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Course synopsis

Outline syllabus

PART I: ATOMIC PHYSICS. Quantum mechanics of the hydrogen atom. Radiative emission by atoms
and selection rules. Shell model and alkali spectra. Angular momentum coupling. Helium and the ex-
change energy. Spin-orbit coupling and spectral fine structure. The Zeeman and Stark effects.

Part II: LASER PHYSICS. Stimulated emission. Einstein’s A and B coefficients. Population inversion.
Laser modes. Examples of lasers systems and their applications. Laser cooling of atoms.

Lecture Notes

1. Introduction and revision of hydrogen

2. Radiative transitions

3. The shell model and alkali spectra

4. Angular momentum

5. Helium and exchange symmetry

6. Fine structure

7. External fields: the Zeeman and Stark effects

8. Lasers I: stimulated emission

9. Lasers II: cavities and examples

10. Laser cooling of atoms

Assessment

The course is assessed by Homework (15%) and Exam (85%). Students frequently ask whether all
the material in these lecture notes is examinable. The answer to this is no, but not in simple way. Some
derivations are clearly included for pedagogical purposes, and you will not be asked to reproduce them
in the exam. Most of these are given in the appendices, which are not included in the printed notes, and
can be downloaded from the web. In other cases, I might expect you to be aware of the consequences
of a detailed derivation, although I would not expect you to reproduce the derivation in the exam. One
example is the derivation of the spin-orbit perturbation in Chapter 7. Here, I expect you to know that the
perturbation is proportional to l · s, and that it increases with Z, but I have never asked for a detailed
derivation in the exam. Similarly, I have never asked for the evaluation of the Stark shifts by perturbation
theory considered in Appendix D in the exam, but I do expect you to know why the quadratic Stark shift
varies in magnitude from transition to transition, and why some transitions show a linear Stark shift.
I will try to make these distinctions plain as I go through the lectures. Therefore, if you want to save
yourself work at revision time, come to the lectures!
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Online resources

Most of the information in these notes is available on the course web page. The web address of the course
page is http://www.mark-fox.staff.shef.ac.uk/PHY332/. The appendices are not included in the printed
notes. They can be downloaded from the www page.
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Chapter 1

Preliminary concepts

Atomic Physics is the subject that studies the inner workings of the atom. It remains one of the most
important testing grounds for quantum theory, and is therefore a very area of active research, both for its
contribution to fundamental physics and to technology. Furthermore, many other branches of science rely
heavily on atomic physics, especially astrophysics, laser physics, solid-state physics, quantum information
science, and chemistry. So much so, that Richard Feynman once wrote:1

If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence
passed on to the next generation of creatures, what statement would contain the most infor-
mation in the fewest words? I believe it is the atomic hypothesis (or atomic fact, or whatever
you wish to call it) that all things are made of atoms - little particles that move around in
perpetual motion, attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence you will see an enormous amount of
information about the world, if just a little imagination and thinking are applied.

Atoms consists of a nucleus surrounded by electrons in quantized orbits. The main task of the subject
of atomic physics is to determine the energies and wave functions of the quantised electron states, setting
aside the study of the nucleus to the subject of nuclear physics. Before we set about this task, it is
first necessary to cover a number of important basic concepts and definitions. These are covered in this
present chapter.

1.1 Quantised energy states in atoms

The first basic concept we need is that of bound states. Atoms are held together by the attractive force
between the positively-charged nucleus and the negatively-charged electrons: the electrons are bound to
the atom, rather than being free to move though space. In the limit where the electron is very far away
from the nucleus, the attractive force is negligible; the electron is free to move without any influence
from the nucleus with velocity v, as illustrated schematically in Fig. 1.1(a). It is natural to define the
energy E of this free (or unbound) state as being zero when v = 0. When the electron moves closer to
the nucleus, it begins to experience the attractive force, leading to the formation of a stable bound state
as illustrated in Fig. 1.1(b). The energy of the bound state is lower than that of the free electron, since
it requires energy to pull the electron away from the nucleus. The amount of energy required is called
the binding energy of the electron. With our definition of E = 0 corresponding to the unbound state,
the absolute energy E of the bound state must be negative, with the binding energy equal to −E = |E|.

The early understanding of the atom was built around the analogy with the solar system, where the
planets orbit around the sun under the influence of the attractive gravitational force. While it will not be
appropriate to push this analogy too far on account of the need to use quantum mechanics rather than
Newtonian mechanics to describe the motion, it does provide a useful starting point. In the same way
that the planets arrange themselves into orbits at varying radii from the sun, the electrons in an atom are
arranged in a series of quantised states around the nucleus. The planets nearest the sun are very strongly
bound and have small radii with fast periods. The outer planets, by contrast, are less strongly bound,
and have large radii and long periods. Similarly, the electrons are arranged into orbital shells around the
nucleus. The electrons nearest the nucleus are very strongly bound, while those further away are more

1R.P. Feynman, The Feynman Lectures on Physics, Vol. I, §1-2, Addison-Wesley 1964
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2 CHAPTER 1. PRELIMINARY CONCEPTS

nucleus 
electron 

Electron free 

E = 0 when v = 0 

Electron  bound 

E negative 

large distance 

(a) 

(b) 

+ − 

+ 

− 

v 

Figure 1.1: (a) Unbound state with the electron far from the nucleus. The electron moves
freely with velocity v, independently of the presence of the nucleus. (b) Bound electron state
with negative energy.

nucleus 

charge +Ze 

core electrons 

charge −(Z−N)e 

valence electrons 

charge −Ne 

Figure 1.2: Arrangement of electrons into core and valence shells within a neutral atom of
atomic number Z with N valence electrons.

weakly bound. The arrangement of the electrons within these quantised shells around the nucleus is the
basis of the shell model of the atom discussed in Chapter 4.

Elements are identified by their atomic number Z, which defines the number of protons in the nucleus.
The nucleus also contains neutrons, but these are uncharged and only affect its mass.2 Since the charges
of protons and electrons are identical, the charge of the nucleus is equal to +Ze, where e is the electron
charge. Free atoms are normally found in a neutral electrical state, which means that they have Z bound
electrons. (Charged atoms are discussed in Section 1.2 below.) The electrons in the innermost quantised
states are very strongly bound and are called core electrons. The remaining electrons in the outermost
shell are called valence electrons. It is these valence electrons that take part in chemical bonding, with
the number N of valence electrons determining the chemical valency of the atom. Assuming that Z > N ,
which is the case for all neutral atoms apart from hydrogen and helium, the remaining (Z−N) electrons
are in inner, core shells, as illustrated in Fig. 1.2. These core electrons are very strongly bound and can
only be accessed by using high energy X-ray photons, as discussed in Section 4.4. The optical spectra of
the atom are determined by the valence electrons, which are therefore the main focus of the subject of
atomic physics.

The energies of bound states in atoms are frequently quoted in electron volt (eV) units. 1 eV is
the energy acquired by an electron when it is accelerated by a voltage of 1 Volt. Thus 1 eV = e J, where
−e = −1.6×10−19 C is the charge of the electron. This is a convenient unit, because the binding energies
of the valence electrons in atoms are typically a few eV. The core electrons, however, have much larger
binding energies, typically in the keV range for atoms with large Z.

1.2 Ionization states, and spectroscopic notation

In the previous section we considered the case of a neutral atom in which Z electrons are bound to a
nucleus containing Z protons. Charged atoms also exist in which the number of electrons is different to
Z. Such charged atoms are called ions. In atomic physics we deal almost exclusively with positively
charged ions, in which the number of bound electrons is less than Z. In chemistry, however, it is also
necessary to consider negative ions in which the atom binds more than Z electrons.

2Neutrons also contribute to the spin of the nucleus. There are two known nuclei that do not contain any neutrons. The
most obvious example is 1H. The other is 2He, which is highly unstable.
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Atom / ion Spectroscopic notation Number of electrons

Na Na I 11
Na+ Na II 10
Na2+ Na III 9
...

...
Na10+ Na XI 1

Table 1.1: Ionization states of the element sodium (chemical symbol Na), which has an atomic
number of 11.

The ionization energy of an atom (also sometimes called the ionisation potential) is defined as
the lowest energy required to remove an electron. The electrons are bound to the atom in shells with
different quantised binding energies, and the ionization energy is equal to the binding energy of the least
strongly bound electron. In practice, this will be one of the valence electrons.

Hydrogen is the first element and has Z = 1. Since it only binds one electron, it only has one
ionization energy. All other atoms have more than one bound electron, and therefore have more than
one ionization energy. An atom with atomic number Z has Z ionization states, and hence Z ionization
energies. The nth ionization energy is defined as the energy required to remove the nth electron from
the atom, according to the following sequence:

A → A+ + e− 1st ionization energy
A+ → A2+ + e− 2nd ionization energy

...
...

A(Z−1)+ → AZ+ + e− Zth ionization energy

where An+ represents an atom, A, that has lost n electrons from the neutral state, with AZ+ corresponding
to an isolated nucleus. Each ionization state has a unique spectrum, which allows the atom to be identified
from analysis of its spectral lines.

In normal laboratory conditions at temperature T , with T ∼ 300 K, the thermal energy kBT is
significantly smaller than the first ionization energy of the atom. This means that atoms are normally
in the neutral state. In order to study ions, we either have to raise the temperature significantly (e.g.
in a flame), or we have to deliberately strip off the electrons (e.g. in a collision with another charged
particle in a discharge tube). In astrophysics, however, we study the spectra of atoms in stars, where the
temperature is always very high, and highly ionised states are routinely found.

Astronomers have been studying the spectra of atoms and ions for a long time, using the characteristic
spectral lines of the elements to determine the composition of stars. Joseph von Fraunhofer (1787–1826),
among others, carried out a systematic study of the Sun’s spectrum in the 19th century, and identified
a number of absorption lines with those of certain elements in the periodic table. In order to categorize
the spectral lines, spectroscopic notation was introduced to identify the different ionization states of
the atoms. In this notation, the Nth ionization state of atom A is written A (N+1), where (N+1) is
written in capital Roman numerals. Thus A I is the neutral state of the atom, A II is the first ionization
state A+, and so on. This spectroscopic notation is widely used in astrophysics, and is also used in
important databases of atomic physics. (See Section 1.5.) Table 1.1 shows how the notation is applied
to the element sodium (chemical symbol Na), which has an atomic number of 11.

1.3 Ground states and excited states

An atom with atomic number Z is made by starting with the isolated positive nucleus and then adding
Z electrons until electrical neutrality is achieved. As mentioned in Section 1.1 and discussed in detail in
Chapter 4, the quantised electron states are arranged in shells around the nucleus. The Pauli exclusion
principle, which will be discussed in Chapters 4 and 6, dictates that each shell can only hold a strictly
limited number of electrons. The electrons therefore fill up the shells one by one, in sequence of increasing
energy, moving to the next one after a particular shell is full. Eventually all the electrons have been bound.
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Figure 1.3: Arrangement of the energy levels and electrons in the ground state of an atom.
The electrons fill up the atomic shells in order of increasing energy until all the electrons have
been accounted. The shading for the free states indicates that the energy is not quantised:
it forms a continuum. The diagram is drawn for the case of the neutral Mg atom (Z = 12),
which has 12 electrons. Note that the energy scale is not linear. The core shells are very
strongly bound, and their large negative energies would be way off the page on a linear scale.
These core electron states are usually omitted from atomic energy level diagrams.

The final state of the atom with its electrons filling up the lowest available energy shells is called the
ground state of the atom.

The ground state of a typical atom is shown schematically in Fig. 1.3. As before, we assume that there
are N valence electrons, and therefore (Z−N) core electrons. The diagram is drawn for the specific case
of the neutral magnesium atom, where Z = 12 and N = 2. Each horizontal line indicates a quantised
energy state, and the vertical axis is energy. The zero of energy is defined as the point at which the
electron is free, with all the quantised bound states having negative energy, as discussed in Section 1.1.
The shading for the free states indicates that the energy is not quantised. The electron is free to move
with arbitrary kinetic energy, and so can have any positive energy. The free states are therefore said to
form a continuum: there is a continuous spectrum of energies that are possible, with no breaks due to
quantization.

