or position.
Equation (6.14) would then take the form,

I(ω, z) = I(ω, 0) exp [−κ12(ω − ω0)z] , (6.15)

where the absorption coefficient is given by,

κ12(ω − ω0) = −
(
N2 −

g2

g1
N1

)
σ21(ω − ω0)

= −
(
g1

g2
N2 −N1

)
g2

g1
σ21(ω − ω0)

= +

(
N1 −

g1

g2
N2

)
g2

g1

~ω0

c
B21gH(ω − ω0)

= +

(
N1 −

g1

g2
N2

)
~ω0

c
B12gH(ω − ω0)

= +N∗∗σabs
12 (ω − ω0) (6.16)

where N∗∗ = N1 − (g1/g2)N2 and the absorption cross-section is given by

σabs
21 (ω − ω0) = (~ω0/c)B12gH(ω − ω0). (6.17)

Notice that the absorption cross-section follows the definition of the gain cross-section but with B21 replaced
with B12, as we might expect.

The exponential decrease in the intensity of the beam as it propagates through the medium is known as
Beer’s Law.

6.2.3 Frequency dependence of gain

In the case that N∗ is independent of intensity or position, eqn (6.14) describes the growth of each frequency
component. Clearly the growth in intensity depends on the detuning of the frequency from the centre
frequency ω0. The frequency dependence of the optical gain cross-section is simply the lineshape of the
transition, gH(ω − ω0). So, for example, a transition which is lifetime-broadened will have an optical gain
cross-section with a Lorentzian lineshape:

σL
21(ω − ω0) =

~ω0

c
B21

1

π

(∆ωL/2)

(ω − ω0)2 + (∆ωL/2)2
, (6.18)

where ∆ωL is the FWHM of the lineshape.
Clearly the optical gain cross-section will typically be strongly peaked at the transition frequency ω0.

In the absence of saturation the beam grows as exp[N∗σ21(ω − ω0)z] and consequently the amplification
of the beam will be an even stronger function of function of frequency. Hence, if a beam is input to an
optical amplifier with a frequency width which is of order, or larger, than the linewidth of the transition,
the spectral width of the output beam will be much narrower owing to greater amplification of frequencies
close to the line centre. Frequency narrowing of this type is known as gain narrowing.

6.3 Laser rate equations for narrow-band radiation

The bandwidth ∆ωB of the oscillating mode in a laser oscillator (i.e. a gain medium located within an optical
cavity) will nearly always be very small compared to the spectral width of the laser transition. Likewise,
for an amplifier (just a gain medium, with no optical cavity) it is also often the case that the bandwidth of



6.4. GAIN SATURATION 37

the beam to be amplified is narrow compared to that of the optical transition concerned. We will therefore
make this simplifying assumption in what follows.

In general the rate equation for (say) the upper laser level can then be written in the form,

dN2

dt
= R2 − (N2B21 −N1B12)

∫ ∞
0

gH(ω − ω0)ρ(ω)dω + . . . , (6.19)

where we see that the total rate of stimulated emission is given by integrating over the lineshape, and + . . .
indicate that in general other terms may appear in the rate equation. We may re-arrange eqn (6.19) as
follows:

dN2

dt
= R2 −

(
N2 −

g2

g1
N1

)∫ ∞
0

~ω
c
B21gH(ω − ω0)

ρ(ω)c

~ω
dω + . . . (6.20)

= R2 −N∗
∫ ∞

0

σ21(ω − ω0)
I(ω)

~ω
dω + . . . (6.21)

where I(ω) is the spectral intensity of the radiation.

For narrow-band radiation the gain cross-section varies slowly over the spectral width of the radiation
and so I(ω) acts like a Dirac delta function: I(ω) = ITδ(ω − ωL) where IT is the total intensity and ωL the
centre frequency of the beam. We then have:

dN2

dt
= R2 −N∗

∫ ∞
0

σ21(ω − ω0)
ITδ(ω − ωL)

~ω
dω + . . . (6.22)

= R2 −N∗σ21(ωL − ω0)
IT
~ωL

+ . . . , (6.23)

Eqn. (6.23) may be interpreted as follows. We can regard N∗ as the effective number density of inverted
atoms, and σ21(ωL − ω0) as their effective cross-sectional area. Since IT/~ωL is the photon flux, eqn (6.23)
takes the standard form for the rate of a process in terms of a cross-section and a flux of incident particles.

6.3.1 Growth equation for a narrow-band beam

We have already derived the equation describing the growth of each spectral component of a beam (eqns
(6.12) and (6.13)):

∂I

∂z
= N∗σ21(ω − ω0)I(ω, z). (6.24)

To describe the rate of growth of a beam of finite spectral width we integrate both sides of the above
over the bandwidth of the beam:

∫ ∞
0

∂I

∂z
dω =

∫ ∞
0

N∗σ21(ω − ω0)I(ω, z)dω

⇒ ∂

∂z

∫ ∞
0

I(ω, z)dω =

∫ ∞
0

N∗σ21(ω − ω0)I(ω, z)dω

⇒ dIT
dz

=

∫ ∞
0

N∗σ21(ω − ω0)I(ω, z)dω. (6.25)

Again, for narrow-band radiation we may bring the cross-section outside the integral:

dIT
dz

= N∗σ21(ωL − ω0)IT. (6.26)
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Figure 6.2: Processes affecting the upper and lower laser levels in a laser operating under steady-state
conditions in the presence of an intense radiation beam.

6.4 Gain saturation

We are now consider how a beam of intense, narrow-band radiation (such as might be present in an operating
laser) affects the population inversion produced by the pumping. Figure 6.2 shows schematically the processes
which affect the level populations of a laser operating under steady-state conditions in the presence of an
intense radiation beam.

We may write the rate equations for the laser levels as,

dN2

dt
= R2 −N∗σ21(ωL − ω0)

I

~ωL
− N2

τ2
(6.27)

dN1

dt
= R1 +N∗σ21(ωL − ω0)

I

~ωL
+N2A21 −

N1

τ1
. (6.28)

where we have dropped the subscript T from the total intensity2.
We note that:

1. We will assume that the pump rates R2 and R1 are constant and, in particular, are independent of N1

and N2;

2. The pump rates include direct excitation collision rates, indirect processes such as pumping by radiative
or non-radiative cascades. However, spontaneous emission on the laser transition itself is included
explicitly as N2A21.

