
Scattering States

Bhas Bapat

IISER Pune

March 2018

Bhas Bapat Scattering States



Scattering in a central potential

The problem of collision of two bodies interacting via a central potential U(r) can be
reduced to the motion of their reduced mass (m) in a force field centred on the
centre-of-mass of the two bodies.
We will work in the C-o-M frame and take the incident particles along the ẑ axis.
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Incident free particle

A free particle with a definite momentum ~k along ẑ is described by an incident plane
wave

ψin = exp(ikz)

and the corresponding probability current density is

jin =
i~
2m

[ψin∇ψ∗in − ψ∗in∇ψin]

=
2~k
2m

(= v)
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Incident wave in terms of radial waves

The incident plane wave can be expanded in terms of the radial waves

ψin = exp(ikz) =
1

2ikr

∞∑
0

(2`+ 1)Pl(cos θ)
[
(−)`+1 exp(−ikr) + exp(ikr)

]
This form will be useful later when we consider the scattering probability
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Scattered Waves
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Scattered Waves

At large distance from the scattering centre the amplitude of the scattered wave must
fall off as 1/r to conserve the flux of particles. Thus the scattered wave must be of the
form of a spherical wave with an angular dependence

ψsc(r →∞) = f (θ)
exp(ikr)

r

The probability per unit time that the scattered wave will cross a surface d ~S is given
by ~jsc · d ~S , and since we are looking at radial waves, this reduces to |jsc |r2dΩ
jsc is readily found from

jsc =
i~
2m

[
ψsc r̂

d

dr
ψ∗sc − ψ∗sc r̂

d

dr
ψsc

]
=

~k
mr2
|f (θ)|2

=
v

r2
|f (θ)|2
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Scattered Waves

Thus, the probability per unit time that the scattered wave crosses an area dS is

v

r2
|f (θ)|2 · r2dΩ.

The ratio of this probability to the incident current density is|f (θ)|2dΩ

This has dimensions of area. This quantity is the quantum-mechanical analogue of the
classical cross-section σ.
Thus |f (θ)|2 gives the probability per unit time per unit incident flux that the scattered
wave wave emerges in a unit solid angle, and hence

dσ

dΩ
= |f (θ)|2

f (θ) is called the scattering amplitude
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Schrödinger Equation for a central potential

The quantum mechanical scattering problem therefore reduces to the problem of
obtaining f (θ) i.e. obtaining f (θ) by solving the Schrödinger equation for positive
energies.
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Schrödinger Equation for a central potential

The Schrödinger equation for positive energies is[
− ~2

2m
∇2 + U(r)

]
ψ =

~2k2

2m
ψ

where E = ~2k2/2m, and k is the wavenumber of the incident particles
The general solution is taken in the variable separable form

ψ =
∞∑
`=0

A`Rk`P`(cos(θ))

There is no φ-dependence in the solution, since the problem has a complete azimuthal
symmetry around the ẑ axis
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Schrödinger Equation for a central potential

The potential is purely radial, so we need to focus on the radial part of the Schrödinger
equation: [

1

r2

(
d

dr
r2

d

dr

)]
R − `(`+ 1)

r2
R +

2m

~2
[E − U(r)]R = 0

If U(r) = 0, we have the case of a free particle of momentum ~k , and the equation for
R(r) is considerably simplified

d2R

dr2
+

2

r

dR

dr
+

[
k2 − `(`+ 1)

r2

]
R = 0

Bhas Bapat Scattering States



Free Particle States (U = 0)

Case 1: ` = 0
The radial equation becomes

d2(rR)

dr2
+ k2(rR) = 0

There are four solutions:

R(r) =
sin(kr)

r
,

cos(kr)

r
,

exp(±ikr)

r

and of these the last two represent ingoing and outgoing waves, while only the first
solution is finite at r = 0.
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Free Particle States (U = 0)

Case 2: ` 6= 0
If, instead of solving for R(r), we solve for the function u(r) = r lR(r), the equation is
simplified

d2uk`
dr2

+
2(`+ 1)

r

duk`
dr

+ k2uk` = 0

To solve this, we differentiate once again w.r.t. r :

d3uk`
dr3

+
2(`+ 1)

r

d2uk`
dr2

+
[
k2 − 2(`+ 1)

] duk`
dr

= 0
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Free Particle States (U = 0)

