Bohr Model Summary

Energy levels are discrete

$$E_n = \frac{me^4}{32\pi^2\hbar^2\epsilon_0^2}\,\frac{1}{n^2}$$

Radii are discrete in the Bohr model

$$r_n = \frac{4\pi\epsilon_0\hbar^2}{me^2} n^2$$

The radius for n = 1 is given the special name, *Bohr Radius*, a_0 Thus

$$r_n = a_0 n^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Schrödinger Model

Energy levels are the same as in the Bohr model

There is no definite radii, instead there is a distribution of the electron positions for different quantum numbers n, ℓ, m_{ℓ}

The probability density of the electron cloud is given by

$$P(\vec{r})d^3\vec{r} = |R_{nl}Y_{lm}|^2 r^2 d\Omega$$

The radial probability density alone is given by

$$P(r)dr = 4\pi r^2 |R_{nl}|^2 dr$$

So one can speak of the most probable radius \tilde{r} and the average radius $\langle r \rangle$. It turns out that

$$\tilde{r}_{n=1} = a_0, \quad \langle r \rangle_{n=1} = 3a_0/2$$

Radial Wavefunctions

The first few radial wavefunctions are

$$R_{10}(r) = \exp(-r)$$

$$R_{20}(r) = \exp(-r/2) \times (1 - r/2)$$

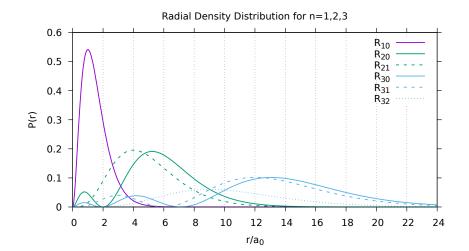
$$R_{21}(r) = \exp(-r/2) \times (r/2)$$

$$R_{30}(r) = \exp(-r/3) \times (1 - 2r/3 + 2r^2/9)$$

$$R_{31}(r) = \exp(-r/3) \times (2r/3 - r^2/9)$$

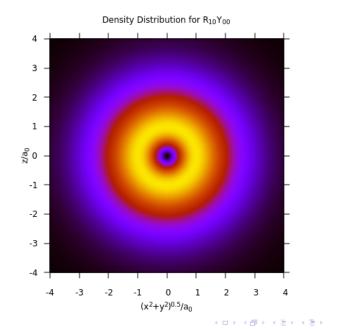
$$R_{32}(r) = \exp(-r/3) \times (r/3)^2$$

Radial Probability Distributions



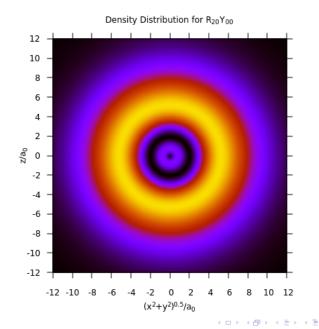
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1s probability distribution ($\phi = 0$ plane)



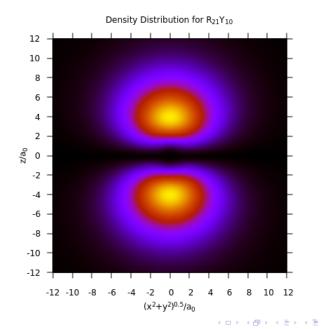
Sac

2s probability distribution ($\phi = 0$ plane)



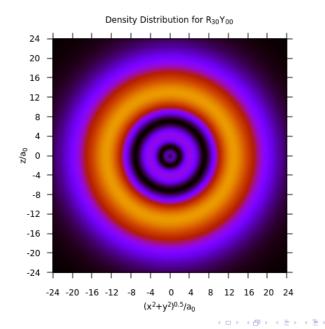
Sac

2p probability distribution ($\phi = 0$ plane)



SOC

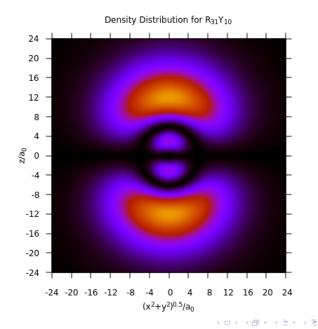
3s probability distribution ($\phi = 0$ plane)



Sac

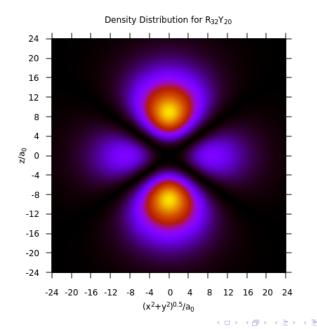
э

3p probability distribution ($\phi = 0$ plane)



SOC

3d probability distribution ($\phi = 0$ plane)



E ∽a~