It is straightforward to find the steady-state solutions of eqns (6.27) and (6.28):

N2 = R2τ2 −N∗σ21
I

~ωL
τ2 (6.29)

N1 = R1τ1 +N∗σ21
I

~ωL
τ1 +N2A21τ1, (6.30)

where we have dropped the frequency dependence of σ21(ωL − ω0) to avoid clutter. Eliminating N2 from
eqn (6.30) gives the population inversion density N∗ = N2 − (g2/g1)N1 as,

N∗ =
R2τ2 [1− (g2/g1)A21τ1]− (g2/g1)R1τ1

1 + σ21
I

~ωL
[τ2 + (g2/g1)τ1 − (g2/g1)A21τ1τ2]

. (6.31)

This last result looks complicated, but it is actually rather simple! Notice that the denominator equals
unity when I = 0. Consequently, the numerator must be just the population inversion produced by the
pumping in the absence of the beam. Hence we can rewrite eqn (6.31) in the following form:

2From here onwards we will always distinguish spectral intensity by writing it in the form I(ω).
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N∗(I) =
N∗(0)

1 + I/Is
. (6.32)

The parameter Is is known as the saturation intensity, and is given by

Is =
~ωL

σ21

(
τ2 +

g2

g1
τ1 −

g2

g1
A21τ1τ2

)−1

, (6.33)

which is itself usually re-written in the form,

Is =
~ωL

σ21τR
, Saturation intensity (6.34)

in which τR, the recovery time, is given by

τR = τ2 +
g2

g1
τ1[1−A21τ2] (6.35)

Let us consider eqn (6.32) in more detail. We see that the intense beam of radiation reduces, or ‘burns
down’, the population inversion by a factor of (1 + IT/Is) as a result of the increased rate of stimulated
emission from the upper laser level. The intensity of the radiation required to reduce the inversion to one-
half of that achieved in the absence of the beam is the saturation intensity (units of W m−2). For a laser
oscillator or amplifier the saturation intensity is, then, a measure of the intensity to which a beam may be
amplified before the increased rate of stimulated emission from the upper laser level starts to affect the level
populations significantly. As such the saturation intensity marks the boundary between ‘high’ and ‘low’
intensity.

6.4.1 Approximations for the saturation intensity

It is often possible to find different approximations for the saturation intensity. For example, in so-called
‘four-level’ lasers the fluorescence lifetime of the lower level is much shorter than that of the upper level.
In this special case τR ≈ τ2. The same approximation for the recovery time occurs when the upper laser
level decays predominantly by radiative decay on the laser transition itself, whereupon τ2 ≈ A−1

21 . For these
special cases we find,

Is ≈
~ωL

σ21τ2
Special case if τ2 � τ1 or A21τ2 ≈ 1. (6.36)

6.4.2 Saturated gain coefficient

Having found the burnt down population inversion density, the saturated gain coefficient is found from,

αI(ω − ω0) = N∗(I)σ21(ω − ω0), (6.37)

where the subscript I indicates that α is now a function of the beam intensity.

Hence,

αI(ω − ω0) =
α0(ω − ω0)

1 + I/Is
, Saturation of gain coefficient (6.38)

where α0(ω − ω0) is the small-signal gain coefficient, i.e. the gain coefficient experienced by, or measured
with, a beam of intensity much less than the saturation intensity.
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6.4.3 Saturated of absorption coefficient

Absorption of radiation will exhibit saturation for the same reason that gain saturates: at high intensities
the radiation transfers a significant number of atoms between the levels. In the case of absorption, the
radiation transfers population from the lower level (nearly always the ground state) to the upper level of the
transition; at high intensities the population of the lower level is depleted, reducing the absorption.

The dependence of the absorption coefficient of a homogeneously broadened transition on the radiation
intensity is analogous to that of the gain coefficient:

κI(ω − ω0) =
κ0(ω − ω0)

1 + I/Is
, Saturation of absorption coefficient (6.39)

where κ0(ω − ω0) is the small-signal absorption coefficient, i.e. the absorption coefficient experienced by, or
measured with, a weak beam. The saturation intensity has the same form as eqn (6.34), but the recovery
time τR is NOT given by eqn (6.35). The reason for this is that for the case of absorption the lower level does
not decay; the recovery time therefore depends on the upper level lifetime, and also on the rate at which
atoms in the upper level return to the lower level via intermediate levels.3

6.5 Beam growth in a laser amplifier

From the analysis above we know that a narrow-band beam of radiation will grow as it propagates through
a length of inverted medium according to:

dI

dz
= αII =

α0

1 + I/Is
I, (6.40)

which may be integrated to give,

ln

[
I(z)

I(0)

]
+
I(z)− I(0)

Is
= α0z. (6.41)

This transcendental equation has algebraic solutions in two limits:

I(z) = I(0) exp(α0z); Weak beam (I(z)� Is) (6.42)

I(z) = I(0) + α0Isz. Heavy saturation (I(0)� Is) (6.43)

In other words, at low intensities the intensity of the beam grows exponentially with distance, just as we
found earlier; whereas once the laser transition becomes heavily saturated the intensity grows linearly.

3See Exercise 5.3 in Hooker & Webb for details.



Lecture 7

Cavity effects

7.1 Cavity modes

A simple laser amplifier consists of one or more sections of inverted media such that a beam injected at one
end is amplified as it propagates. In a laser oscillator the gain medium is located within an optical cavity,
such that the laser radiation originates within the gain medium itself and is amplified as it circulates around
the optical cavity. Unless qualified, the term ‘laser’ usually refers to a laser oscillator. In this section we
examine the effect of the optical cavity on the operation and output of a laser oscillator.

Let us first consider a simple laser cavity comprising two mirrors separated by a distance Lc, as illustrated
in Fig. 7.1. For the moment we will consider the case in which there is no gain medium within the cavity.