It is important to note that energy axis in Fig. 1.3 is not linear. The core shell states have very large
negative energies, and should really be way off the bottom of the page. Since the core electrons play no
part in the optical spectra, they are usually omitted from atomic energy level diagrams, and this will
be the policy adopted from here onwards, unless we are specifically considering the core electrons, as in
Section 4.4.

There is an infinite number of quantised bound states in an atom, but only a small number (the ones
with lowest energy) are occupied in the ground state configuration of the atom. All of the other states
lie at higher energy. The excited states of the atom are obtained by promoting valence electrons to
these unoccupied states at higher energy. If there is more than one valence electron, then the excited
states are obtained by promoting just one of the valence electrons to a higher energy state, as shown in
Fig. 1.4. There are an infinite number of these excited states, although we usually only need to consider
the first few to explain the most important features of the optical spectra. The large number of other
excited states at higher energies are increasingly more weakly bound, and eventually merge into the
continuum of free states available to unbound electrons. This means that the infinitieth excited state
corresponds to the ionization limit, which provides a method to define the energy of the ground state
electron configuration. This energy is identified in Fig. 1.4, and can be determined experimentally by
measuring the first ionization energy of the atom.

The energy gap between the ground state of an atom and its first excited state is typically much larger
than the thermal energy kBT at room temperature. This means that the atom will normally be in its
ground state. In order to promote the atom to its excited states, energy must be imparted to it. This is
typically done by placing the atom in discharge tube, and exciting it by collisions with electrons flowing
down the tube when a voltage is applied across it. The atom can also be promoted to a specific excited
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Figure 1.4: Ground and excited states of an atom with two valence electrons. (a) Ground
state. (b) First excited state. (c) Second excited state. (d) Ionization limit, equivalent to the
infinitieth excited state. Note that the ground state is the same as in Fig. 1.3, except that
the core shells are no longer shown.

state by absorption of a photon. (See Section 1.4 below.)

For atoms that have two or more valence electrons, it is a reasonable question to ask why we only
consider excited states in which only one electron is promoted to higher energy. For example, in Fig. 1.4
the 2nd excited state is the one with one electron in the lowest level, and the other in the third, rather
than the state with both electrons in the second level. The answer is that it costs more energy to promote
both electrons than to completely remove the first electron: the ionised state therefore has a lower energy
than the unionised one with two electrons in higher levels. It is therefore easier to ionise the atom that
to excite both electrons simultaneously.

The state of the atom after one electron has been removed corresponds to the singly-charged ion A+.
The method of defining a ground state and excited states starts again for this ion, with the ground state
of the ion corresponding to the ionization state of the neutral atom. For example, the ionization limit
of the neutral helium atom (Z = 2) corresponds to the ground state of the He+ ion. (See discussion of
Fig. 6.2 in Chapter 6.) If the atom has more than two electrons, this process keeps repeating itself, with
the ground state of the ion An+ corresponding to the ionization limit of the ion A(n−1)+. Each ionization
state has its own characteristic sequence of energy levels, which can be determined by analysis of the
optical spectra. As mentioned above, this means that the ionization states of the different elements have
unique spectra, which enables them to be identified, especially in astrophysics. The wavelengths of the
spectral lines of the ionization states of the elements are catalogued in the NIST atomic physics database.
(See Section 1.5.)

The correspondence between the ionization limit of one ionization state and the ground state of the
next one is shown in Fig. 1.5. It is apparent from this diagram that the definition of E = 0 is a relative
one: E = 0 for one ionization state corresponds to a negative energy for the next one. (This distinction
does not apply, of course, to hydrogen, as it only has one electron.) In absolute terms, the true zero of
energy should be defined as the state with all Z electrons stripped from the nucleus. For a multi-electron
atom, this would mean that the ground state of the neutral atom, together with its excited states, all
have large negative energies in absolute terms. However, since the energies of the core electrons remain
constant while the valence electrons are excited, it makes sense to subtract them, defining the zero of
energy for each ionization state as the energy to remove the first valence electron.

1.4 Atomic spectroscopy

We can gain a great deal knowledge about atoms from studying the way light interacts with matter, and
in particular from measuring atomic spectra. Optics has therefore played a key role in the development
of atomic physics. The extreme precision with which optical spectral lines can be measured makes atomic
physics the most precise branch of physics. For example, the frequencies of the spectral lines of hydrogen
have been measured with extremely high accuracy, permitting the testing of small but important quantum
phenomena that are normally unobservable.

The basis for atomic spectroscopy is the measurement of the energy of the photon absorbed or emitted
when an electron jumps between two quantized bound states, as shown in Fig. 1.6. These are called
optical transitions. The frequency (ν) of the photon (and hence its wavelength, λ) is determined by the
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Figure 1.5: Correspondence between the ionization limit of an atom or ion, and the ground
state of the next ion in the sequence. Spectroscopic notation is used for the different ionization
states.
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Figure 1.6: (a) Absorption and emission transitions between two quantised energy states. (b)
Comparison of absorption and emission spectra of an atom.
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Figure 1.7: (a) Absorption and emission line spectra. For the absorption spectrum, a light
source with a continuous spectrum in shone on the atoms, and the transmitted intensity
is recorded as a function of frequency. The dips correspond to absorption transitions. (b)
Comparison of absorption and emission transitions. The open arrows starting from the third
excited state (level 4) indicate an electron cascade in which three photons of different frequen-
cies are emitted.

difference in energy of the two levels according to:

hν =
hc

λ
= E2 − E1 , (1.1)

where E1 and E2 are the energies of the lower and upper levels respectively, and h is Planck’s constant.
If the electron is initially in the lower level, it can only be promoted to the higher level if there is
radiation incident on the atom. The radiation must contain photons with frequency given by eqn 1.1,
and conservation of energy requires that one of these photons is removed from the beam as the electron
makes its jump upwards. This is the process of absorption. By contrast, if the electron is initially in the
upper level, then it can spontaneously drop to the lower level without the need of an external radiation
field. A photon with frequency given by eqn 1.1 is emitted while the electron drops down, and the process
is therefore called emission.3

The bound states of atoms have quantized energies, and so the absorption and emission frequencies
that are observed from a particular atom are discrete. The absorption spectrum can be measured
by illuminating the atoms with a continuous range of frequencies, and analysing the intensity that gets
transmitted. Dips in the transmitted intensity will be observed at the frequencies that satisfy eqn 1.1,
as shown schematically in Fig. 1.7(a). The emission spectrum can be observed by measuring the light
emitted from a gas of atoms that has been excited in a discharge tube. (See Fig. 1.8.) Peaks will occur
at the frequencies that obey eqn 1.1, as indicated in Fig. 1.7(a). The factors that determine the width of
these peaks will be discussed in Section 3.7. At this stage, all we need to know is that the width is usually
very much smaller than the centre frequency (e.g. width ∼ 109 Hz as opposed to a centre frequency of
∼ 1014 Hz.) The emission peaks therefore usually just look like vertical lines unless a very high resolution
spectrometer is used. The same applies to the absorption dips, which just look like vertical downward
lines in the transmitted intensity. For this reason, we refer to the absorption and emission spectra of
atoms as line spectra, with the individual transitions called absorption or emission lines, as appropriate.
This contrasts with the spectra of solids or molecules, which can contain absorption or emission bands,
in which a continuous range of frequencies is absorbed or emitted.

In Section 1.3 we have seen that an atom is normally found in its ground state. This means that
the absorption and emission spectra of a specific ionization state of an atom show some differences. In
particular, the emission spectrum is richer. This can be understood by reference to Fig. 1.7(b). In the
absorption spectrum, we can only observe the transitions that start from the ground state, that is from
level 1 (the ground state) to levels 2, 3, and 4. In the emission spectrum, the same transition frequencies
will be observed, but there will also be others, corresponding to transitions between excited states. These
transitions are possible because the electron in an excited state can drop to any level that is at lower
energy, not just the ground state.4 Photons at the intermediate frequencies are then emitted as the
electron cascades down to the ground state. Thus, for example, an electron starting in level 4 can drop

3The process should, more accurately, be called spontaneous emission to distinguish it from stimulated emission. This
distinction will be clarified in Chapter 9.

4This statement will be qualified in Chapter 3 where we shall see that not all transitions are possible: only those that
satisfy the selection rules. These selection rules affect both absorption and emission spectra equally, and so the general
point being made here about the richer nature of the emission spectrum is still valid.
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Figure 1.8: Electrical discharge tube for observing atomic emission spectra.

to any of levels 1, 2 or 3, and an electron starting in level 3 can drop to either of level 1 or 2. Therefore,
for the case shown in Fig. 1.7(b), there would be three lines in the absorption spectrum, but six in the
emission spectrum. The six emission lines would include the three observed in absorption, plus three
others, as shown in Fig.1.7(a).

Spectroscopists measure the wavelength of the photon emitted in an optical transition, and hence
deduce energy differences. The absolute energies of the quantised bound states are determined by fixing
the energy of one of the levels by additional methods, and then determining the energies of the others
relative to it. The simplest strategy is usually to determine the energy of the ground state (e.g. by
measuring the ionization energy), and then to use it as a reference for the excited states, deducing their
energies from the appropriate spectral lines. There will, of course, be many lines in the spectrum, and the
individual transitions have to be identified by a process of logical deduction. For example, in Fig. 1.7 it
is obvious that the three lines with highest frequency in the emission spectrum terminate on the ground
state. This is confirmed by the fact that they also appear in the absorption spectrum. The next two lines
terminate on the first excited state, and the sixth line terminates on the second. From this information,
it is possible to work out the energies of the first, second, and third excited states relative to the ground
state. As discussed in Section 1.3, the energy of the ground state relative to the ionization limit is the
natural reference point for the atom.

The larger number of lines in the emission spectrum makes it more interesting to investigate. Moreover,
it is usually easier to measure emission than absorption in the laboratory, as all that is needed is a
discharge tube. In such a device, a vacuum tube with electrodes at both ends is filled with a gas of
the atoms under study, as shown in Fig. 1.8. The negative electrode (the cathode) is heated to eject
electrons, which then flow as a current to the positive electrode (the anode) when an external voltage V
is applied. The atoms are excited by collisions with the electrons and emit photons as they relax to the
ground state, either directly, or in a cascade. The maximum energy that can be imparted to the atom
is equal to eV , and this determines the states that can be accessed. If eV is larger than the ionization
energy, ions will be present in the tube, and their chracteristic spectra will also be observed.

The fact that each atom has a unique set of quantised energy levels, both in its neutral and ionised
states, means that every element has a unique set of spectral lines, thereby providing a method to identify
elements from their characteristic spectra. This technique is used extensively in astrophysics, and the
discovery of the element helium is an interesting example. The Sun behaves as a source of black-body
radiation with a characteristic temperature of around 6,000 K. Detailed analysis of the spectrum revealed
absorption lines originating from the atoms in the Sun’s atmosphere. Most of the absorption lines could
be matched up to known spectra, for example, to hydrogen, which is the most abundant element in the
Sun. However, the line at 587.49 nm could not be explained, and so was attributed to a new, unknown
element. The element was named “helium”, after helios in Greek, meaning the Sun. It was only several
years later that helium was isolated on Earth, and the mystery line at 587.49 nm identified. We now know
that helium is element number 2, and is present in large quantities in the Sun as the product of hydrogen
fusion. Similar techniques are routinely used to determine the composition of other stars. Moreover, the
fact that the spectra of atoms are identical throughout the universe provides a method for measuring the
velocity of stars and galaxies from the Doppler shift of hydrogen lines.5

5This method relies on noticing that the special lines are all shifted in the same way, as predicted by Doppler theory.
The fact that the rest-frame frequencies of hydrogen are identical in distant galaxies to those measured on Earth is one of
the best tests that the laws of physics are the same throughout the whole universe.
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Figure 1.9: Different conventions for specifying atomic energies. On the left, we define E = 0
by the ionization limit, so that all the bound-state energies En are negative. On the right,
we define E = 0 by the ground state, so that all the excited state energies En for n > 1 are
positive. The convention on the right is the one frequently used in atomic databases, with
the excited-state energies specified in cm−1.

