
B2.III Revision notes: quantum physics

Dr D.M.Lucas, TT 2012

These notes give a summary of most of the “Quantum” part of this course, to complement Prof.
Ewart’s notes on Atomic Structure, and Prof. Hooker’s notes on Molecular Structure and Laser
Physics. They are not intended as a substitute for textbooks, as there are several excellent
books, but should serve to remind you of what was covered in the lectures so that you can refer
to the relevant sections of the recommended books for more details (see list of references at end).

1. Light-atom interaction

1.1 Introduction

We give in this section the standard semi-classical treatment of the light-atom interaction for
a hypothetical two-level atom. The treatment is called “semi-classical” because the atom is
treated quantum mechanically, but the light field is treated classically (a fully quantum treatment
requires the techniques of quantum electrodynamics, well beyond the scope of this course). It is
usually an excellent approximation to consider only two energy levels of an atom, since atomic
transitions are very narrow in frequency space and we can consider a particular transition between
two levels in isolation from other energy levels. We will consider two cases: (i) excitation by
broadband, low-intensity radiation (the “weak field” limit), where we relate this to the simple
rate equation treatment and Einstein B coefficient; (ii) excitation by monochromatic radiation
(the “strong field” limit).

1.2 Time-dependent perturbation theory

We remind ourselves of the standard techniques of time-dependent perturbation theory as applied
to a two-level system. (This should be familiar from second year QM, so this section serves
mostly to establish the notation.) We will not concern ourselves yet with the specific form of
the perturbation, except to specify that it depends only on time t. We consider a two-level
atom whose energy levels are E1 = h̄ω1 and E2 = h̄ω2 (where E2 > E1), so that the transition
(angular) frequency is ω0 = ω2 − ω1. Our starting point is the time-dependent Schrödinger
equation for the unperturbed atom, with Hamiltonian Ĥ0:

ih̄
∂Ψ

∂t
= Ĥ0Ψ (1.1)

whose solutions are (with n = 1, 2 labelling the states):

Ψn(r, t) = e−iωnt ψn(r) (1.2)

where
Ĥ0ψn = Enψn (1.3)

is the time-independent Schrödinger equation for the unperturbed eigenstates ψn. We now
include a time-dependent perturbation V̂ (t), so that the Hamiltonian becomes Ĥ = Ĥ0 + V̂ (t).
We write the wavefunction as a superposition of the solutions to the unperturbed system:

Ψ(r, t) = c1(t) e−iω1t ψ1(r) + c2(t) e−iω2t ψ2(r) (1.4)

where the expansion coefficients cn(t) are time-dependent and satisfy |c1|2 + |c2|2 = 1. On
substituting this expression for Ψ into the new time-dependent Schrödinger equation,

ih̄
∂Ψ

∂t
= [Ĥ0 + V̂ (t)]Ψ (1.5)
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we obtain (after cancelling some terms):

ih̄[ċ1e
−iω1tψ1 + ċ2e

−iω2tψ2] = V̂ c1e
−iω1tψ1 + V̂ c2e

−iω2tψ2 (1.6)

where ċ1 = dc1
dt

. Pre-multiplying by ψ∗
1 and integrating over all space gives:

ih̄ċ1e
−iω1t = c1e

−iω1tV11 + c2e
−iω2tV12 (1.7)

where the matrix elements Vnm are defined by

Vnm = 〈ψn|V̂ |ψm〉 =

∫

ψ∗
nV̂ ψmd3r (1.8)

We thus obtain an equation for the rate of change of the coefficient c1:

ċ1 = − i

h̄

(

c1V11 + c2V12e
−iω0t

)

(1.9)

where we have used ω0 = ω2 − ω1. Similarly (by pre-multiplying 1.6 by ψ∗
2 instead) we get an

equation for the rate of change of c2:

ċ2 = − i

h̄

(

c1V21e
+iω0t + c2V22

)

(1.10)

The matrix elements Vnm are functions of t but, given the perturbation V̂ (t), we can in principle
calculate them for any t because we know the eigenstates ψn of the unperturbed system. We
can then solve this pair of coupled ordinary differential equations 1.9 and 1.10 to find c1(t) and
c2(t) and hence the wavefunction Ψ(t) at any time t.