Suppose that radiation is circulating within the cavity. Under steady-state conditions we can represent
the radiation by a wave propagating towards positive z, denoted by a subscript +, and a wave propagating
to negative z denoted by a subscript −.

The positive- and negative-going waves will be one (or a superposition) of the transverse modes of the
cavity. The transverse modes of the cavity are eigenmodes of the cavity which, when launched once round
the cavity return with the same transverse spatial variation. As such they depend on the curvature of the
cavity mirrors and their location. For the present purpose we need not concern ourselves with the detailed
form of the transverse modes and we merely denote the modes of the positive- and negative-going waves by
the functions u±(r, ω, t). However, in anticipation of the introduction of gain into the cavity, we will allow
the overall amplitude of the positive- and negative-going waves to vary with position along the cavity axis
according to a±(z, ω).

Let us now consider the amplitude of the radiation field immediately to the right of mirror 1, i.e. at
z = 0. Under steady-state conditions, after reflection from mirror 1 the negative-going wave must be the
same as the right-going wave at z = 0. Hence we have:

a+(0, ω)u+(r, ω, t) = a−(0, ω)r1eiφ1u−(r, ω, t). (7.1)

where r1 and φ1 are the modulus and phase respectively of the amplitude reflection coefficient of mirror 1.
This condition must hold at all points in the plane z = 0, and so in this plane we must have u+(r, ω, t) =
u−(r, ω, t), that is that the positive- and negative-going waves must be in the same mode. We can therefore
simplify eqn (7.1) to,

a+(0, ω) = a−(0, ω)r1eiφ1 . (7.2)

Similarly, after propagating to mirror 2 and back, the right-going wave starting at z = 0 must be the
same as the negative-going wave at z = 0:

a−(0, ω) = a+(0, ω)ei(δrt−φ1) r2, (7.3)

where δrt is the optical phase accumulated by the mode in propagating one complete round trip (including
any phase shifts arising from the two mirrors), and r2 and φ2 are the modulus and phase respectively of the
amplitude reflection coefficient of mirror 2. We can combine this result with eqn (7.2) to give,

a+(0, ω) = a+(0, ω)r2r1eiδrt . (7.4)

41
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a+(z,ω) u+(r,ω,t)

a-(z,ω) u-(r,ω,t)
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Figure 7.1: Cavity effects in a laser oscillator.

It must therefore be that under steady-state conditions,

r2r1eiδrt = 1. (7.5)

Equation (7.5) is complex and hence we can extract 2 conditions. The imaginary part of the right-hand
side is zero, which means that δrt must equal an integer times π. Further, r1, r2 > 0 and hence exp(iδrt)
must also be positive. Thus we conclude that eqn (7.5) can only be satisfied if

δrt = 2πp. p = 0, 1, 2, 3,+ . . . (7.6)

Of course, (7.5) also requires r1 = r2 = 1 which would require perfect mirrors. The fact that in a real
cavity |r1| , |r2| < 1 means that steady-state conditions can only be achieved if we introduce gain in to the
cavity, as we discuss in the following section.

Let us consider the condition on δrt in more detail by way of a simple example. Suppose that the cavity
is filled uniformly with material of refractive index n. Then, δrt = 2kLc and hence we could write eqn (7.6)
as

2kpLc = 2πp p = 0, 1, 2, 3,+ . . . . (7.7)

In terms of frequency (not angular) this condition becomes:

νp =
c

2nLc
p, Longitudinal modes (7.8)

We see that only certain frequencies will oscillate, corresponding to the resonant frequencies or longitudinal
modes of the optical cavity. The frequency spacing between adjacent longitudinal modes is1,

∆νp,p−1 =
c

2nLc
. (7.9)

7.1.1 Insertion of gain into the cavity: The laser threshold condition

Now let us suppose that we place a gain medium of length Lg within the optical cavity. Now as radiation
circulates around the cavity it will be amplified as it passes through the gain medium, and so may overcome
the cavity losses.

1You should convince yourself that this is just the free-spectral range of the cavity when used as a Fabry-Perot etalon.
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We wish to calculate a condition for the laser reaching the threshold for laser oscillation. Near threshold
the intensity of the circulating radiation must be very small, so that the gain will be unsaturated, and the
circulating radiation is amplified according to the unsaturated gain coefficient. Denoting the threshold value
of the unsaturated gain coefficient by αth

0 , with the insertion of gain in the optical cavity eqn (7.3) becomes
at threshold:

a−(0, ω) = a+(0, ω) exp

[
1

2
αth

0 (ω)Lg

]
exp

[
−1

2
κ(ω)Lc

]
× r2 exp

[
1

2
αth

0 (ω)Lg

]
exp

[
−1

2
κ(ω)Lc

]
exp [i(δrt − φ1)] . (7.10)

Here κ is an absorption coefficient, which is introduced to represent any (unwanted) losses within the cavity
in addition to the losses at the cavity mirrors. For convenience we have assumed that these losses are
distributed uniformly over the whole length, Lc, of the cavity. Notice how, for example, the amplitude of
the positive-going wave is amplified by a factor of exp

[
1
2α

th
0 (ω)Lg

]
— the factor of 1

2 arises since we are
calculating the growth of the amplitude of the radiation rather than its intensity. The same factor appears
in the term representing absorption for the same reason.

Combining eqns (7.10) and (7.2) we have

r2r1 exp
[
αth

0 (ω)Lg
]

exp [−κ(ω)Lc] exp (iδrt) = 1. (7.11)

Following the argument above, we see that we must have exp(iδrt) = 1, and hence the frequency of the
radiation must correspond to one of the cavity modes.