1.5 Spectroscopic energy units, and atomic databases

The close connection between atomic line spectra and the underlying level structure of the atom makes it
convenient to use wave-number units (cm−1) to specify the energies of the quantized bound states. The
wave number ν is the reciprocal of the wavelength of a photon with energy E. It is defined as follows:

ν =
1

λ
=
ν

c
=
E

hc
. (1.2)

The S.I. unit for wave number is m−1. However, atomic spectroscopists usually use cm−1, in which case
it is necessary to specify λ in cm and c in cm/s in eqn 1.2. Note that 1 cm−1 = 100 m−1: the cm−1 is
a larger unit by a factor of 100. The conversion factor to the other convenient unit for atomic levels,
namely the electron Volt, is:

1 eV = (e/hc) cm−1 = 8066 cm−1 . (1.3)

Note again that it is necessary to use c in cm/s here (i.e. c = 2.998× 1010 cm/s) to get the conversion to
cm−1 correct.

Wave-number units are particularly convenient for atomic spectroscopy. This is because they dis-
pense with the need to introduce fundamental constants in our calculation of the wavelength. Thus the
wavelength of the radiation emitted in a transition between two levels is simply given by:

1

λ
= ν2 − ν1 , (1.4)

where ν2 and ν1 are the energies of upper and lower levels, respectively, in cm−1 units, and λ is measured
in cm.

The convenience of wave-number units means that most professional databases use them to specify
atomic energies. Moreover, these databases also usually use the ground-state level as the reference point,
rather than the ionization limit. This point is clarified in Fig. 1.9, where the two different definitions
of energies are compared. On the left, we have the convention that has been followed so far, following
Section 1.1, where E = 0 is defined as the ionization limit, and all the bound-state energies En are
negative. On the right, we have the alternative system used by spectroscopists, where E = 0 corresponds
to the ground-state level. In this convention, the excited-state energies are positive, and specified in wave-
number units relative to the ground-state. The ionization limit in cm−1 is then −E1/hc = +|E1|/hc.

The National Institute of Standards and Technology (NIST) in the United States maintains a par-
ticularly important on-line resource of atomic data. An extremely detailed database is provided for the
use of professional research scientists, together with a simpler resource entitled the Handbook of Basic
Atomic Spectroscopy Data.6 Both databases use the system on the right of Fig. 1.9, with the default unit
being cm−1. The Handbook includes data for the neutral and singly-charged ion, while the professional
database includes all the known ionization states. The ionization states are specified in the spectroscopic
notation introduced in Section 1.2. (See, for example, Table 1.1.)

6The professional database may be found at http://www.nist.gov/pml/data/asd.cfm, while the Handbook may be found
at http://www.nist.gov/pml/data/handbook/index.cfm.
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Energy scale Contributing effects
eV cm−1

Gross structure 1 – 10 104 – 105 electron–nuclear attraction
electron-electron repulsion
electron kinetic energy

Fine structure 0.001 – 0.01 10 – 100 spin-orbit interaction
relativistic corrections

Hyperfine structure 10−6 – 10−5 0.01 – 0.1 nuclear interactions

Table 1.2: Rough energy scales for the different interactions that occur within atoms. The
numerical values apply to the valence electrons.
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Figure 1.10: Hierarchy of spectral lines observed with increasing spectral resolution.

1.6 Energy scales in atoms

In atomic physics it is traditional to order the interactions that occur inside the atom into a three-level
hierarchy according to the scheme summarized in Table 1.2. The effect of this hierarchy on the observed
atomic spectra is illustrated schematically in Fig. 1.10.

Gross structure

The first level of the hierarchy is called the gross structure, and covers the largest interactions within
the atom, namely:

• the kinetic energy of the electrons in their orbits around the nucleus;

• the attractive electrostatic potential between the positive nucleus and the negative electrons;

• the repulsive electrostatic interaction between the different electrons in a multi-electron atom.

The size of these interactions gives rise to energies in the 1–10 eV range and upwards. They thus determine
whether the photon that is emitted is in the infrared, visible, ultraviolet or X-ray spectral regions, and
more specifically, whether it is violet, blue, green, yellow, orange or red for the case of a visible transition.

Fine structure

Close inspection of the spectral lines of atoms reveals that they often come as multiplets. For example,
the strong yellow line of sodium that is used in street lamps is actually a doublet: there are two lines with
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wavelengths of 589.0 nm and 589.6 nm. This tells us that there are smaller interactions going on inside
the atom in addition to the gross-structure effects. The gross-structure interactions determine that the
emission line is yellow, but fine-structure effects cause the splitting into the doublet. In the case of the
sodium yellow line, the fine-structure energy splitting is 2.1× 10−3 eV or 17 cm−1, which is smaller than
the average transition energy (2.104 eV) by a factor of ∼ 10−3.

The main cause of fine structure is interactions between the spin of the electron and its orbital motion.
Electrons in orbit around the nucleus experience a magnetic field which is internal to the atom, and this
then interacts with the spin of the electron, as will be explained in Chapter 7. The spin-orbit energy
can be deduced by measuring the fine structure in the spectra, and in this way we can learn about the
way the spin and the orbital motion of the atom couple together. In more advanced theories of the atom
(e.g. the Dirac theory), it becomes apparent that the spin-orbit interaction is actually a relativistic effect.

Hyperfine structure

Even closer inspection of the spectral lines with a very high resolution spectrometer reveals that the
fine-structure lines are themselves split into more multiplets. The interactions that cause these splitting
are called hyperfine interactions.

The hyperfine interactions are caused by the interactions between the electrons and the nucleus, as
will be discussed in Section 7.7. The nuclear spin can interact with the magnetic field due to the orbital
motion of the electron just as in spin-orbit coupling. This gives rise to shifts in the atomic energies that
are about 2000 times smaller than the fine-structure shifts. The well-known 21 cm line of radio astronomy
is caused by transitions between the hyperfine levels of atomic hydrogen. The photon energy in this case
is 6× 10−6 eV, or 0.05 cm−1.
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Chapter 2

Hydrogen

The quantum theory of hydrogen is the starting point for the whole subject of atomic physics. Bohr’s
derivation of the quantised energies was one of the triumphs of early quantum theory, and it is therefore
helpful to begin the discussion of hydrogen by reviewing the Bohr model. We will then move on to the
solution of the Schrödinger equation to find the allowed energies and angular momenta of the nucleus-
electron system. In classical systems we are also able to calculate the precise trajectory of the orbit. This
is not possible in quantum systems. The best we shall be able to do is to find the wave functions. These
will then give us the probability amplitudes that allow us to calculate all the measurable properties of
the system.

2.1 The Bohr model of hydrogen

The Bohr model of hydrogen is part of the “old” (i.e. pre-quantum mechanics) quantum theory of the
atom. It includes the quantization of energy and angular momentum, but uses classical mechanics to
describe the motion of the electron. With the advent of quantum mechanics, we realize that this is an
inconsistent approach, and therefore should not be pushed too far. Nevertheless, the Bohr model does
give the correct quantised energy levels of hydrogen, and also gives a useful parameter (the Bohr radius)
for quantifying the size of atoms. Hence it remains a useful starting point for understanding the basic
structure of atoms.

It is well known from classical physics that planetary orbits are characterized by their energy and
angular momentum. We shall see that these are also key quantities in the quantum theory of the hydrogen
atom. In 1911 Rutherford discovered the nucleus, which led to the idea of atoms consisting of electrons
in classical orbits in which the central forces are provided by the Coulomb attraction to the positive
nucleus, as shown in Fig. 2.1. The problem with this idea is that the electron in the orbit is constantly
accelerating. Accelerating charges emit radiation called bremsstrahlung, and so the electrons should
be radiating all the time. This would reduce the energy of the electron, and so it would gradually spiral
into the nucleus, like an old satellite crashing to the earth. In 1913 Bohr resolved this issue by postulating
that:

• The angular momentum L of the electron is quantized in units of ~ (~ = h/2π):

L = n~ , (2.1)

where n is an integer.

• The atomic orbits are stable, and light is only emitted or absorbed when the electron jumps from
one orbit to another.

When Bohr made these hypotheses in 1913, they had no justification other than their success in predicting
the energy spectrum of hydrogen. With hindsight, we realize that the first assumption is equivalent to
stating that the circumference of the orbit must correspond to a fixed number of de Broglie wavelengths:

2πr = integer× λdeB = n× h

p
= n× h

mv
, (2.2)

which can be rearranged to give

L ≡ mvr = n× h

2π
. (2.3)

13



14 CHAPTER 2. HYDROGEN

+Ze

-e

v

r
F

+Ze

-e

v

r
F

Figure 2.1: The Bohr model of the atom considers the electrons to be in orbit around the
nucleus. The central force is provided by the Coulomb attraction. The angular momentum
of the electron is quantized in integer units of ~.

The second assumption is a consequence of the fact that the Schrödinger equation leads to time-independent
solutions (eigenstates).

The derivation of the quantized energy levels proceeds as follows. Consider an electron orbiting a
nucleus of mass mN and charge +Ze. The central force is provided by the Coulomb force:

F =
mv2

r
=

Ze2

4πε0r2
. (2.4)

As with all two-body orbit systems, the mass m that enters here is the reduced mass (see Appendix A):

1

m
=

1

me
+

1

mN
, (2.5)

where me and mN are the masses of the electron and the nucleus, respectively. The energy is given by:1

En = kinetic energy + potential energy

=
1

2
mv2 − Ze2

4πε0r

= − mZ2e4

8ε20h
2n2

, (2.6)

where we made use of eqns 2.3 and 2.4 to solve for v and r. This can be written in the form:

En = −R
′

n2
(2.7)

where R′ is given by:

R′ =

(
m

me
Z2

)
R∞hc , (2.8)

and R∞hc is the Rydberg energy:2

R∞hc =
mee

4

8ε20h
2
. (2.9)

The Rydberg energy is a fundamental constant and has a value of 2.17987× 10−18 J, which is equivalent
to 13.606 eV. This tells us that the gross energy of the atomic states in hydrogen is of order 1 – 10 eV,
or 104 − 105 cm−1 in wave number units.

R′ is the effective Rydberg energy for the system in question. In the hydrogen atom we have an
electron orbiting around a proton of mass mp. The reduced mass is therefore given by

m = me ×
mp

me +mp
= 0.9995me (2.10)

1In atoms the electron moves in free space, where the relative dielectric constant εr is equal to unity. However, in
solid-state physics we frequently encounter hydrogenic systems inside crystals where εr is not equal to 1. In this case, we
must replace ε0 by εrε0 throughout.

2Note the difference between the Rydberg energy R∞hc (13.606 eV) and the Rydberg constant R∞ (109,737 cm−1). The
former has the dimensions of energy, while the latter has the dimensions of inverse length. They differ by a factor of hc.
(See Table 2.1.) When high precision is not required, it is convenient just to use the symbol RH for the Rydberg energy,
although, strictly speaking, RH differs from the true Rydberg energy by 0.05%. (See eqn 2.11.)
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Quantity Symbol Formula Numerical Value

Rydberg energy R∞hc mee
4/8ε20h

2 2.17987× 10−18 J
13.6057 eV

Rydberg constant R∞ mee
4/8ε20h

3c 109,737 cm−1

Bohr radius a0 ε0h
2/πe2me 5.29177× 10−11 m

Fine structure constant α e2/2ε0hc 1/137.04

Table 2.1: Fundamental constants that arise from the Bohr model of the atom.

and the effective Rydberg energy for hydrogen is:

RH = 0.9995R∞hc . (2.11)

Atomic spectroscopy is very precise, and 0.05% factors such as this are easily measurable. Furthermore,
in other systems such as positronium (an electron orbiting around a positron), the reduced mass effect is
much larger, because m = me/2.