1.3 Light-atom interaction

Let us now consider the specific form of the perturbation V̂ (t) for a single-electron atom per-
turbed by electromagnetic radiation whose wavelength λ is much larger than the physical dimen-
sions of the atom (this is an excellent approximation for optical transitions, where λ ∼500 nm,
and we recall the size scale of atoms is set by the Bohr radius a0 ≈ 0.05 nm). The electric field
of the wave at the atom is then simply

E = E0 cosωt (1.11)

where E0 is the amplitude and ω is the angular frequency of the wave (not necessarily the same
as the atomic transition frequency ω0). The electron’s potential energy in the electric field of the
radiation is given by (−p.E) where p = −er is the atomic dipole moment. (We have ignored any
interaction between the atomic magnetic moment and the B-field of the wave: convince yourself
this is justified by considering the relative magnitudes of −µ.B and −p.E for a plane e.m. wave
with E = cB, taking µ ∼µB and p ∼ea0.) If we take the e.m. wave to be linearly polarized along
the x-axis, then the perturbation becomes

V̂ (t) = exE0 cosωt (1.12)

The diagonal matrix elements of the perturbation for our two-level atom are

V11 = 〈ψ1|ex|ψ1〉E0 cosωt (1.13)

V22 = 〈ψ2|ex|ψ2〉E0 cosωt (1.14)

and both of these vanish because atomic eigenstates have definite parity (either even or odd)
and the expectation-value integrals contain the odd-parity operator x. The off-diagonal matrix
elements are real quantities for bound states, so

V21 = V ∗
12 = V12 = 〈ψ1|ex|ψ2〉E0 cosωt (1.15)
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We define the Rabi frequency Ω by

Ω =
E0

h̄
〈ψ1|ex|ψ2〉 (1.16)

This important quantity characterizes the size of the interaction through the amplitude E0 of the
electric field of the radiation and the strength of the atomic response (the matrix element). We
shall see physically what frequency Ω represents when we turn to the case of the “strong field”
limit below. The coupled equations 1.9 and 1.10 for the time-evolution of the state coefficients
now reduce to

ċ1 = −iΩ cosωt e−iω0tc2 (1.17)

ċ2 = −iΩ cosωt e+iω0tc1 (1.18)

1.4 Weak-field limit

We first consider the solution of equations 1.17 and 1.18 in the so-called “weak field” limit, when
the perturbation is sufficiently small that the transition probability from one state to the other
remains low at all times, and seek to relate this to the simple rate-equation (Einstein coefficient)
approach to transition rates that was given in the lecture on selection rules. Physically, this
corresponds to excitation by broad-band radiation, containing a wide range of frequencies, such
that the spectral intensity in the region of the narrow atomic frequency response is small. If the
system is initially in state 1 then the weak-field limit implies

c2(t) ≪ c1(t) and c1(t) ≈ 1 (1.19)

for all t. We then have, from 1.18,

ċ2 ≈ −iΩ cosωt e+iω0t = − 1
2 iΩ

(

ei(ω+ω0)t + e−i(ω−ω0)t
)

(1.20)

We integrate
∫ t

0 dt′ to find c2(t):

c2(t) = − 1
2Ω

[

ei(ω+ω0)t
′

(ω + ω0)
− e−i(ω−ω0)t

′

(ω − ω0)

]t

0

= + 1
2Ω

[

1 − ei(ω+ω0)t

(ω + ω0)
− 1 − e−i(ω−ω0)t

(ω − ω0)

]

(1.21)

where we have used the initial condition c2(0) = 0. Typically we are interested in the response
of the atom to radiation whose frequency ω is close to the transition frequency ω0, so that

|ω − ω0| ≪ (ω + ω0) (1.22)

This means that we can safely neglect the first term in brackets in the equation above: this
important simplification is called the rotating wave approximation (RWA). Within the RWA, we
have:

c2(t) = − 1
2Ω

(

1 − e−i(ω−ω0)t

(ω − ω0)

)

= − 1
2Ωe−i(ω−ω0)t/2

(

ei(ω−ω0)t/2 − e−i(ω−ω0)t/2

(ω − ω0)

)

(1.23)

We then find that the transition probability (that is, the probability of finding the atom in state
2 at time t) is

|c2(t)|2 =

(

Ω

2

)2 (

sin 1
2 (ω − ω0)t

1
2 (ω − ω0)

)2

(1.24)

We wish to relate this to the Einstein coefficient B12 for stimulated absorption that appears in
the rate equations. We recall that the transition rate for stimulated absorption was (ρB12) where
ρ(ω) is the spectral energy density of the radiation. The volume energy density of radiation in
a frequency interval dω is related to the electric field amplitude E0 by

ρ(ω)dω = 1
2ǫ0E

2
0 (1.25)
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where the factor of 1
2 arises from < cos2 ωt >= 1