Equating the real parts of both sides of eqn (7.11) gives,

r1r2 exp[αth
0 (ωp)Lg] exp[−κ(ωp)Lc] = 1, (7.12)

where the subscript p reminds us that the frequency must correspond to a cavity mode. Taking the square-
modulus of both sides we find the threshold condition for lasing in terms of the power reflectivities R1 and
R2 of the cavity mirrors:

R1R2 exp[2αth
0 (ωp)Lg] exp[−2κ(ωp)Lc] = 1. Threshold condition (7.13)

This last result has a straightforward interpretation: if we imagine launching a beam of unit intensity from
within the cavity, after one round-trip it would have an intensity equal to the left-hand side of eqn (7.13); if
this is less than unity the beam will decay in intensity with each round-trip; if it is greater than unity, the
beam will grow in intensity. Equation (7.13) therefore gives the condition for steady-state laser oscillation.
It may be written in the alternative form,

2αth
0 (ωp)Lg = 2κ(ωp)Lc − ln(R1R2). Threshold condition (7.14)

To summarize, laser oscillation can only occur if for some cavity mode the unsaturated round-trip gain
exceeds the round-trip loss. The threshold condition determines — for a given laser cavity — a threshold
value for the gain coefficient. In turn this defines, for a given laser transition, threshold values for the
population inversion and the rate of pumping of the upper laser level.

7.2 Laser operation above threshold

In deriving the conditions required to reach laser oscillation we noted that under steady-state conditions
the round-trip gain experienced by an oscillating cavity mode must be balanced by the round-trip loss. Of
course, this must also be true if the laser is operating above threshold — that is, we are pumping the laser
gain medium harder. However, in this case the gain experienced by the radiation circulating within the
cavity will be saturated, at least to some extent, by the laser radiation circulating within the cavity. We will
see that it is this saturation that reduces the round-trip gain so that it is in balance with the cavity losses.

Let us consider how a homogeneously-broadened laser system behaves as we gradually increase the
pumping of the gain medium (by, for example, increasing the flashlamp voltage). As the pumping is increased
from below the threshold value the population inversion N∗ will increase until the small-signal gain for the
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Figure 7.2: Schematic diagram showing, for a homogeneously-broadened laser transition, the effect of in-
creasing the pump rate above threshold on: (a) the gain coefficient; (b) the intensity of the oscillating mode.
Note that the gain curve does not change with increased pumping, as explained in the text.

mode closest to the line centre reaches the threshold value determined by the cavity losses. This will cause
a very large (of order 1015) increase in the energy density of the radiation field at the frequency of the
oscillating mode.

What happens if the pumping is increased further? Perhaps surprisingly, neither the gain coefficient
αI(ω), or the population inversion will increase. The reason is that in the steady-state, the round-trip gain
must always be balanced by the round-trip loss.

How is this balance maintained? Whilst it is true that increasing the pumping rate R2 will increase the
rate at which the upper laser level is populated, this is accompanied by an increase in the intensity of the
oscillating mode which increases the rate of depopulation of the upper laser level by stimulated emission.
Thus, the increased radiation intensity acts to burn down the population inversion and maintains it (and the
gain coefficient) so that the round-trip gain equals the round-trip loss. It is important to note that, since the
gain medium is homogeneously-broadened,2 the entire population inversion is burnt down to the threshold
value so that the entire gain profile α(ω) is locked at the threshold value so that αI(ωp) = αth

0 (ωp).
3 This

2The behaviour is quite different for inhomogeneously-broadened gain media.
3This last statement is a slight simplification (which is perfectly adequate for the present purpose). If the intensity varies

significantly from one end of the gain medium to the other, as would happen if the cavity losses were very high, we cannot
talk about ‘the’ gain coefficient since the gain coefficient will depend on z. However, even in these more complicated situations
it remains the case that saturation will burn the population down to the point that the round-trip gain is balanced by the
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Figure 7.3: Spatial hole-burning in a homogeneously broadened steady-state laser oscillator. In (a) the
standing wave of an oscillating mode causes the gain to be depleted where the intensity is high. However,
the gain is unaffected near the nodes of the standing wave since the intensity in these regions is low. This
can allow other cavity modes — which will have a different frequency and hence different locations for the
nodes and antinodes in its standing wave pattern — to feed off the regions of unused gain, as shown in (b).

process is shown schematically in Figure 7.2.

7.2.1 Spatial hole-burning

It would seem from this argument that only one mode could ever be brought into oscillation in a homoge-
neously broadened laser. This is not always so, however. Within a laser cavity the oscillating mode forms a
standing wave. Near the nodes of the standing wave the electric field is at all times small, and so the popula-
tion inversion in this region will not be burnt down to the same extent as near the anti-nodes. Consequently
a longitudinal mode at a slightly different frequency can establish itself by feeding on the high levels of the
population inversion found at the nodes, as illustrated schematically in Fig. 7.3. This process is known as
spatial hole-burning. Spatial hole-burning can be avoided by using a ring cavity4 and restricting laser
oscillation to one direction round the cavity, since then no standing wave is formed.

7.3 Frequency tuning

If the linewidth of the laser gain medium is sufficiently broad, such as in the Ti:sapphire laser discussed
later, the wavelength of the laser output can be tuned. Tunable sources of this type are invaluable in a wide
variety of scientific and industrial applications, such as spectroscopy, detection of atmospheric pollutants
etc.

Diffraction gratings, birefringent filters, and prisms can all be used to tune the output wavelength; their
role is simply to make the feedback of the laser cavity depend on wavelength. Fig. 7.4 shows a diffraction
grating used at grazing-incidence to provide wavelength-dependent feedback. The grating is used at grazing
incidence to increase the number of grating lines illuminated by the circulating laser beam, since the minimum
resolvable frequency width of a grating is inversely proportional to the width of the illuminated part of the
grating. The grating is usually blazed to minimize the losses for the selected wavelength. However, for very
large angles of incidence (i.e./ close to grazing), blazed gratings can become lossy since the highest part of
each grating groove shadows the subsequent groove. To overcome this, asymmetric prisms are often used to
expand the size of the beam in one dimension, which helps increase the width of grating illuminated for a
given angle of incidence.

round-trip loss.
4A laser cavity formed from three or more mirrors in which the path taken by the light forms a polygon of finite area.
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Figure 7.4: Wavelength tuning with a grazing-incidence diffraction grating.