By following through the mathematics, we also find that the orbital radius and velocity are quantized.
The relevant results are:

rn =
n2

Z

me

m
a0 , (2.12)

and

vn = α
Z

n
c . (2.13)

The two fundamental constants that appear here are the Bohr radius a0:

a0 =
h2ε0
πmee2

, (2.14)

and the fine structure constant α:

α =
e2

2ε0hc
. (2.15)

The fundamental constants arising from the Bohr model are related to each other according to:

a0 =
~
mec

1

α
, (2.16)

and

R∞hc =
~2

2me

1

a2
0

. (2.17)

The definitions and values of these quantities are given in Table 2.1.
The energies of the photons emitted in transition between the quantized levels of hydrogen can be

deduced from eqn 2.7:

hν = RH

(
1

n2
1

− 1

n2
2

)
, (2.18)

where n1 and n2 are the quantum numbers of the two states involved. Since ν = c/λ, this can also be
written in form:

1

λ
=

m

me
R∞

(
1

n2
1

− 1

n2
2

)
. (2.19)

In absorption we start from the ground state, so we put n1 = 1. In emission, we can have any combination
where n1 < n2. Some of the series of spectral lines have been given special names. The emission lines
with n1 = 1 are called the Lyman series, those with n1 = 2 are called the Balmer series, etc. The
Lyman and Balmer lines occur in the ultraviolet and visible spectral regions respectively.
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A simple back-of-the-envelope calculation can easily show us that the Bohr model is not fully consistent
with quantum mechanics. In the Bohr model, the linear momentum of the electron is given by:

p = mv =

(
αZ

n

)
mc =

n~
rn

. (2.20)

However, we know from the Heisenberg uncertainty principle that the precise value of the momentum
must be uncertain. If we say that the uncertainty in the position of the electron is about equal to the
radius of the orbit rn, we find:

∆p ∼ ~
∆x
≈ ~
rn
. (2.21)

On comparing Eqs. 2.20 and 2.21 we see that

|p| ≈ n∆p . (2.22)

This shows us that the magnitude of p is undefined except when n is large. This is hardly surprising,
because the Bohr model is a mixture of classical and quantum models, and we can only expect the
arguments to be fully self-consistent when we approach the classical limit at large n. For small values of
n, the Bohr model fails when we take the full quantum nature of the electron into account.

2.2 The quantum mechanics of the hydrogen atom

The Bohr model presented in the previous section is only properly valid in the semiclassical limit. A
fully consistent solution needs to use quantum mechanics throughout. Our task, therefore, is solve the
Schrödinger equation for the hydrogen.

2.2.1 The Schrödinger Equation

The time-independent Schrödinger equation for hydrogen is given by:(
− ~2

2m
∇2 − Ze2

4πε0r

)
Ψ(r, θ, φ) = E Ψ(r, θ, φ) , (2.23)

where the spherical polar co-ordinates (r, θ, φ) refer to the position of the electron relative to the nucleus.
Spherical polar co-ordinates are used here because the spherical symmetry of the atom facilitates the
solution of the Schrödinger equation by the method of separation of variables. Since we are considering
the motion of the electron relative to a stationary nucleus, the mass that appears in the Schrödinger
equation is the reduced mass defined previously in eqn 2.5 and discussed in more detail in Appendix A.
As we have already seen in eqn 2.10, the reduced mass of hydrogen has a value of 0.9995me, which is
very close to me.

Written out explicitly in spherical polar co-ordinates, the Schrödinger equation becomes:

− ~2

2m

[
1

r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂φ2

]
− Ze2

4πε0r
Ψ = E Ψ . (2.24)

Our task is to find the wave functions Ψ(r, θ, φ) that satisfy this equation, and hence to find the allowed
quantized energies E.

2.2.2 Separation of variables

The solution of the Schrödinger equation proceeds by the method of separation of variables. This works
because the Coulomb potential is an example of a central field in which the force only lies along the
radial direction. This allows us to separate the motion into the radial and angular parts:

Ψ(r, θ, φ) = R(r)F (θ, φ) . (2.25)

We can re-write the Schrödinger equation in the following form:3

− ~2

2m

1

r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

L̂
2

2mr2
Ψ− Ze2

4πε0r
Ψ = E Ψ , (2.26)

3Note that the “hat” symbol indicates that we are representing an operator and not just a number.
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where the L̂
2

operator is:

L̂
2

= −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (2.27)

This operator is derived from the angular momentum operator L̂. The properties of the angular
momentum operator and the quantized angular momentum states of atoms will be considered in detail
in Chapter 5. At this stage, we just consider a few basic points relating to the solution of the hydrogen
atom.

On substituting eqn 2.25 into eqn 2.26, and noting that L̂
2

only acts on θ and φ, we find:

− ~2

2m

1

r2

d

dr

(
r2 dR

dr

)
F +R

L̂
2
F

2mr2
− Ze2

4πε0r
RF = E RF . (2.28)

Multiply by r2/RF and re-arrange to obtain:

− ~2

2m

1

R

d

dr

(
r2 dR

dr

)
− Ze2r

4πε0
− Er2 = − 1

F

L̂
2
F

2m
. (2.29)

The left hand side is a function of r only, while the right hand side is only a function of the angular
co-ordinates θ and φ. The only way this can be true is if both sides are equal to a constant. Let’s call
this constant −~2`(`+ 1)/2m, where ` is an arbitrary number that could be complex at this stage. This
gives us, after a bit of re-arrangement:

− ~2

2m

1

r2

d

dr

(
r2 dR(r)

dr

)
+

~2`(`+ 1)

2mr2
R(r)− Ze2

4πε0r
R(r) = ER(r) , (2.30)

and
L̂

2
F (θ, φ) = ~2`(`+ 1)F (θ, φ) . (2.31)

The task thus breaks down into one of solving two separate equations: one that describes the angular
part of the wave function, and other dealing with the radial part.

2.2.3 The angular solution and the spherical harmonics

It is apparent from eqn 2.31 that the angular function F (θ, φ) is an eigenfunction of the L̂
2

operator.
These eigenfunctions are known as the spherical harmonic functions.

The spherical harmonics satisfy the equation:

L̂
2
Y (θ, φ) ≡ −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y (θ, φ) = L2Y (θ, φ) , (2.32)

where L2 is the eigenvalue of L̂
2
. The solution of eqn 2.32 is considered in more detail in Appendix B. It

turns out that solutions are only found in which L2 takes the value l(l + 1)~2, where l is 0 or a positive
integer. l is called the angular momentum quantum number.

The spherical harmonics are also eigenfunctions of the operator that describes the z-component of the
angular momentum, namely L̂z:

L̂z = −i~ ∂

∂φ
. (2.33)

The eigenvalue Lz is found by solving the equation:

L̂zY (θ, φ) ≡ −i~∂Y
∂φ

= LzY (θ, φ) . (2.34)

Equation 2.34 implies that Y (θ, φ) = f(θ) exp (−Lzφ/i~). The additional requirement that Y (θ, φ) should
be single-valued — i.e. Y (θ, φ + 2π) = Y (θ, φ) — implies that Lz = m~, where m is an integer. m is
called the magnetic quantum number, for reasons that will become apparent when we consider the
effect of external magnetic fields in Chapter 8. Note that the same symbol m is used represent both the
mass and the magnetic quantum number. Its meaning should be clear from the context, and, if necessary,
we can add a subscript to the quantum number to distinguish it: ml.
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l m Ylm(θ, φ)

0 0
√

1
4π

1 0
√

3
4π cos θ

1 ±1 ∓
√

3
8π sin θe±iφ

2 0
√

5
16π (3 cos2 θ − 1)

2 ±1 ∓
√

15
8π sin θ cos θe±iφ

2 ±2
√

15
32π sin2 θe±2iφ

Table 2.2: Spherical harmonic functions.

z

l = 0

m = 0

z

l = 1
m = 0

m = ±1

z

l = 2
m = 0

m = ±1

m = ±2

z

l = 0

m = 0

z

l = 0

m = 0

z

l = 1
m = 0

m = ±1

z

l = 1
m = 0

m = ±1

z

l = 2
m = 0

m = ±1

m = ±2

z

l = 2
m = 0

m = ±1

m = ±2

z

l = 2
m = 0

m = ±1

m = ±2

Figure 2.2: Polar plots of the spherical harmonics with l ≤ 2. The plots are to be imagined
with spherical symmetry about the z axis. In these polar plots, the value of the function for
a given angle θ is plotted as the distance from the origin. Prettier pictures may be found, for
example, at: http://mathworld.wolfram.com/SphericalHarmonic.html.

The final result is that the spherical harmonics are of the form:

Ylm(θ, φ) = normalization constant× Pml (cos θ) eimφ , (2.35)

where Pml (cos θ) is a polynomial function in cos θ called the associated Legendre polynominal, e.g.
P 0

0 (cos θ) = constant, P 0
1 (cos θ) = cos θ, P±1

1 (cos θ) = sin θ, etc. The indices l and m must be inte-
gers, with l ≥ 0 and −l ≤ m ≤ +l. In spectroscopic notation, states with l = 0, 1, 2, 3, . . . are called
s, p, d, f , . . . states, respectively.

The first few spherical harmonic functions are listed in Table 2.2. Representative polar plots of the
wave functions are shown in figure 2.2. The spherical harmonics are orthonormal to each other, that
is, they satisfy: ∫ π

θ=0

∫ 2π

φ=0

Y ∗lm(θ, φ)Yl′m′(θ, φ) sin θ dθdφ = δl,l′δm,m′ . (2.36)

The symbol δk,k′ is called the Kronecker delta function. It has the value of 1 if k = k′ and 0 if k 6= k′.
The sin θ factor in Eq. 2.36 comes from the volume increment in spherical polar co-ordinates: see Eq. 2.47
below.

On putting all this together, we see that the spherical harmonics (and hence the wave functions of

the hydrogen atom) are eigenfunctions of both the L̂
2

and L̂z operators:

L̂
2
Ylm(θ, φ) = l(l + 1)~2 Ylm(θ, φ) . (2.37)

and
L̂zYlm(θ, φ) = m~Ylm(θ, φ) . (2.38)
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z

Lz = mlh

h)1(|| += llL

x,y

z

Lz = mlh

h)1(|| += llL

x,y

Figure 2.3: Vector model of the angular momentum in an atom. The angular momentum
is represented by a vector of length

√
l(l + 1)~ precessing around the z-axis so that the z-

component is equal to ml~.

On remembering that the allowed values of measurable quantities in quantum mechanics such as L2 and
Lz are found by solving eigenvalue equations, we can interpret eqns 2.37–2.38 as stating that the quantized
states of the hydrogen atom have quantized angular momenta with magnitude equal to

√
l(l + 1)~ and a

z-component component of m~.4 This is represented pictorially in the vector model of the atom shown
in figure 2.3. In this model the angular momentum is represented as a vector of length

√
l(l + 1)~ angled

in such a way that its component along the z axis is equal to m~: we cannot specify the exact direction
of L, only |L|2 and Lz. As will be discussed in Section 5.2.1, the x and y components of the angular
momentum are not known, because they do not commute with L̂z.

The quantisation of the magnitude of the angular momentum |L|2 with well-defined eigenvalues reflects
the fact that the angular momentum of a classical particle interacting with a central field (i.e. one with a
radial force parallel to r) is a constant of the motion. This follows because the torque on the particle
is zero, and so L must be a conserved quantity. (See discussion in Section 5.2.1.)