Case 2: ` 6= 0 (contd.)
If we set

duk,`
dr

= ruk,`+1(r)

the third order differential equation becomes

d2uk,`+1

dr2
+

2(`+ 2)

r

duk,`+1

dr
+ k2uk,`+1 = 0

That is, the same equation is satisfied by uk,`+1. This implies we have the recursion
relation

uk,`+1(r) =
1

r

duk,`
dr

and hence

uk`(r) =

[
1

r

d

dr

]`
uk0
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Type-I Solutions

Recall that uk0 is already known, so we have the radial solutions for all `
(the sin and exp functions are physically acceptable)
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Type-I Solutions

If we choose uk0 = sin(kr) then we get

Rkl(r) = (−)l
2r l

k l

[
1

r

d

dr

]l (sin(kr)

kr

)
The behaviour of Rkl at large r can be found by observing the term in the previous
equation that decreases the slowest.
Each differentiation of the RHS creates two new terms, one with an increases power of
1/r and the other that that adds π/2 to the argument of the sin function. (i.e. the sin
function toggles between sin and cos).
The sin term has a factor 1/r so as r →∞ this is the only term that is significant
Hence, as r →∞,

Rkl(r) ≈ 2 sin(kr − lπ/2)

r
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Type-II Solutions

The same considerations apply if we take uk0 = exp(±ikr)
The recursion relation yields

R±k`(r) = (−)`A`
r `

k`

[
1

r

d

dr

]` [exp(±ikr)

kr

]
and the asymptotic form is

Rk`(r) ≈ A

[
exp(±ikr − `π/2)

kr

]
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Solution in the presence of a potential

In the foregoing part we looked at the special case of a free particle.

This was done so as to meet the physical reality, that irrespective of the form of the
potential, it tends to zero asymptotically, and this limiting case is represented by our
foregoing discussion.
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Solution in the presence of a potential

Thus, in the asymptotic limit, the solutions are of the forms discussed earlier, with the
generalisation that there can be an additional phase factor

Rk`(r) ≈ A

(
exp(±ikr − `π/2 + δ`)

kr

)
Rk`(r) ≈ 2 sin(kr − `π/2 + δ`)

r

The phase factor allows the asymptotic solution to approach the correct limit in the
region with the full form of U(r) in the Schrödinger equation as r → 0

The phase factor can only be determined by solving the exact equation in the limit of
small r ; there is no general formula for δl .
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Solution in the presence of a potential

The full solution ψkl is then

ψk`(r →∞) =
∞∑
0

A`
2 sin(kr − `π/2 + δ`)

r
P`(cos θ)

If we choose

A` =
1

2k
(2`+ 1)i ` exp(iδ`)

and write ψ in the exp(±ikr + δ`) form, then the asymptotic form of ψ becomes

ψkl(r →∞) =
1

2ikr

∞∑
0

(2`+ 1)i leiδ`
[
(−i)`ei(kr+δ`) − (i)`e−i(kr+δ`)

]
P`(cos θ)
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Comparison with the Scattering Solution

The case of scattering is a special case of the solution with a non-zero potential in
which the incident and outgoing conditions are separately specified
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Comparison with the Scattering Solution

As seen at the beginning

ψin = exp(ikz)

The wavefunction in the outgoing state is given by a sum of the incident and the
scattered waves ψout = ψin + ψsc

ψout = exp(ikz) + f (θ)
exp(ikr)

r
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Comparison with the Scattering Solution

Recall, that the incident wave can be expanded in terms of the radial waves

exp(ikz) =
1

2ikr

∞∑
0

(2`+ 1)Pl(cos θ)
[
(−)`+1 exp(−ikr) + exp(ikr)

]
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Comparison with the Scattering Solution

The difference between the general asymptotic wavefunction and the incident
wavefunction

(as r →∞) ψk` − exp(ikz)

has no terms containing exp(−ikr).