Frequency tuning may also be obtained by one or more birefringent filters. At its simplest a birefringent
filter is a plate of birefringent material with its optical axis in the plane of the plate. The normal to the
plate is usually oriented at Brewster’s angle with respect to the incident light in order to reduce reflection
losses. The retardance introduced by the plate depends on the wavelength of light and on the angle between
the optic axis and the direction of propagation within the plate. Those wavelengths for which the plate acts
as a full-wave plate are transmitted with no change of polarization state and zero reflection losses. For other
wavelengths the polarization state is changed and the transmission losses suffered at the rear surface of the
plate, and at other polarization-sensitive elements (such as the laser rod), are finite. The filter may be tuned
by rotating the plate about an axis parallel to its normal. In practice several such plates may be employed,
with different free spectral ranges, so as to select a single wavelength.



Lecture 8

Solid-state lasers

8.1 Solid-state lasers

A very large number of scientifically and commercially important lasers operate with solid-state gain media.
Solid-state lasers, as distinct from lasers operating in gases or liquids, are attractive since they can often be
made to be rugged and compact, there are no gas or liquid bottles with their associated handling equipment,
and there is no chemical hazard. Of course, solid-state lasers are restricted to operating in wavelength ranges
with good transmission through solid materials (i.e. infrared to ultraviolet). In addition, the time-averaged
output power that a solid-state laser can deliver is often limited by the need to remove waste heat from the
gain medium so as to avoid thermal distortion or even melting.

For many solid-state lasers the active lasant species are impurity ions doped into an insulating crystalline
or glassy solid. Figure 8.1 shows schematically the energy level diagram of the active laser ions in such a
system.

The spectroscopy of an impurity ion doped into a solid host depends on the strength with which the ion
interact with the surrounding ions. If this interaction is weak the energy levels of the ion will be similar to
those of the free ion, although the levels will generally be broadened by interactions with lattice phonons.
If the interaction with the surrounding ions is strong, the structure and labelling of the energy levels will be
very different; furthermore, transitions in which both photons and phonons are emitted become possible, as
discussed below.

The basic operation of a solid-state laser is as follows:

• The population inversion is achieved by optical pumping on broad pump bands 0 → 3. The broad
nature of the pump bands reduces the difficulty of carefully matching the frequency of the pump light
to that of the pump transition, and also allows pumping by broad-band sources such as flashlamps.

• Level 3 decays rapidly by non-radiative processes to populate a range of lower levels. The proportion
of decays from level 3 that populate the upper laser level 2 is known as the branching ratio ηbranch.

• If the pumping is sufficient to realize a population inversion, lasing occurs on the transition 2→ 1.

• If the lower laser level lies close to (E1 � kBT ), or is, the ground state it will have a large thermal
population. In this case there are essentially only 3 levels of importance, and the laser is classed as a
three-level laser.

• In contrast, if the lower level is well above (E1 � kBT ) the ground state, the laser is classed as a
four-level laser. To avoid build-up of population in the lower laser level, known as bottlenecking,
it is desirable for the lifetime of the lower level to be short.

8.2 The Nd:YAG laser

The most widely used laser based on doping of the active ion in an insulating solid is the Nd:YAG laser in
which Nd3+ ions are doped into an Yttrium Aluminium Garnet (YAG) crystalline host.

A simplified energy level diagram for Nd3+ ions doped in YAG is shown in Fig. 8.2. The ground
configuration of the Nd3+ ion comprises a Xe-like core plus three 4f electrons. The 4f orbitals are more
compact than the 5s and 5p orbitals, which are also occupied. As such, the mean radius of the 4f orbitals is
relatively small compared to the size of the Nd3+ ion and compared to the distance to the surrounding ions
of the lattice. As a consequence the interaction of the Nd3+ ions with surrounding ions is relatively weak,
and hence the energy levels are similar to those of the free ion.

47
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Figure 8.1: Schematic diagram of a general optically-pumped solid-state laser system.

All of the levels of interest to the Nd:YAG laser arise from the 4f configuration: this configuration is split
into terms and levels by the residual electrostatic and spin-orbit interactions, with further small splitting
arising from the weak interaction with the crystal field. The Nd3+ ions occupy equivalent sites in the YAG
lattice, and hence the centre frequencies of the transitions are the same for all ions1. The laser lines are
broadened by phonon interactions to a width of approximately 2× 1011 Hz.

The laser pump bands occur at wavelengths of approximately 730 nm and 800 nm, and in fact this absorp-
tion bands cause the otherwise colourless YAG crystal to appear purple. Ions excited to these levels decay
rapidly, and non-radiatively, with a lifetime of order 100 ns to the 4F3/2 level at approximately 11 500 cm−1.
There is a significant energy gap from the 4F3/2 level to the next lower level, and consequently the rate of
non-radiative decay of the upper laser level is relatively slow. Instead the level decays predominantly by
radiative emission to the 4I levels, with a lifetime of 230 µs. The strongest transition is to the lower laser
level, 4I11/2, at approximately 2 000 cm−1. The wavelength of the Nd:YAG laser is therefore2 1064 nm. We
should also note that the 4F3/2 and 4I11/2 levels are split into 2 and 6 levels respectively, and in fact lasing
occurs on two, closely-spaced transitions.

Since the lower laser level lies well above the ground state, its thermal population will be small relative
to that of the ground state (a fraction of approximately exp(−2000/210) ≈ 10−4). Further, the lower laser
level undergoes rapid (ns) non-radiative decay to the ground state, and consequently the population of the
lower laser level is small even during lasing. As such the Nd:YAG laser is a good example of a four-level
laser. The favourable lifetime ratio, and the selective pumping ensure that it is relatively easy to achieve a
population inversion in this system.

8.2.1 Threshold for pulsed operation

Figure 8.3 shows an idealized energy level diagram for calculation of the threshold pump energy for laser
oscillation. Assuming that the cavity losses are small, the threshold condition for laser oscillation may be
written,

1This is not the case for Nd3+ ions doped into glass, and consequently Nd:Glass lasers are inhomogeneously-broadened and
have a much larger linewidth.

2The use of non-linear crystals to frequency double, triple, or even quadruple the fundamental of the Nd:YAG laser to
wavelengths of 532 nm, 354 nm, and 266 nm is very common in applications of this laser.
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Figure 8.2: Energy levels of importance to the Nd:YAG laser.