2.2.4 The radial wave functions and energies

We now return to the radial equation. On comparing eqns 2.37 and 2.31 we can now identify the arbitrary
separation constant ` in the radial equation eqn 2.30 with the angular momentum quantum number l.
On substituting R(r) = P (r)/r into eqn 2.30 with ` = l, we find:[

− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
− Ze2

4πε0r

]
P (r) = EP (r) . (2.39)

This now makes physical sense. It is a Schrödinger equation of the form:

ĤP (r) = EP (r) , (2.40)

where the energy operator Ĥ (i.e. the Hamiltonian) is given by:

Ĥ = − ~2

2m

d2

dr2
+ Veffective(r) . (2.41)

The first term in eqn 2.41 is the radial kinetic energy given by

K.E.radial =
p2
r

2m
= − ~2

2m

d2

dr2
.

The second term is the effective potential energy:

Veffective(r) =
~2l(l + 1)

2mr2
− Ze2

4πε0r
, (2.42)

4In Bohr’s model, L was quantized in integer units of ~. (See eqn 2.3.) The full quantum treatment shows that this is only

true in the classical limit where n is large and l approaches its maximum value, so that L =
√
l(l + 1)~ ∼

√
(n− 1)n~ ∼ n~.
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Spectroscopic name n l Rnl(r)

1s 1 0 (Z/a0)
3
2 2 exp(−Zr/a0)

2s 2 0 (Z/2a0)
3
2 2
(

1− Zr
2a0

)
exp(−Zr/2a0)

2p 2 1 (Z/2a0)
3
2

2√
3

(
Zr
2a0

)
exp(−Zr/2a0)

3s 3 0 (Z/3a0)
3
2 2

[
1− (2Zr/3a0) + 2

3

(
Zr
3a0

)2
]

exp(−Zr/3a0)

3p 3 1 (Z/3a0)
3
2 (4
√

2/3)
(
Zr
3a0

)(
1− 1

2
Zr
3a0

)
exp(−Zr/3a0)

3d 3 2 (Z/3a0)
3
2 (2
√

2/3
√

5)
(
Zr
3a0

)2

exp(−Zr/3a0)

Table 2.3: Radial wave functions of the hydrogen atom. a0 is the Bohr radius (5.29×10−11 m).
The wave functions are normalized so that

∫∞
r=0

R∗nlRnlr
2dr = 1.

which has two components. The first of these is the orbital kinetic energy given by:

K.E.orbital =
L2

2I
=

~2l(l + 1)

2mr2
,

where I ≡ mr2 is the moment of inertia. The second is the usual potential energy due to the Coulomb
energy.

This analysis shows that the quantized orbital motion adds quantized kinetic energy to the radial
motion. For l > 0 the orbital kinetic energy will always be larger than the Coulomb energy at small
r, and so the effective potential energy will be positive near r = 0. This has the effect of keeping the
electron away from the nucleus, and explains why states with l > 0 have nodes at the origin (see below).

The wave function we require is given by Eq. 2.25. We have seen above that the F (θ, φ) function that
appears in Eq. 2.25 must be one of the spherical harmonics, some of which are listed in Table 2.2. The
radial wave function R(r) can be found by solving the radial differential equation given in Eq. 2.30 with
` = l. The solution is given in section B.2 in Appendix B. The mathematics is somewhat complicated
and here we just quote the main results.

Solutions are only found if we introduce an integer quantum number n. The energy depends only
on n, but the functional form of R(r) depends on both n and l, and so we must write the radial wave
function as Rnl(r). A list of some of the radial functions is given in Table 2.3, and representative wave
functions are plotted in Fig. 2.4. The radial wave functions listed in Table 2.3 are of the form:

Rnl(r) = Cnl · (polynomial in r) · e−r/a , (2.43)

where a = naH/Z, with aH being the Bohr radius of Hydrogen given in eqn 2.14, namely 5.29× 10−11 m.
Cnl is a normalization constant. The polynomial functions that drop out of the equations are polynomials
of order n − 1, and have n − 1 nodes. If l = 0, all the nodes occur at finite r, but if l > 0, one of the
nodes is at r = 0.

The full wave function for hydrogen is therefore of the form:

Ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) , (2.44)

where Rnl(r) is one of the radial functions given in eqn 2.43, and Ylm(θ, φ) is a spherical harmonic function
as discussed in Section 2.2.3. The quantum numbers obey the following rules:

• n can have any integer value ≥ 1.

• l can have positive integer values from zero up to (n− 1).

• m can have integer values from −l to +l.
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These rules drop out of the mathematical solutions. Functions that do not obey these rules will not
satisfy the Schrödinger equation for the hydrogen atom.

The energy of the system is found to be:

En = −mZ
2e4

8ε20h
2

1

n2
, (2.45)

which is the same as the Bohr formula given in Eq. 2.6. The energy only depends only on the principal
quantum number n, which means that all the l states for a given value of n are degenerate (i.e. have
the same energy), even though the radial wave functions depend on both n and l. This degeneracy with
respect to l is called “accidental”, and is a consequence of the fact that the electrostatic energy has a
precise 1/r dependence in hydrogen. In more complex atoms, the electrostatic energy will depart from a
pure 1/r dependence due to the shielding effect of inner electrons, and the gross energy will depend on l
as well as n, even before we start thinking of higher-order fine-structure effects. We shall see an example
of how this works in more detail when we consider the alkali atoms in section 4.5. Note also that the
energy does not depend on the orbital quantum number ml at all. Hence, the ml states for each value of
l are degenerate in the gross structure of all atoms in the absence of external fields.

The wave functions are nomalized so that∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0

Ψ∗n,l,mΨn′,l′,m′ dV = δn,n′δl,l′δm,m′ (2.46)

where dV is the incremental volume element in spherical polar co-ordinates:

dV = r2 sin θ drdθdφ . (2.47)

The radial probability function Pnl(r) is the probability that the electron is found between r and r+ dr:

Pnl(r) dr =

∫ π

θ=0

∫ 2π

φ=0

Ψ∗Ψ r2 sin θdrdθdφ

= |Rnl(r)|2 r2 dr . (2.48)

The factor of r2 that appears here is just related to the surface area of the radial shell of radius r (i.e.
4πr2.) Some representative radial probability functions are sketched in Fig. 2.5. 3-D plots of the shapes
of the atomic orbitals are available at: http://www.shef.ac.uk/chemistry/orbitron/.

Expectation values of measurable quantities are calculated as follows:

〈Â〉 =

∫∫∫
Ψ∗ÂΨ dV . (2.49)

Thus, for example, the expectation value of the radius is given by:

〈r〉 =

∫∫∫
Ψ∗rΨdV

=

∫ ∞
r=0

R∗nlrRnlr
2dr

∫ π

θ=0

∫ 2π

φ=0

Y ∗lm(θ, φ)Ylm(θ, φ) sin θdθdφ

=

∫ ∞
r=0

R∗nlrRnlr
2dr . (2.50)

This gives:

〈r〉 =
n2aH

Z

(
3

2
− l(l + 1)

2n2

)
. (2.51)

Note that this only approaches the Bohr value, namely n2aH/Z (see eqn 2.12), for the states with l = n−1
at large n.

2.3 Degeneracy and spin

We noted above that the ml states of the hydrogen atom are all degenerate (i.e. have the same energy)
in the absence of external fields. Furthermore, the spin of the electron does not appear in the basic
Schrödinger equation for hydrogen given in eqn 2.24, which means that the energy does not depend on
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Figure 2.4: The radial wave functions Rnl(r) for the hydrogen atom with Z = 1. Note that
the axes for the three graphs are not the same.

l Spectroscopic name Degeneracy
0 s 2
1 p 6
2 d 10
3 f 14
...

...
l 2(2l + 1)

Table 2.4: Degeneracy of the l states of the hydrogen atom.

the spin.5 At this stage, we just note that electrons are spin 1/2 particles, with two states specified by the
quantum number ms, where ms = ±1/2, for every quantized level. This means that each quantum state
defined by the quantum numbers (n, l,ml) has a degeneracy of two due to the two allowed spin states.
Since each l state has (2l+1) ml levels, the full degeneracy of each l state is therefore 2×(2l+1) = 2(2l+1),
as listed in Table 2.4.

In hydrogen the l states are also degenerate. The degeneracy of the energy levels in hydrogen is
therefore obtained by summing up the total number of all the (l,ml,ms) states that are possible for a
given value of n:

degeneracy = 2×
n−1∑
l=0

(2l + 1) = 2n2 .

2.4 Hydrogen-like atoms

The theory of the hydrogen atom can be applied to any atom that consists of a single negative particle
orbiting around a single positive one. There is a great variety of these hydrogenic atoms. They can
treated by the same theory as developed here, but with the appropriate reduced mass included, and the
appropriate value of Z. Here are some examples:

• Anti-hydrogen. This consists of a positron bound to an anti-proton. It should be exactly the same
as hydrogen. Experiments are under way at CERN to make anti-hydrogen and measure the energy
levels with very high precision. The discovery of a small difference in the spectra of hydrogen and
anti-hydrogen might help to answer the question why there is no anti-matter in our known universe.

• Ionized atoms with Z > 1 in which all of the electrons have been stripped off apart from the last
one, i.e. A(Z−1)+. The simplest example is He+, where Z = 2. We then have Li2+ (Z = 3), Be3+

(Z = 4), . . . , etc. These would be written He II, Li III, Be IV, etc, in the spectroscopic notation
explained in Section 1.2.

• Positronium. This consists of an electron bound to a positron. Since the positive particle has mass
me, the reduced mass is 0.5me. In solid-state physics, an exciton consists of an electron bound to
a hole. The reduced mass is worked out from the effective masses of the electrons and holes, and
the dielectric constant of the medium has to be included.

5The spin will eventually turn up in the Hamiltonian of hydrogen when we consider fine-structure effects.
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Figure 2.5: Radial probability functions for the first three n states of the hydrogen atom with
Z = 1. Note that the radial probability is equal to r2|Rnl(r)|2, not just to |Rnl(r)|2. Note
also that the horizontal axes are the same for all three graphs, but not the vertical axes.
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Figure 2.6: Rydberg atom. One of the electrons of a multi-electron atom is in a highly excited
state far from the nucleus. The remaining (Z − 1) electrons are in tightly-bound states close
to the nucleus.

• Impurity levels in semiconductors. These are modelled as electrons or holes bound to a positive
or negative impurity atom. The impurity is bound to the crystal and therefore can be treated as
having infinite mass. The effective mass must be used, and the dielectric constant of the medium.

• Muonium. This consists of an electron bound to a µ+. The nucleus has mass 207me, and hence
m = 0.995me.

• Muonic hydrogen. This is a µ− bound to a proton. The reduced mass is 186me.

Another interesting application of hydrogen theory is in the study of Rydberg atoms. In this case,
we study atoms in very highly excited states called Rydberg states, e.g. with n ∼ 100. In the case of a
neutral Rydberg atom with atomic number Z, there are (Z − 1) electrons in tightly-bound states close
to the nucleus, and one electron in a very large radius state far from the nucleus, as shown in Fig. 2.6.
The single outer electron has very low probability of overlapping the other electron wave functions, and
so the central charge cloud close to the nucleus behaves as a net charge of +e, just as in hydrogen. The
energies of the Rydberg states can thus be modelled as hydrogenic. With such large quantum numbers,
the transition energies are in the microwave or radio-wave spectral regions. Since the radii are large,
and the binding energies are small, the behaviour of Rydberg atoms is close to the semi-classical limit.
Precision atomic spectroscopy can then test the convergence of classical and quantum theories in the
limit of large n.
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Demtröder, W., Atoms, Molecules and Photons, §3.4, 4.3 – §5.1.
Haken, H. and Wolf, H.C., The Physics of Atoms and Quanta, chapters 8 and 10.
Hertel, I.V. and Schulz, C.-P,, Atoms, molecules and optical physics, vol. 1 §1.8, §2.6
Phillips, A.C., Introduction to Quantum Mechanics, chapters 8 & 9.
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Chapter 3

Radiative transitions

In this chapter we shall look at the classical and quantum theories of radiative emission and absorption.
This will enable us to derive certain selection rules which determine whether a particular transition is
allowed or not. We shall also investigate the physical mechanisms that affect the shape of the spectral
lines that are observed in atomic spectra.