2 . Using the definition of the Rabi frequency
above we then have

Ω2 =
E2
0 |〈ψ1|ex|ψ2〉|2

h̄2 =
2|〈ψ1|ex|ψ2〉|2

ǫ0h̄
2 ρ(ω)dω (1.26)

Substituting this in equation 1.24 and integrating over a range ±∆ω around the atomic transition
gives

|c2(t)|2 =
|〈ψ1|ex|ψ2〉|2

2ǫ0h̄
2

∫ ω0+∆ω

ω0−∆ω

ρ(ω)

(

sin 1
2 (ω − ω0)t

1
2 (ω − ω0)

)2

dω (1.27)

We assume that the response of the atom is narrow compared with the broad-band radiation, so
that we can replace ρ(ω) by the constant value ρ(ω0) and take it outside the integral; since most
of the contribution to the integral comes from this narrow range, we can also take the integration
limits to infinity, where we find the integral has the value 2πt. Thus we obtain for the transition
rate (i.e. the transition probability per unit time):

|c2(t)|2
t

=
π

ǫ0h̄
2 |〈ψ1|ex|ψ2〉|2ρ(ω0) (1.28)

This was for the particular case of light linearly-polarized along the x-axis; more generally we
have for unpolarized light a transition rate

R12 =
π

3ǫ0h̄
2 |〈ψ1|er|ψ2〉|2ρ(ω0) (1.29)

Equating this to the transition rate (ρB12) in the rate equation treatment gives us finally an
expression for the Einstein coefficient

B12 =
π

3ǫ0h̄
2 |〈ψ1|er|ψ2〉|2 (1.30)

and through the relations A21 = (h̄ω3
0/π

2c3)B21 and B21 = B12 we can also obtain an expression
for the A coefficient (giving the spontaneous transition rate) in terms of atomic quantities,

A21 =
ω3

0

3πǫ0h̄c3
|〈ψ1|er|ψ2〉|2 (1.31)

The remarkable result here is that, thanks to the Einstein treatment, we are able to calculate A21

from atomic properties (the wavefunctions), without having to know anything about quantum
electrodynamics, even though spontaneous emission can only be explained by proper quantization
of the radiation field.

1.5 Strong field limit

We now wish to relax the condition 1.19 and consider strong excitation by monochromatic
radiation of frequency ω (for example, a laser). The coupled equations for the state coefficients
1.17 and 1.18 are

ċ1 = −iΩ cosωt e−iω0tc2

ċ2 = −iΩ cosωt e+iω0tc1

If we write cosωt = 1
2 (eiωt + e−iωt) then the first of these becomes

ċ1 = − 1
2 iΩ

(

ei(ω−ω0)t + e−i(ω+ω0)t
)

c2 (1.32)

We can see that making the rotating wave approximation |ω−ω0| ≪ (ω+ω0) will again mean that
we can neglect the rapidly-oscillating term e−i(ω+ω0)t when we come to integrate the equations.
Within the RWA, we thus have

ċ1 = − 1
2 iΩe+itδc2 (1.33)

ċ2 = − 1
2 iΩe−itδc1 (1.34)
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where we have written δ = ω−ω0 for the “detuning” of the radiation from the atomic transition
frequency ω0.

1.5.1 Resonant excitation

For the case ω = ω0, i.e. δ = 0, the solution is particularly simple. We have

c̈2 = − 1
4Ω2c2 (1.35)

so the state coefficient c2 just undergoes simple harmonic motion! For the initial condition
c2(0) = 0 (i.e. the atom starts in state 1), the solution (up to an overall phase factor) is:

c1(t) = i cos 1
2Ωt (1.36)

c2(t) = sin 1
2Ωt (1.37)

which give for the state probabilities:

|c1(t)|2 = cos2 1
2Ωt (1.38)

|c2(t)|2 = sin2 1
2Ωt (1.39)

So the system oscillates from state 1 to state 2 and back again with a period 2π/Ω: at last we
see the physical significance of the Rabi frequency. This behaviour, called Rabi oscillation (or
Rabi flopping) is completely different to the prediction of the rate equation picture, where all
that can happen in the limit of strong excitation is that the populations of the two states reach
a steady-state value of 1

2 . It is a coherent quantum effect, arising from the equations for ċ1 and
ċ2.