2α0Lg = δloss + T2 (8.1)

2σ21N
∗
threshLg = δloss + T2, (8.2)

where N∗thresh is the threshold population inversion. Taking the losses on the right-hand side to be (say)
10%, and assuming a typical length of laser rod of Lg = 50 mm and a gain cross-section of 6 × 10−19 cm2,
we find N∗thresh ≈ 1.6× 1016 cm−3.

Now, for a four-level laser N1 ≈ 0, and hence we have,

N thresh
2 = N∗thresh. Threshold condition for YAG (8.3)

Having calculated the threshold upper level population density, it is straightforward to estimate the
energy required to do this. Taking the pump laser radiation to have a wavelength of λp ≈ 750 nm, the
energy required to raise each ion to the upper laser level is hc/λ ≈ 1.65 eV. The threshold pump energy is
therefore,

Ethresh
abs = N thresh

2

(
πa2Lg

) hc

λp
, (8.4)

where a and Lg are the radius and length of the laser rod. Taking a = 2 mm, Lg = 20 mm, we find
Ethresh

abs ≈ 1.8 mJ.
This last figure, however, is the energy that must be absorbed by the laser rod. The electrical energy

supplied must be larger by a factor of about 60 as follows:

×2 To achieve uniform pumping within the laser rod the doping and diameter must be such that only
approximately 50% of the pump photons are absorbed. If the Cr3+ concentration is higher, or the rod
diameter larger, population inversion is only achieved near the surface of the rod;

×8 Only approximately 12% of the output of the flashlamp will lie in the pump bands;

×2 Only about 50% of the pump light is geometrically coupled into the rod;

×1.7 Only 60% of the electrical energy is converted into light.

In our numerical example, the threshold pump energy that must be supplied to the flashlamps is therefore
of order 100 mJ.
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Figure 8.3: Simplified energy level diagram for calculation of the threshold pump energy in a four-level laser.
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Figure 8.4: Schematic diagram showing: (a) the general layout of a flashlamp-pumped solid-state laser; (b)
use of an elliptical pumping chamber to increase the efficiency with which flashlamp radiation is coupled
into the laser rod.

8.2.2 Threshold for c.w. operation

In order to calculate the pump power required to achieve continuous operation of the laser, we note that the
upper level population density will decay spontaneously at a rate N2/τ2. Consequently the threshold pump
power for c.w. operation is simply the threshold pump energy divided by the upper laser level lifetime. With
τ2 ≈ 230µs we find a threshold electrical pump power of order 400 W. This can be achieved relatively easily.

8.2.3 Practical devices

Figure 8.4 shows the general layout employed for flashlamp-pumping a solid-state laser. A key component is
the pumping chamber used to couple light from the flashlamp (or lamps) into the laser rod. A wide variety
of geometries for the pump chamber have been developed, including double-elliptical cavities for coupling
light from two flashlamps into a single laser rod, and cavities employing highly-reflecting diffusive surfaces
which can give very uniform illumination of the active medium. The flashlamp can also be coiled around
the laser rod which avoids the need for a cavity for the pump light but is less efficient.

The Nd:YAG laser can also be optically pumped with the radiation from high-power semiconductor, or
‘diode’, lasers and in particular GaAlAs lasers operating close to the 800 nm pump band of Nd:YAG. Diode
lasers of this type are very efficient, their electrical efficiency can reach 50%. Pumping with diode lasers has
several advantages over flashlamp pumping: all of the output lies within the pump band of the Nd:YAG
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Figure 8.5: Transitions between electronic levels: (a) when the equilibrium configuration co-ordinate is essen-
tially the same for the upper and lower electronic levels; (b) when the equilibrium configuration coordinates
are different for the two levels, causing the potential curves to be displaced. Vibrational wave functions are
illustrated schematically for the lowest vibrational level and an excited vibrational level. In (b) the position
of the zero-phonon line is shown by the dotted curve.

laser, improving efficiency and reducing thermal load on the system; the output is unidirectional and so
easier to couple in to the laser rod. As a result the overall electrical efficiency of diode-pumped Nd:YAG
(and other diode-pumped solid-state) lasers can exceed 1%.

8.3 Trivalent iron-group lasers

The ground-state configuration of the trivalent ions of the iron-group is [Ar]3dn. Since the 3d orbitals are
larger than the 4f orbitals of the trivalent rare earths, and the radius of the ionic size is smaller, the interaction
with the crystal field is much stronger — indeed it can be stronger than either the residual electrostatic or
spin-orbit interactions. As such the energy levels of the trivalent iron-group ions is very different from the
corresponding free ion.

8.3.1 Configuration coordinate picture

Since the interaction with the surrounding ions is strong, the energy levels of the active ion depend strongly
on the positions of the surrounding ions of the lattice. To simplify the multi-dimensional problem we
imagine parameterizing the distance between the active and surrounding ions with a single parameter: the
configuration coordinate Q. We can think of this as representing the average nearest-neighbour distance.

In principle the energy levels of this system can be solved using the same approach used to find the
energies of diatomic molecules. The Schrödinger equation for the system can be written as,

[
T̂n + T̂e + V (Q,R)

]
Ψ(Q, r) = EΨ(Q, r), (8.5)

where T̂n is the kinetic energy operator of the active and surrounding ions, T̂e the kinetic operator of the
electrons of the active ion, V (Q,R) the potential energy arising from the electrostatic interactions between
electrons and ions. By making the Born-Oppenheimer approximation, we find that the active ion moves
in a potential well, E(Q), which is the energy eigenvalue found by solving the Schrödinger equation for a
fixed value of Q. This configuration co-ordinate picture can be used to explain the main features of the
spectroscopy of ions which interact strongly with the surrounding ions.

8.3.2 Zero-phonon and vibronic transitions

Two types of transition occur within the configuration co-ordinate, depending on whether or not the equilib-
rium configuration co-ordinate, Q0, is different for the upper and lower levels of the transition, as illustrated
in 8.5(b).
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Just as we found for diatomic molecules, the strength of the transition is proportional to the square of
the overlap integral of the vibrational wave functions of the upper and lower level.