3.1 Classical theories of radiating dipoles

The classical theories of radiation by atoms were developed at the end of the 19th century before the
discoveries of the electron and the nucleus. With the benefit of hindsight, we can understand more clearly
how the classical theory works. We model the atom as a heavy nucleus with electrons attached to it by
springs with different spring constants, as shown in Fig. 3.1(a). The spring represents the binding force
between the nucleus and the electrons, and the values of the spring constants determine the resonant
frequencies of each of the electrons in the atom. Every atom therefore has several different natural
frequencies.

The nucleus is heavy, and so it does not move very easily at high frequencies. However, the electrons
can readily vibrate about their mean position, as illustrated in Fig. 3.1(b). The vibrations of the electron
create a fluctuating electric dipole. In general, electric dipoles consist of two opposite charges of ±q
separated by a distance d. The dipole moment p is defined by:

p = qd , (3.1)

where d is a vector of length d pointing from −q to +q. In the case of atomic dipoles, the positive
charge may be considered as being stationary, and so the time dependence of p is just determined by the
movement of the electron:

p(t) = −ex(t) , (3.2)

where x(t) is the time dependence of the electron displacement.
It is well known that oscillating electric dipoles emit electromagnetic radiation at the oscillation

frequency. This is how aerials work. Thus we expect an atom that has been excited into vibration to
emit light waves at one of its natural resonant frequencies. This is the classical explanation of why atoms
emit characteristic colours when excited electrically in a discharge tube. Furthermore, it is easy to see
that an incoming light wave of frequency ω0 can drive the natural vibrations of the atom through the
oscillating force exerted on the electron by the electric field of the wave. This transfers energy from
the light wave to the atom, which causes absorption at the resonant frequency. Hence the atom is also
expected to absorb strongly at its natural frequency.

The classical theories actually have to assume that each electron has several natural frequencies of
varying strengths in order to explain the observed spectra. If you do not do this, you end up predicting,
for example, that hydrogen only has one emission frequency. There was no classical explanation of the
origin of the atomic dipoles. It is therefore not surprising that we run into contradictions such as this
when we try to patch up the model by applying our knowledge of electrons and nuclei gained by hindsight.

3.2 Quantum theory of radiative transitions

We have just seen that the classical model can explain why atoms emit and absorb light, but it does not
offer any explanation for the frequency or the strength of the radiation. These can only be calculated

25
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Figure 3.1: (a) Classical atoms consist of electrons bound to a heavy nucleus by springs with
characteristic force constants. (b) The vibrations of an electron in an atom at its natural
resonant frequency ω0 creates an oscillating electric dipole. This acts like an aerial and emits
electromagnetic waves at frequency ω0. Alternatively, an incoming electromagnetic wave at
frequency ω0 can drive the oscillations at their resonant frequency. This transfers energy from
the wave to the atom, which is equivalent to absorption.

by using quantum theory. Quantum theory tells us that atoms absorb or emit photons when they jump
between quantized states, as shown in figure 3.2(a). The absorption or emission processes are called
radiative transitions. The energy of the photon is equal to the difference in energy of the two levels:

hν = E2 − E1 . (3.3)

Our task here is to calculate the rate at which these transitions occur.

The transition rate W12 can be calculated from the initial and final wave functions of the states
involved by using Fermi’s golden rule:

W12 =
2π

~
|M12|2g(hν) , (3.4)

where M12 is the matrix element for the transition and g(hν) is the density of states. The matrix
element is equal to the overlap integral1:

M12 =

∫
ψ∗2(r)H ′(r)ψ1(r) d3r . (3.5)

where H ′ is the perturbation that causes the transition. This represents the interaction between the
atom and the light wave. There are a number of physical mechanisms that cause atoms to absorb or emit
light. The strongest process is the electric dipole (E1) interaction. We therefore discuss E1 transitions
first, leaving the discussion of higher order effects to Section 3.5.

The density of states factor is defined so that g(hν)dE is the number of final states per unit volume
that fall within the energy range E to E+dE, where E = hν. In the standard case of transitions between
quantized levels in an atom, the initial and final electron states are discrete. In this case, the density of
states factor that enters the golden rule is the density of photon states.2 In free space, the photons can
have any frequency and there is a continuum of states available, as illustrated in Fig. 3.2(b). The atom
can therefore always emit a photon and it is the matrix element that determines the probability for this
to occur. Hence we concentrate on the matrix element from now on.

1This is sometimes written in the shorthand Dirac notation as M12 ≡ 〈2|H′|1〉.
2In solid-state physics, we consider transitions between electron bands rather than between discrete states. We then have

to consider the density of electron states as well as the density of photon states when we calculate the transition rate. This
point is covered in other courses, e.g. PHY475: Optical properties of solids.
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Figure 3.2: (a) Absorption and emission transitions in an atom. (b) Emission into a continuum
of photon modes during a radiative transition between discrete atomic states.

3.3 Electric dipole (E1) transitions

Electric dipole transitions are the quantum mechanical equivalent of the classical dipole oscillator dis-
cussed in Section 3.1. We assume that the atom is irradiated with light, and makes a jump from level 1
to 2 by absorbing a photon. The interaction energy between an electric dipole p and an external electric
field E is given by

E = −p · E . (3.6)

We presume that the nucleus is heavy, and so we only need to consider the effect on the electron. Hence
the electric dipole perturbation is given by:

H ′ = +er · E , (3.7)

where r is the position vector of the electron and E is the electric field of the light wave. This can be
simplified to:

H ′ = e(xEx + yEy + zEz) , (3.8)

where Ex is the component of the field amplitude along the x axis, etc. Now atoms are small compared
to the wavelength of light, and so the amplitude of the electric field will not vary significantly over the
dimensions of an atom. We can therefore take Ex, Ey, and Ez in Eq. 3.8 to be constants in the calculation,
and just evaluate the following integrals:

M12 ∝
∫

ψ∗1 xψ2 d3r x−polarized light ,

M12 ∝
∫

ψ∗1 y ψ2 d3r y−polarized light , (3.9)

M12 ∝
∫

ψ∗1 z ψ2 d3r z−polarized light .

Integrals of this type are called dipole moments. The dipole moment is thus the key parameter that
determines the transition rate for the electric dipole process.

At this stage it is helpful to give a hand-waving explanation for why electric dipole transitions lead to
the emission of light. To do this we need to to consider the time-dependence of the quantum mechanical
wave functions. This naturally drops out of the time-dependent Schrödinger equation:

Ĥ(r)Ψ(r, t) = i~
∂

∂t
Ψ(r, t) , (3.10)

where Ĥ(r) is the Hamiltonian of the system. The solutions of Eq. 3.10 are of the form:

Ψ(r, t) = ψ(r)e−iEt/~ , (3.11)

where ψ(r) satisfies the time-independent Schrödinger equation:

Ĥ(r)ψ(r) = Eψ(r) . (3.12)

During a transition between two quantum states of energies E1 and E2, the electron will be in a super-
position state with a mixed wave function given by

Ψ(r, t) = c1Ψ1(r, t) + c2Ψ2(r, t)

= c1ψ1(r)e−iE1t/~ + c2ψ2(r)e−iE2t/~ , (3.13)



28 CHAPTER 3. RADIATIVE TRANSITIONS

Quantum number Selection rule

parity changes
l ∆l = ±1
m ∆m = 0,±1 unpolarized light

∆m = 0 linear polarization ‖ z
∆m = ±1 linear polarization in (x, y) plane
∆m = +1 σ+ circular polarization
∆m = −1 σ− circular polarization

s ∆s = 0
ms ∆ms = 0

Table 3.1: Electric dipole selection rules for the quantum numbers of the states involved
in the transition.

where c1 and c2 are the mixing coefficients. The expectation value 〈x〉 of the position of the electron is
given by:

〈x〉 =

∫
Ψ∗ xΨ d3r . (3.14)

With Ψ given by Eq. 3.13 we obtain:

〈x〉 = c∗1c1

∫
ψ∗1 xψ1 d3r + c∗2c2

∫
ψ∗2 xψ2 d3r (3.15)

+ c∗1c2e−i(E2−E1)t/~
∫
ψ∗1 xψ2 d3r + c∗2c1e−i(E1−E2)t/~

∫
ψ∗2 xψ1 d3r .

This shows that if the dipole moment defined in Eq. 3.9 is non-zero, then the electron wave-packet
oscillates in space at angular frequency (E2 −E1)/~. The oscillation of the electron wave packet creates
an oscillating electric dipole, which then radiates light at angular frequency (E2 − E1)/~. Hey presto!

3.4 Selection rules for E1 transitions

Electric dipole transitions can only occur if the selection rules summarized in Table 3.1 are satisfied.
Transitions that obey these E1 selection rules are called allowed transitions. If the selection rules are
not satisfied, the matrix element (i.e. the dipole moment) is zero, and we then see from Eq. 3.4 that the
transition rate is zero. The origins of these rules are discussed below.

Parity

The parity of a function refers to the sign change under inversion about the origin. Thus if f(−x) = f(x)
we have even parity, whereas if f(−x) = −f(x) we have odd parity. Now atoms are spherically symmetric,
which implies that

|ψ(−r)|2 = |ψ(+r)|2 . (3.16)

Hence we must have that
ψ(−r) = ±ψ(+r) . (3.17)

In other words, the wave functions have either even or odd parity. The dipole moment of the transition
is given by Eq. 3.9. x, y and z are odd functions, and so the product ψ1ψ2 must be an odd function if
M12 is to be non-zero. Hence ψ1 and ψ2 must have different parities.

The orbital quantum number l

The parity of the spherical harmonic functions is equal to (−1)l. Hence the parity selection rule implies
that ∆l must be an odd number. Detailed evaluation of the overlap integrals tightens this rule to ∆l = ±1.
This can be seen as a consequence of the fact that the angular momentum of a photon is ±~, with the
sign depending on whether we have a left or right circularly polarized photon. Conservation of angular
momentum therefore requires that the angular momentum of the atom must change by one unit.
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The magnetic quantum number m

The dipole moment for the transition can be written out explicitly:

M12 ∝
∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0

Ψ∗n′,l′,m′ rΨn,l,m r2 sin θ drdθdφ . (3.18)

We consider here just the φ part of this integral:

M12 ∝
∫ 2π

0

e−im′φ r eimφ dφ , (3.19)

where we have made use of the fact that (see eqns 2.44 and 2.35):

Ψn,l,m(r, θ, φ) ∝ eimφ . (3.20)

Now for z-polarized light we have from Eq. 3.9:

M12 ∝
∫ 2π

0

e−im′φ z eimφ dφ ∝
∫ 2π

0

e−im′φ · 1 · eimφ dφ , (3.21)

because z = r cos θ. Hence we must have that m′ = m if M12 is to be non-zero. If the light is polarized
in the (x, y) plane, we have integrals like

M12 ∝
∫ 2π

0

e−im′φ x eimφ dφ ∝
∫ 2π

0

e−im′φ · e±iφ · eimφ dφ . (3.22)

This is because x = r sin θ cosφ = r sin θ 1
2 (e+iφ+ e−iφ), and similarly for y. This give m′−m = ±1. This

rule can be tightened up a bit by saying that ∆m = +1 for σ+ circularly polarized light and ∆m = −1 for
σ− circularly polarized light. If the light is unpolarized, then all three linear polarizations are possible,
and we can have ∆m = 0,±1.