If the resonant radiation is switched on at time t = 0 and off at time t = π/Ω then an
atom initially in state 1 will be transferred to state 2 and vice versa; such a pulse of radiation is
called a “π-pulse”. Similarly a pulse of duration such that Ωt = π/2 is called a “π

2 -pulse”; some
examples for the starting state 1:

π-pulse: |1〉 −→ |2〉
π
2 -pulse: |1〉 −→ 1√

2
(i|1〉 + |2〉)

2π-pulse: |1〉 −→ −i|1〉

(You might have wondered how these superposition states you have discussed for so long in
quantum mechanics can actually be created : now you know a good method!) Note that a “2π-
pulse” is not equivalent to the mathematical identity operation, because the state amplitudes

cn have period 4π/Ω whereas the probabilities |cn|2 have period 2π/Ω. This leads to different
conventions in different references as to what is meant by a “π-pulse”; you have been warned. . .

1.5.2 Off-resonant excitation

For the case δ 6= 0 the solution of 1.33 and 1.34 is not quite so trivial, but sufficiently straight-
forward that we leave it as an exercise for the reader. The result, for the probability of finding
the system in state 2 at time t given the initial condition c2(0) = 0, is:

|c2(t)|2 =
Ω2

Ω2 + δ2
sin2

(

t

2

√

Ω2 + δ2
)

(1.40)

Thus for off-resonant excitation the system is never found in state 2 with unity probability, unlike
the resonant case, and the population oscillates with a more rapid angular frequency given by√

Ω2 + δ2.
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1.6 Bloch sphere

A useful way of visualizing the state of a two-level system, and the effect of operations like π-
pulses, is the Bloch sphere. The state of the system is represented by a vector of unit length, the
Bloch vector, whose tail is at the origin and whose tip lies on the surface of the unit sphere. The
relative amplitudes and complex phases of the two states |1〉 and |2〉 in a general superposition
state are represented by the polar angle θ and azimuthal angle φ. Once again there are different
conventions; we choose

c1|1〉 + c2|2〉 = sin( θ
2 )|1〉 + eiφ cos( θ

2 )|2〉 (1.41)

Note that the normalization condition |c1|2 + |c2|2 is automatically satisfied. Thus state |1〉
lies at the “south pole” (x, y, z) = (0, 0,−1) of the Bloch sphere, state |2〉 lies at the “north
pole” (0, 0,+1) and points around the “equator” represent superposition states of the form
1√
2
(|1〉+ eiφ|2〉). Rabi oscillations now correspond to rotation of the Bloch vector at an angular

frequency Ω; the axis of rotation depends upon the detuning δ of the driving field (see for example
pictures in Foot, §7.3).

The observant reader will have asked himself what has happened to the time-dependent phase
factors e−iω1t and e−iω2t which were present in our original superposition state 1.4 (the really

observant reader will have already asked herself this question where the example π/2-pulse was
given above). The answer is that we have absorbed these in the states, so that |1〉 = e−iω1t|ψ1〉
and similarly for |2〉. Since a global phase on the whole wavefunction is irrelevant, this is
equivalent to a phase factor e−iω0t multiplying |ψ2〉. Thus we can imagine two alternative
pictures: the “lab frame” in which the Bloch vector representing a superposition state such as

1√
2
(|ψ1〉 + e−iω0t|ψ2〉) (1.42)

lies in the xy-plane and rotates around the z-axis with angular frequency ω0 = ω2 − ω1, or we
can jump into a “rotating frame” which rotates with angular frequency ω0 and consider this to
the same superposition state as

1√
2
(|1〉 + |2〉) (1.43)

which lies stationary in the xy-plane. Often one works in the rotating frame because it eliminates
the need to keep track of the relative phase factor e−iω0t between the two states.

1.7 Damping: rate equations revisited

Throughout our treatment of the atom-light interaction we have neglected any damping pro-
cesses, such as spontaneous decay from the upper level to the lower level. A treatment including
the effects of damping is beyond the scope of this course, but of course it is enormously impor-
tant in real situations. Its effect, as might seem reasonable intuitively, is to “damp” the Rabi
oscillations (an imperfect analogy is the motion of a damped harmonic oscillator), but in such
a way that we retrieve the behaviour predicted by the simple rate equation approach (at least
in the limit of long time or strong damping). This explains why a rate equation treatment is
still useful in the context of laser physics, despite the fact that the radiation field is intense and
monochromatic. (The interested reader is referred to the discussion in Fox §9.5.)

Further reading

Atom-light interaction: Foot chapter 7, Fox chapter 9.
Pure and mixed states, density matrix: Fox §9.2.
Density operator and density matrix: Binney & Skinner, §6.3.
Foot: “Atomic Physics”, C.J.Foot, Oxford Master Series, 2005.
Fox: “Quantum Optics”, M.Fox, Oxford Master Series, 2006.
Binney & Skinner: “The Physics of Quantum Mechanics”, J.Binney and D.Skinner, Cappella,
2010 (3rd edition).
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