Suppose that the lower electronic level corresponds to the electronic ground-state, and let us consider
optical excitation to the upper electronic level. The vibrational wave functions for the lowest vibrational
level generally resemble a Gaussian curve, whilst those of high-lying levels are strongly peaked near the
classical turning points. Absorption from the lower electronic level will be dominated by transitions from
the lowest vibrational level, since this will have by far the largest thermal population.

If Q0 is similar for the upper and lower levels, the strongest absorption will therefore be to the lowest
vibrational level of the upper electronic level, as shown in 8.5(a), since the overlap integral for these two
vibrational wave functions will be large. The overlap integral will be comparatively small for transitions
to high-lying vibrational levels since the vibrational wave function of such levels show rapid oscillations
and are only large near the classical turning points, where the amplitude of the wave function of the lowest
vibrational level of the ground state is small. In any case, excitation to excited vibrational levels of the upper
electronic level will be followed by extremely rapid de-excitation to the lowest vibrational level by phonon
de-excitation. The emission spectrum will therefore be dominated by emission from the lowest vibrational
level of the upper electronic level. Just as for the absorption spectrum, and for the same reason, the emission
will be dominated by transitions to the lowest vibrational level of the electronic ground-state. In other words,
when the equilibrium co-ordinates of the upper and lower electronic levels are similar the absorption and
emission spectra are dominated by transitions from v′′ = 0 to v′ = 0, i.e. no change of vibrational quantum
number, or equivalently, no emission or absorption of lattice phonons. Transitions of this type are known as
zero-phonon transitions.

Very different behaviour occurs if the equilibrium configuration co-ordinates are different in the upper
and lower levels, as shown in 8.5(b) . Now absorption from the lowest vibrational level of the ground
electronic state is distributed over many vibrational levels of the upper electronic level, leading to absorption
extending to higher frequencies than that of the zero-phonon line. Absorption at frequencies above that of
the zero-phonon line corresponds to electronic excitation accompanied by excitation of lattice vibrations,
or, equivalently, emission of phonons. Following absorption, ions in excited vibrational levels of the upper
electronic level will undergo rapid phonon de-excitation to the lowest-lying vibrational level. Just as for
the absorption, emission will then occur to a wide range of vibrational levels of the ground electronic
state, producing a broad emission spectrum shifted to frequencies below that of the zero-phonon line. The
absorption and emission spectra are widely separated, the separation in frequency between the peaks of
the two spectra being known as the Stokes shift. Hence, transitions between electronic levels with different
values of Q0 are broad-band; they are known as vibronic transitions.

8.4 The ruby laser

In 1960 Maiman demonstrated laser oscillation in the optical region of the spectrum for the first time, using
as the active medium a crystal of ruby. The active ion in ruby is Cr3+ doped at a level of around 0.05% by
weight into sapphire (Al2O3).

The energy levels of interest to the ruby laser are shown schematically in Fig. 8.6. In ruby the Cr3+ ion
has broad, vibronic absorption bands corresponding to excitation to the 4T1 and 4T2 levels (in this notation
the superscript is equal to 2S+1, where S is the total spin quantum number, but the letter ‘T’ is not related
to the total orbital angular momentum, and instead indicates the symmetry of the wave functions).3 These
pump bands lie at approximately 24×103 and 18×103 cm−1 above the 4A2 ground state. These absorption
bands in the green and violet part of the visible spectrum cause a ruby laser rod to appear pink.4

Non-radiative relaxation of the 4T levels to the nearby 2E levels is very fast (τ ≈ 50 ns), and more
probable than radiative decay back to the ground state. Optical pumping on the 4T ← 4A2 pump bands
therefore results in efficient transfer of population from the ground state to the upper laser levels.

The upper laser level, the 2E level, has a similar configuration co-ordinate to the ground-state. Hence
transitions to the ground state occur on a narrow, zero-phonon transition.

The upper laser levels decay predominantly by emission of radiation on transitions to the ground state.
However, the radiative decay is forbidden by the electric dipole selection rules since: (i) the spin changes
(from S = 3/2 to S = 1/2); (ii) there is no change of parity, since the electron configuration does not change.
As a consequence the lifetime of the upper levels is long (τ2 ≈ 3 ms). The long lifetime of the upper level
means that it can act as a ‘storage’ level, which helps the formation of a population inversion.

The upper laser level is split into two levels separated by 29 cm−1. The relative populations of these two
levels is essentially thermalized by non-radiative transitions, and since kBT ≈ 200 cm−1 at room temperature
the population of the higher of these levels is exp(−29/210) ≈ 87% of that of the lower of the levels. Laser

3In older notation, used in many laser textbooks, these levels are labelled 4F1 and 4F2.
4Ruby gemstones contain a much higher concentration of Cr3+, nearer 1%, and consequently are a rich red colour.
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Figure 8.6: Energy levels of importance to the ruby laser. (a) configuration co-ordinate diagram; (b)
simplified energy level diagram. The energy separation of the 2E levels is exaggerated for clarity.

oscillation therefore usually occurs from the lower of the two levels (on the R1 transition) at 694 nm, although
lasing from the higher level (on the R2 transition) at 693 nm is possible with a frequency-selective cavity.

We see that the energy level structure of ruby has some desirable features for a laser system: a strong,
selective mechanism for pumping the upper laser level; a relatively long upper level lifetime which helps the
population inversion build-up. The major drawback, however, is that the lower laser level is the ground
state! As such it will have a very large, non-decaying population. The only way that lasing can occur in
ruby is if a large proportion (essentially half) of the ground state population can be transferred to the upper
laser levels. It is interesting to estimate the pump energy required to do this.

8.4.1 Threshold for pulsed operation

Figure 8.7 shows a simplified energy level diagram for calculating the pump energy to reach the threshold
for laser oscillation in ruby. Note that for simplicity we will treat the two upper laser levels as a single level
with a degeneracy g2 = 4, equal to that of the ground state.