Spin

The photon does not interact with the electron spin. Therefore, the spin state of the atom does not
change during the transition. This implies that the spin quantum numbers s and ms are unchanged.

3.5 Higher order transitions

How does an atom de-excite if E1 transitions are forbidden by the selection rules? In some cases it
may be possible for the atom to de-excite by alternative methods. For example, the 3s → 1s transition
is forbidden, but the atom can easily de-excite by two allowed E1 transitions, namely 3s → 2p, then
2p → 1s. However, this may not always be possible, and in these cases the atom must de-excite by
making a forbidden transition. The use of the word “forbidden” is somewhat misleading here. It really
means “electric-dipole forbidden”. The transitions are perfectly possible, but they just occur at a slower
rate.

After the electric-dipole interaction, the next two strongest interactions between the photon and
the atom give rise to magnetic dipole (M1) and electric quadrupole (E2) transitions. There have
different selection rules to E1 transitions (e.g. parity is conserved), and may therefore be allowed when
when E1 transitions are forbidden. M1 and E2 transitions are second-order processes and have much
smaller probabilities than E1 transitions.

In extreme cases it may happen that all types of radiative transitions are forbidden. In this case, the
excited state is said to be metastable, and must de-excite by transferring its energy to other atoms in
collisional processes or by multi-photon emission.

3.6 Radiative lifetimes

An atom in an excited state has a spontaneous tendency to de-excite by a radiative transition involving
the emission of a photon. This follows from statistical physics: atoms with excess energy tend to want
to get rid of it. This process is called spontaneous emission. Let us suppose that there are N2 atoms
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Transition Einstein A coefficient Radiative lifetime

E1 allowed 108 − 109 s−1 1 – 10 ns
E1 forbidden (M1 or E2) 103 − 106 s−1 1 µs – 1 ms

Table 3.2: Typical transition rates and radiative lifetimes for allowed and forbidden transitions
at optical frequencies.

in level 2 at time t. We use quantum mechanics to calculate the transition rate from level 2 to level 1,
and then write down a rate equation for N2 as follows:

dN2

dt
= −AN2 . (3.23)

This merely says that the total number of atoms making transitions is proportional to the number of
atoms in the excited state and to the quantum mechanical probability. The parameter A that appears in
eqn 3.23 is called the Einstein A coefficient of the transition. The Einstein B coefficients that describe
the processes of stimulated emission and absorption are considered in Section 9.3 in the context of laser
physics.

Equation 3.23 has the following solution:

N2(t) = N2(0) exp(−At)
= N2(0) exp(−t/τ) , (3.24)

where

τ =
1

A
. (3.25)

Equation 3.24 shows that if the atoms are excited into the upper level, the population will decay due to
spontaneous emission with a time constant τ . τ is thus called the natural radiative lifetime of the
excited state.

The values of the Einstein A coefficient and hence the radiative lifetime τ vary considerably from
transition to transition. Allowed E1 transitions have A coefficients in the range 108 − 109 s−1 at optical
frequencies, giving radiative lifetimes of ∼ 1− 10 ns. Forbidden transitions, on the other hand, are much
slower because they are higher order processes. The radiative lifetimes for M1 and E2 transitions are
typically in the millisecond or microsecond range. This point is summarized in Table 3.2.

3.7 The width and shape of spectral lines

The radiation emitted in atomic transitions is not perfectly monochromatic. The shape of the emission
line is described by the spectral line shape function g(ν). This is a function that peaks at the line
centre defined by

hν0 = (E2 − E1) , (3.26)

and is normalized so that: ∫ ∞
0

g(ν) dν = 1 . (3.27)

The most important parameter of the line shape function is the full width at half maximum (FWHM)
∆ν, which quantifies the width of the spectral line. We shall see below how the different types of line
broadening mechanisms give rise to two common line shape functions, namely the Lorentzian and
Gaussian functions.

In a gas of atoms, spectral lines are broadened by three main processes:

• natural broadening,

• collision broadening,

• Doppler broadening.
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We shall look at each of these processes separately below. A useful general division can be made at this
stage by classifying the broadening as either homogeneous or inhomogeneous.

• Homogeneous broadening affects all the individual atoms in the same way. Natural lifetime and
collision broadening are examples of homogeneous processes. All the atoms are behaving in the
same way, and each atom produces the same emission spectrum.

• Inhomogeneous broadening affects different individual atoms in different ways. Doppler broad-
ening is the standard example of an inhomogeneous process. The individual atoms are presumed to
behave identically, but they are moving at different velocities, and one can associate different parts
of the spectrum with the subset of atoms with the appropriate velocity. Inhomogeneous broadening
is also found in solids, where different atoms may experience different local environments due to
the inhomogeneity of the medium.

3.8 Natural broadening

We have seen in Section 3.6 that the process of spontaneous emission causes the excited states of an
atom to have a finite lifetime. Let us suppose that we somehow excite a number of atoms into level 2
at time t = 0. Equation 3.23 shows us that the rate of transitions is proportional to the instantaneous
population of the upper level, and eqn 3.24 shows that this population decays exponentially. Thus the
rate of atomic transitions decays exponentially with time constant τ . For every transition from level 2 to
level 1, a photon of angular frequency ω0 = (E2 − E1)/~ is emitted. Therefore a burst of light with an
exponentially-decaying intensity will be emitted for t > 0:

I(t) = I(0) exp(−t/τ) . (3.28)

This corresponds to a time dependent electric field of the form:

t < 0 : E(t) = 0 ,

t ≥ 0 : E(t) = E0 eiω0t e−t/2τ . (3.29)

The extra factor of 2 in the exponential in eqn 3.29 compared to eqn 3.28 arises because I(t) ∝ E(t)2.
We now take the Fourier transform of the electric field to derive the frequency spectrum of the burst:

E(ω) =
1√
2π

∫ +∞

−∞
E(t) eiωt dt . (3.30)

The emission spectrum is then given by:

I(ω) ∝
∣∣E(ω)2

∣∣ ∝ 1

(ω − ω0)2 + (1/2τ)2
. (3.31)

Remembering that ω = 2πν, we find the final result for the spectral line shape function:

g(ν) =
∆ν

2π

1

(ν − ν0)2 + (∆ν/2)2
, (3.32)

where the full width at half maximum is given by

∆ν =
1

2πτ
. (3.33)

The spectrum described by eqn 3.32 is called a Lorentzian line shape. This function is plotted in
Fig. 3.3. Note that we can re-write eqn 3.33 in the following form:

∆ν · τ =
1

2π
. (3.34)

By multiplying both sides by h, we can recast this as:

∆E · τ = h/2π . (3.35)

If we realize that τ represents the average time the atom stays in the excited state (i.e the uncertainty
in the time), we can interpret this as the energy–time uncertainty principle.
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Figure 3.3: The Lorentzian line shape. The functional form is given in eqn 3.32. The
function peaks at the line centre ν0 and has an FWHM of 1/2πτ . The function is normalized
so that the total area is unity.

3.9 Collision (Pressure) broadening

The atoms in a gas jostle around randomly and frequently collide into each other and the walls of the
containing vessel. This interrupts the process of light emission and effectively shortens the lifetime of the
excited state. This gives additional line broadening through the uncertainty principle, as determined by
eqn 3.33 with τ replaced by τc, where τc is the mean time between collisions.

It can be shown from the kinetic theory of gases that the time between collisions in an ideal gas is
given by:

τc ∼
1

σsP

(
πmkBT

8

)1/2

, (3.36)

where σs is the collision cross-section, and P is the pressure. The collision cross-section is an effective
area which determines whether two atoms will collide or not. It will be approximately equal to the size
of the atom. For example, for sodium atoms we have:

σs ∼ πr2
atom ∼ π × (0.2 nm)2 = 1.2× 10−19 m2 .

Thus at S.T.P we find τc ∼ 6×10−10 s, which gives a line width of ∼ 1 GHz. Note that τc is much shorter
than typical radiative lifetimes. For example, the strong yellow D-lines in sodium have a radiative lifetime
of 16 ns, which is nearly two orders of magnitude larger.

In conventional atomic discharge tubes, we reduce the effects of pressure broadening by working at
low pressures. We see from eqn 3.36 that this increases τc, and hence reduces the linewidth. This is why
we tend to use “low pressure” discharge lamps for spectroscopy.

3.10 Doppler broadening

The spectrum emitted by a typical gas of atoms in a low pressure discharge lamp is usually found to be
much broader than the radiative lifetime would suggest, even when everything is done to avoid collisions.
For example, the radiative lifetime for the 632.8 nm line in neon is 2.7 × 10−7 s. Equation 3.33 tells us
that we should have a spectral width of 0.54 MHz. In fact, the line is about three orders of magnitude
broader, and moreover, does not have the Lorentzian lineshape given by eqn 3.32.

The reason for this discrepancy is the thermal motion of the atoms. The atoms in a gas move about
randomly with a root-mean-square thermal velocity given by:

1
2
mv2

x = 1
2
kBT , (3.37)

where kB is Boltzmann’s constant. At room temperature the thermal velocities are quite large. For
example, for sodium with a mass number of 23 we find vx ∼ 330 ms−1 at 300 K. This random thermal
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Figure 3.4: The Doppler broadening mechanism. The thermal motion of the atoms causes
their frequency to be shifted by the Doppler effect.

motion of the atoms gives rise to Doppler shifts in the observed frequencies, which then cause line
broadening, as illustrated in Fig. 3.4. This is Doppler line broadening mechanism.

Let us suppose that the atom is emitting light from a transition with centre frequency ν0. An atom
moving with velocity vx will have its observed frequency shifted by the Doppler effect according to:

ν = ν0

(
1± vx

c

)
, (3.38)

where the + and − sign apply to motion towards or away from the observer respectively. The probability
that an atom has velocity vx is governed by the Boltzmann formula:

p(E) ∝ e−E/kBT . (3.39)

On setting E equal to the kinetic energy, we find that the number of atoms with velocity vx is given by
the Maxwell–Boltzmann distribution:

N(vx) ∝ exp

(
−

1
2
mv2

x

kBT

)
. (3.40)

We can combine eqns 3.38 and 3.40, to find the number of atoms emitting at frequency ν:

N(ν) ∝ exp

(
−mc

2(ν − ν0)2

2kBTν2
0

)
. (3.41)

The frequency dependence of the light emitted is therefore given by:

I(ν) ∝ exp

(
−mc

2(ν − ν0)2

2kBTν2
0

)
. (3.42)

This gives rise to a Gaussian line shape with g(ν) given by:

g(ν) ∝ exp

(
−mc

2(ν − ν0)2

2kBTν2
0

)
, (3.43)

with a full width at half maximum equal to:

∆νD = 2ν0

(
(2 ln 2)kBT

mc2

)1/2

=
2

λ

(
(2 ln 2)kBT

m

)1/2

. (3.44)

The Doppler linewidth in a gas at S.T.P is usually several orders of magnitude larger than the natural
linewidth. For example, the Doppler line width of the 632.8 nm line of neon at 300 K works out to
be 1.3 GHz, i.e. three orders of magnitude larger than the broadening due to spontaneous emission.
The dominant broadening mechanism in the emission spectrum of gases at room temperature is usually
Doppler broadening, and the line shape is closer to Gaussian than Lorentzian. 3

3Since ∆νD is proportional to
√
T , we can reduce its value by cooling the gas. Cooling also reduces the collision

broadening because P ∝ T , and therefore τc ∝ T−1/2. (See eqn 3.36.) Laser cooling techniques can produce temperatures
in the micro-Kelvin range, where we finally observe the natural line shape of the emission line.
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3.11 Converting between line widths in frequency and wave-
length units

Spectral lines can be plotted against frequency, photon energy, wave number or wavelength. Converting
between line widths for the first three of these presents no difficulty, since it just involves a linear
scaling. (See Section 1.5.) However, converting to wavelengths is more complicated, because of the
inverse relationship between wavelength and frequency.