In other words the difference function has only outgoing radial waves
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Comparison with the Scattering Solution

Given that

ψout = exp(ikz) + f (θ)
exp(ikr)

r

This means that the f (θ) is equal to the coefficient of exp(ikr)/r in the difference
This yields

f (θ) =
1

2ik

∞∑
0

i `(2`+ 1)P`(cos θ)
[
e2iδ` − 1

]
Thus, if the phase shifts are known, the scattering amplitudes and hence the

differential cross-section are determined.
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Comparison with the Scattering Solution

Integrating the previous expression, we get the required cross-section

σ = 2π

∫ π

0
|f (θ)|2 sin θ dθ

Since the Legendre polynomials are orthonormal, and

|P`(cos θ)|2 sin θ dθ = 2/(2`+ 1)

we get for the total cross-section

σ =
4π

k2
2
∞∑
0

(2`+ 1) sin2(δ`).
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Approximate Solutions
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Approximate Solutions

The solution to the free particle Schrödinger equation

∇2ψ + k2ψ = 0; E = ~2k2/2m

is ψ(0) = exp(i~k · ~r)

Without loss of generality, we may take ψ0 = exp(ikz), if needed

Let ψ = ψ(0) + ψ(1) be the solution to the Schrödinger equation with the potential:

∇2ψ + k2ψ − 2mU(r)

~2
ψ = 0

Substituting, ψ = ψ(0) + ψ(1) in the above, we get

∇2ψ(1) + k2ψ(1) =
2mU(r)

~2
[
ψ(0) + ψ(1)

]
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Approximate Solutions (Perturbative Solutions)

The solution to the previous equation is

ψ(1)(~r) = −2m

~2
1

4π

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′)

ei
~k·(~r−~r ′)

|~r − ~r ′|
dτ ′

As the simplest approximation we can ignore ψ(1)(~r ′) on the RHS, and write the
solution as

ψ(~r) = ψ(0) − 2m

~2
1

4π

∫
ψ(0)(~r ′)U(r ′)

ei
~k·(~r−~r ′)

|~r − ~r ′|
dτ ′

To determine the conditions under which the perturbative solution is valid, we seek the
conditions under which magnitude of the correction to the wavefunction is small, for
this we need to estimate the magnitude of the integral above.
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Validity of the Perturbative Solutions – Case I

If the energy of the particle is small, i.e. if a is a “range” scale of the potential,
k < 1/a, then in the integrand we can set

exp(ikr) ≈ 1

The order of magnitude of the integral is thus |ψ(0)| · |U|4πr2/r

ψ(1) ≈ 2m

~2
1

4π
|ψ(0)| · |U| · 4πa2

≈ 2ma2

~2
|ψ(0)| · |U|

Requiring |ψ(1)| < |ψ(0)|, we get the condition of validity as

|U| � ~2

2ma2
or

|U| � ~2k2

2m
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Validity of the Perturbative Solutions – Case II

The second condition for the validity of the perturbative approach is when the energy
of the particle is large: ka� 1. In this case the exponential part of the integral cannot
be ignored.

Let us set ψ(1) = g · exp(ikz), where g � 1 and work out the equation for ψ(1),
keeping only those terms that have exp(ikz)

∂2

∂z2
geikz + k2geikz =

2m

~2
Ueikz

Noting, that

∂2

∂z2
eikz = −k2

∂

∂z
eikz = ik

|g |2 � |g | � 1
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Validity of the Perturbative Solutions – Case II

we get

2ik
∂g

∂z
=

2mU

~2

g =
−im
~2k

∫
U dz

|g | =
mUa

~2k

Requiring |g | � 1, we have the condition

U � ~2k/ma

� ~v/a
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Validity of the Perturbative Solutions – Case III

For the special case of the Coulomb potential (very important in atomic physics !), the
condition for validity of the perturbative formulation appear would fail, because there
is no definable “range” of the potential, (a). However, we note, that U(r) = α/r for
this potential, so we can write the condition as

α

r
� ~v/r

i.e.
α

~v
� 1

Bhas Bapat Scattering States



Approximate Solutions : Scattering Amplitude
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Approximate Solutions : Scattering Amplitude

Let us re-visit the perturbative solution, with a goal to obtain the scattering amplitude

ψ(1)(~r) = −2m

~2
1

4π

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′)

ei
~k·(~r−~r ′)

|~r − ~r ′|
dτ ′

Earlier, in order to obtain the validity condition, we had ignored the ψ(1)(~r ′) on the
RHS.
In the full form, i.e. not caring about the number of terms in the perturbative
expansion, this equation is

ψ(~r) = ψ(0) − 2m

~2
1

4π

∫
ψ(~r ′)U(r ′)

ei
~k·(~r−~r ′)

|~r − ~r ′|
dτ ′

This is called the Lippmann–Schwinger Equation
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Approximate Solutions : Scattering Amplitude

At large distances from the scatterer in the (elastic) scattering problem, we can make
the approximation

|~r − ~r ′| = r [1− k̂ ′ · r ′ + 1

2
(k̂ · r ′)2 + . . .]