Assuming that the cavity losses are small the threshold condition for laser oscillation may be written,

2σ21N
∗
threshLg = δloss + T2, (8.6)

where N∗thresh is the threshold population inversion.
The ruby laser is clearly a three-level system, and since level 3 decays so rapidly to the upper laser level

we have N3 ≈ 0. We may then write,

NT = N2 +N1 (8.7)

N∗thresh = N thresh
2 −N thresh

1 , (8.8)

where NT is the total Cr3+ ion density, and N thresh
2 and N thresh

1 the upper and lower population densities
at threshold. We then find, straightforwardly that,

N thresh
2 =

NT +N∗thresh

2
. (8.9)

In practice the threshold population inversion density required for lasing will be tiny compared to the
total ion density, and hence

N thresh
2 =

NT

2
. Threshold condition for ruby (8.10)
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Figure 8.7: Simplified energy level diagram for calculation of the threshold pump energy in a three-level
laser.

In other words, as hinted above, the main impediment to laser oscillation is the huge population density in
the ground state. Once the ground state has been sufficiently depleted to equalize the populations in the
upper and lower laser levels, the extra inversion require to overcome the cavity losses is relatively small.

Having calculated the threshold upper level population density, we use the same approach we employed
for the Nd:YAG laser to estimate the energy required to achieve this population density:

Ethresh
abs =

NT

2
πa2Lg

hc

λp
, (8.11)

where a and Lg are the radius and length of the laser rod. Taking λp ≈ 500 nm, a = 5 mm, Lg = 20 mm,
and NT = 2× 1019 cm−3, we find Ethresh

abs ≈ 6 J.
As before, the electrical energy supplied must be larger by a factor of about 60, and hence the threshold

pump energy that must be supplied to the flashlamps is of order 360 J.

8.4.2 Threshold for c.w. operation

As before the threshold pump power for c.w. operation is by dividing the threshold energy by the upper
laser level lifetime. With τ2 ≈ 3 ms we find a threshold electrical pump power of order 100 kW! The required
pump power can be decreased by reducing the volume of the laser rod, but continuous operation of the ruby
laser is still technically very difficult and because of this c.w. operation is of little practical importance.

8.4.3 Practical devices

The construction of ruby lasers is similar to that of Nd:YAG discussed above. Figure 8.8 shows the detail
of one design of ruby laser. Note that in this design pump chamber is ellipsoidal, rather than the cylinder
of elliptical cross-section shown in Fig 8.4. Notice also that the laser cavity is formed by coating the two
ends of the ruby rod with silver to provide essentially 100 % reflection from the left-hand end of the rod,
and partial transmission through the right-hand end.

8.5 The Ti:sapphire laser

The Ti:sapphire laser is an example of a laser operating on a vibronic transition. As such the linewidth of
the laser transition is very broad, approximately 100 THz — the largest of any laser. The large bandwidth
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Figure 8.8: Schematic diagram of the construction of a ruby laser.

enables the wavelength of the laser to be tuned between approximately 700 nm and 1000 nm, making it an
invaluable tool in a wide variety of scientific disciplines. The large bandwidth also means that Ti:sapphire
can generate and amplify very short laser pules: oscillators can generate pulses as short as 5 fs, which is only
a few optical cycles (generating pulses this short is technically difficult, but generating 30 fs pulses with a
Ti:sapphire laser is routine).

The Ti3+ ion has only a single 3d electron outside a closed core, and hence has a very simple system of
energy levels, as shown in Fig. 8.9(a). Absorption on the strong, vibronic 2E ← 2T2 transitions to excited
vibrational levels of the 2E level with wavelengths between 630 nm and 400 nm. The excited ions then decay
by rapid vibrational relaxation to the lowest vibrational level of the 2E level, which forms the upper laser
level. Ions in this level decay radiatively to excited vibrational levels of the ground electronic state with a
lifetime of 3.2µs. As should be clear, the Ti:sapphire laser is a four-level laser.

Although the bandwidth is very large, the large Einstein A-coefficient for the laser transition ensures
that the cross-section is relatively high: approximately 3× 10−19 cm2.

8.5.1 Practical implementation

A major difference between Ti:sapphire and the ruby and Nd:YAG lasers is the short fluorescence lifetime
of the upper laser level. Flashlamp pumping is therefore not usually very efficient owing to the much longer
duration of the flashlamp pulse. Instead, laser pumping is usually used, the most commonly employed pump
lasers being frequency-doubled Nd lasers (such as Nd:YAG).

Figure 8.9(b) shows the construction of a simple Ti:sapphire laser oscillator. The Ti:sapphire laser rod is 2
- 10 mm long, with end faces cut at Brewster’s angle so as to eliminate reflection losses for one polarization.
The z-folded cavity compensates for astigmatism. This arises because it is necessary to focus the pump
radiation to a small cross-sectional area in order to achieve sufficient population inversion. The design of
the optical cavity design must therefore be such that the transverse modes are also brought to a focus at the
Ti:sapphire crystal. However, the Brewster-cut faces of the crystal introduce astigmatism to the intra-cavity
beam — i.e. the divergence of the beam becomes different in the horizontal and vertical planes. In the cavity
shown in Fig. 8.9(b) this is corrected by the two concave mirrors used away from normal incidence, which
introduce astigmatism of the opposite sign to that caused by refraction at the laser rod.

Continuously-tunable c.w. Ti:sapphire lasers may be tuned between approximately 700 nm and 1000 nm,
with output powers of 1 - 2 Watts. Wavelength tuning may be accomplished by a variety of techniques.
In the design illustrated in Figure 8.9(b), tuning is achieved by adjusting a birefringent filter. In order to
reduce losses, the filter can be mounted at Brewster’s angle, and tuning achieved by rotating the filter about
an axis parallel to its normal. Other techniques may, such as prisms or gratings, be employed for selecting
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Figure 8.9: The Ti:sapphire laser. (a) Simplified energy level diagram. (b) Design of a tunable Ti:sapphire
laser oscillator.

the output wavelength. For the oscillator shown in Fig. 8.9(b) the linewidth of the laser output is typically
about 40 GHz; this may be reduced to better than 1 GHz by employing an intra-cavity etalon.