so that

ei
~k·(~r−~r ′)

|~r − ~r ′|
≈ eikr

r
e−i

~k ′·~r ′
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Approximate Solutions : Scattering Amplitude

Hence, in the equation

ψ = ψ(0) − 2m

~2
1

4π

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′)

ei
~k·(~r−~r ′)

|~r − ~r ′|
dτ ′

we get

ψ = ψ(0) − 2m

~2
1

4π

eikr

r

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′) e−i

~k ′·~r ′dτ ′

Comparing this with

ψout = exp(ikz) + f (θ)
exp(ikr)

r

we immediately recognise

f (θ) = −2m

~2
1

4π

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′)e−i

~k ′·~r ′dτ ′
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Approximate Solutions : Scattering Amplitude

We can rewrite

f (θ) = −2m

~2
1

4π

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′)e−i

~k ′·~r ′dτ ′

as

f (θ) = −2m

~2
1

4π

∫
ψ(~r ′)U(r ′)ψ

(0)∗
k ′ (~r ′)dτ ′

From this last equation, we see that to calculate f (θ) we need to know ψ(~r ′).

But to obtain ψ(~r ′) we need to know f (θ).

This can be calculated by an iterative correction to ψ(~r ′): initially set ψ(~r ′) = ψ(0)(~r ′)
(zeroth approximation), and then do a serial calculation.
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Approximate Solutions : Born Approximation

This series expression is called the Born Series for the scattering amplitude.
The leading term is called the First Born Approximation

fBorn = − 1

4π

2m

~2
〈ψ(0)

k ′ |U|ψ(0)
k 〉

The change in the momentum of the incident particle is ~q = ~k ′ − ~k. We can write the
integral in terms of q:

fBorn = − 1

4π

2m

~2

∫
d3r ′e−iqr

′
U(r ′)

The first Born term is the Fourier transform of the potential from ordinary space to the
momentum transfer space

Note that |q| = 2k sin(θ/2)
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Born Approximation : Coulomb Case

For the case of the Coulomb potential, we saw earlier that the boundary condition in
terms of a, k cannot be applied. In the present context this implies that the intergral
for calculating f does not converge.

So, we do a trick: instead of the Coulomb potential, we solve for a screened Coulomb
potential

Us(r) =
α exp(−βr)

r

which falls off faster than 1/r so that the integral can be evaluated, and then after
obtaining the integral let β → 0
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Born Approximation : Coulomb Case

This yields

fBorn = − 1

4π

2m

~2
α

β2 + q2

which in the limit β → 0 becomes

fBorn(θ) =
2m

~2
α

[2k sin(θ/2)]2

The differential cross-section is

dσ

dΩ
= |fBorn(θ)|2 =

[
2m

~2

]2 α2

16k2 sin4(θ/2)

=
(Z1Z2)2

(2mv2)2 sin4(θ/2)

Bhas Bapat Scattering States



Approximate Solutions (Using Green’s Function)
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Approximate Solutions (Using Green’s Function)

Returning to the wavefunction, we recall that

ψ = ψ(0) − 2m

~2
1

4π

eikr

r

∫
[ψ(0)(~r ′) + ψ(1)(~r ′)]U(r ′) e−i

~k·~r ′dτ ′

which is usually written as

ψ = ψ(0) +

∫
G (~r , ~r ′)

2m

~2
U(r ′)ψ(~r ′)dτ ′

where G is the Green’s function

G = − 1

4π

ei
~k·(~r−~r ′)

|~r − ~r ′|
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Approximate Solutions (Using Green’s Function)

The iterative solution to ψ can be written in a coordinate-free form as

|ψ〉 = |ψ(0)〉+ Ĝ Û|ψ(0)〉+ Ĝ ÛĜ Û|ψ(0)〉

in which the integral over dτ ′ is implied, and Û includes the factor 2m/~2.
Since

f (θ) =
2m

~2
1

4π

∫
ψk(~r ′)U(r ′)ψ

(0)∗
k ′ (~r ′)dτ ′

we can also write f (θ) in a simpler (appearing!) form

f (θ) = − 1

4π
〈ψ(0)

k ′ |U(r ′)|ψk〉

This second form is very useful in identifying the series solution for f (θ)

f (θ) = − 1

4π
〈ψ(0)

k ′ )|Û + ÛĜ Û + ÛĜ ÛĜ Û + . . . |ψ(0)
k 〉
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