Let us suppose that we have an atomic transition of centre frequency ν0 and FWHM ∆ν, where
∆ν � ν0. We convert to wavelengths through ν = c/λ. This implies that:

dν

dλ
= − c

λ2
, (3.45)

and hence that the FWHM in wavelength units is given by:

∆λ =

∣∣∣∣−λ2
0

c
∆ν

∣∣∣∣ =
λ2

0

c
∆ν , (3.46)

where λ0 = c/ν0. A simple way of remembering this follows directly from eqn 3.46, namely:

∆λ

λ
=

∆ν

ν
, (3.47)

where we have dropped the subscripts on the centre frequency and wavelength.
Equations 3.46 and 3.47 work in the limit where ∆ν � ν0, or equivalently, ∆λ � λ0. In some cases

(e.g. in molecular physics or solid-state physics) we might be considering a broad emission band rather
than a narrow spectral line. In this situation, we have to go back to first principles to convert between
frequency and wavelength units. Suppose that the emission band runs from frequency ν1 to ν2. The
spectral width in wavelength units is then worked out from:

∆λ = |λ2 − λ1| =
∣∣∣∣ cν2
− c

ν1

∣∣∣∣ . (3.48)

Here, as in eqn 3.46, the modulus is needed because an increase in frequency causes a decrease in
wavelength, and vice versa. Note that eqn 3.48 always works, and can be applied to the case of narrow
spectral lines by putting ν1 = ν0−∆ν/2 and ν2 = ν0 + ∆ν/2, or, more easily, ν1 = ν0 and ν2 = ν0 + ∆ν.

3.12 Atoms in solids

In laser physics we shall frequently be interested in the emission spectra of atoms in crystals. The spectra
will be subject to lifetime broadening as in gases, since this is a fundamental property of radiative
emission. However, the atoms are locked in a lattice, and so collisional broadening is not relevant.
Doppler broadening does not occur either, for the same reason. On the other hand, the emission lines
can be broadened by other mechanisms.

In some cases it may be possible for the atoms to de-excite from the upper level to the lower level
by making a non-radiative transition. One way this could happen is to drop to the lower level by
emitting phonons (ie heat) instead of photons. To allow for this possibility, we must re-write eqn 3.23 in
the following form:

dN2

dt
= −AN2 −

N2

τNR
= −

(
A+

1

τNR

)
N2 = −N2

τ
, (3.49)

where τNR is the non-radiative transition time. This shows that non-radiative transitions shorten the
lifetime of the excited state according to:

1

τ
= A+

1

τNR
. (3.50)

We thus expect additional lifetime broadening according to eqn 3.33. The phonon emission times in solids
are often very fast, and can cause substantial broadening of the emission lines. This is the solid-state
equivalent of collisional broadening.

Another factor that may cause line broadening is the inhomogeneity of the host medium, for example
when the atoms are doped into a glass. If the environment in which the atoms find themselves is not
entirely uniform, the emission spectrum will be affected through the interaction between the atom and
the local environment. This is an example of an inhomogeneous broadening mechanism.
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Chapter 4

The shell model and alkali spectra

Everything we have been doing so far in this course applies to hydrogenic atoms. We have taken this
approach because the hydrogen atom only contains two particles: the nucleus and the electron. This is
a two-body system and can be solved exactly by separating the motion into the centre of mass and
relative co-ordinates. This has allowed us to find the wave functions and understand the meaning of the
quantum numbers n, l, ml and ms.

We are well aware, however, that hydrogen is only the first of about 100 elements. These are not two
body problems: we have one nucleus and many electrons, which is a many body problem, with no
exact solution. This chapter begins our consideration of the approximation techniques that are used to
understand the behaviour of many-electron atoms.

4.1 The central field approximation

The Hamiltonian for an N -electron atom with nuclear charge +Ze can be written in the form:

Ĥ =

N∑
i=1

(
− ~2

2m
∇2
i −

Ze2

4πε0ri

)
+

N∑
i>j

e2

4πε0rij
, (4.1)

where N = Z for a neutral atom. The subscripts i and j refer to individual electrons and rij = |ri− rj |.
The first summation accounts for the kinetic energy of the electrons and their Coulomb interaction with
the nucleus, while the second accounts for the electron-electron repulsion.

It is not possible to find an exact solution to the Schrödinger equation with a Hamiltonian of the
form given by eqn 4.1, because the electron-electron repulsion term depends on the co-ordinates of two
of the electrons, and so we cannot separate the wave function into a product of single-particle states.
Furthermore, the electron-electron repulsion term is comparable in magnitude to the first summation,
making it impossible to use perturbation theory either. The description of multi-electron atoms therefore
usually starts with the central field approximation in which we re-write the Hamiltonian of eqn 4.1
in the form:1

Ĥ =

N∑
i=1

(
− ~2

2m
∇2
i + Vcentral(ri)

)
+ Vresidual , (4.2)

where Vcentral is the central field and Vresidual is the residual electrostatic interaction.
The central field approximation works in the limit where∣∣∣∣∣

N∑
i=1

Vcentral(ri)

∣∣∣∣∣� |Vresidual| . (4.3)

In this case, we can treat Vresidual as a perturbation, and worry about it later. We then have to solve a
Schrödinger equation in the form:[

N∑
i=1

(
− ~2

2m
∇2
i + Vcentral(ri)

)]
Ψ = EΨ . (4.4)

1A field is described as “central” if the potential energy has spherical symmetry about the origin, so that V (r) only
depends on r. The fact that V does not depend on θ or φ means that the force is parallel to r, i.e. it points centrally
towards or away from the origin.

37
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This is not as bad as it looks. By writing2

Ψ = ψ1(r1)ψ2(r2) · · ·ψN (rN ) , (4.5)

we end up with N separate Schrödinger equations of the form:(
− ~2

2m
∇2
i + Vcentral(ri)

)
ψi(ri) = Ei ψi(ri) , (4.6)

with
E = E1 + E2 · · ·EN . (4.7)

This is much more tractable. We might need a computer to solve any one of the single particle wave
Schrödinger equations of the type given in eqn 4.6, but at least it is possible in principle. Furthermore, the
fact that the potentials that appear in eqn 4.6 only depend on the radial co-ordinate ri (i.e. no dependence
on the angles θi and φi) means that every electron is in a well-defined orbital angular momentum state,3

and that the separation of variables discussed in Section 2.2 is valid. In analogy with eqn 2.25, we can
then write:

ψi(ri) ≡ ψ(ri, θi, φi) = Ri(ri)Yi(θi, φi) . (4.8)

By proceeding exactly as in Section 2.2, we end up with two equations, namely:

L̂
2

iYlimi
(θi, φi) = ~2li(li + 1)Ylimi

(θi, φi) , (4.9)

and (
− ~2

2m

1

r2
i

d

dri

(
r2
i

d

dri

)
+

~2li(li + 1)

2mr2
i

+ Vcentral(ri)

)
Ri(ri) = EiRi(ri) . (4.10)

The first tells us that the angular part of the wave functions will be given by the spherical harmonic
functions described in Section 2.2.3, while the second one allows us to work out the energy and radial
wave function for a given form of Vcentral(ri) and value of li. Each electron will therefore have four
quantum numbers:

• l and ml: these drop out of the angular equation for each electron, namely eqn 4.9.

• n: this arises from solving eqn 4.10 with the appropriate form of Vcentral(r) for a given value of l.
n and l together determine the radial wave function Rnl(r) (which cannot be expected to be the
same as the hydrogenic ones given in Table 2.3) and the energy of the electron.

• ms: spin has not entered the argument. Each electron can therefore either have spin up (ms = +1/2)
or down (ms = −1/2), as usual. We do not need to specify the spin quantum number s because it
is always equal to 1/2.

The state of the many-electron atom is then found by working out the wave functions of the individual
electrons and finding the total energy of the atom according to eqn 4.7, subject to the constraints imposed
by the Pauli exclusion principle. This provides a useful working model that will be explored in detail
below.

In the following sections we shall consider the experimental evidence for the shell model which proves
that the central approximation is a good one. The reason it works is based on the nature of the shells.
An individual electron experiences an electrostatic potential due to the Coulomb repulsion from all the
other electrons in the atom. Nearly all of the electrons in a many-electron atom are in closed sub-shells,
which have spherically-symmetric charge clouds. The off-radial forces from electrons in these closed shells
cancel because of the spherical symmetry. Furthermore, the off-radial forces from electrons in unfilled
shells are usually relatively small compared to the radial ones. We therefore expect the approximation
given in eqn 4.3 to be valid for most atoms.

4.2 The shell model and the periodic table

We summarize here what we know so far about atomic states.
2The fact that electrons are indistinguishable particles means that we cannot distinguish physically between the case

with electron 1 in state 1, electron 2 in state 2, . . . , and the case with electron 2 in state 1, electron 1 in state 2, . . . , etc.
We should therefore really write down a linear combination of all such possibilities. We shall reconsider this point when
considering the helium atom in Chapter 6.

3As noted in Section 2.2.3, the torque on the electron is zero if the force points centrally towards the nucleus. This
means that the orbital angular momentum is constant.
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Quantum number symbol Value

principal n any integer > 0
orbital l integer up to (n− 1)
magnetic ml integer from −l to +l
spin ms ±1/2

Table 4.1: Quantum numbers for electrons in atoms.

1. The electronic states are specified by four quantum numbers: n, l, ml and ms. The values that
these quantum numbers can take are summarized in Table 4.1. In spectroscopic notation, electrons
with l = 0, 1, 2, 3, . . . are called s, p, d, f , . . . electrons.

2. The gross energy of the electron is determined by n and l, except in hydrogenic atoms, where the
gross structure depends only on n.

3. In the absence of fine structure and external magnetic fields, all the states with the same values of n
and l are degenerate. Each (n, l) term of the gross structure therefore contains 2(2l+ 1) degenerate
levels.

4. Electrons are indistinguishable, spin 1/2 particles and are therefore fermions. This means that
they obey the Pauli exclusion principle, so that only one electron can occupy a particular
quantum state.4

In the shell model of multi-electron atoms, we forget about fine structure and external magnetic
fields, and just concentrate on the gross structure.5 The energy levels are ordered according to the
quantum numbers n and l, with big jumps in energy each time we move to the next set of quantum
numbers. The degenerate states with the same values of n and l are called shells. As we add electrons to
the atom, the Pauli exclusion principle dictates that the electrons fill up the lowest available shell until
it is full, and then go on to the next one. The filling up of the shells in order of increasing energy in
multi-electron atoms is sometimes called the Aufbau principle,6 and is the basis of the periodic table
of elements. The shells are listed in order of increasing energy in Table 4.2.

Inspection of Table 4.2 shows us that the energy of the shells always increases with n and l. We build
up multi-electron atoms by adding electrons one by one, putting each electron into the lowest energy
shell that has unfilled states. In general, this will be the one with the lowest n, but there are exceptions
to this rule. For example, the 19th electron goes into 4s shell rather than the 3d shell. Similarly, the 37th

electron goes into 5s shell rather than the 4d shell. This happens because the energy of the shell with a
large l value may be higher than that of another shell with a larger value of n but smaller value of l.

The periodic table of elements is built up by adding electrons into the shells as the atomic number
increases. This allows us to determine the electronic configuration of the elements, that is, the
quantum numbers of the electrons in the atom. The configurations of the first 11 elements are listed in
Table 4.3. The superscript attached to the shell tells us how many electrons are in that shell. The process
of filling the shells follows the pattern indicated in Table 4.2. The nl sub-shells are filled diagonally when
laid out in rows determined by the principal quantum number n, as shown in Fig. 4.1.7

4.3 Justification of the shell model

The theoretical justification for the shell model relies on the concept of screening. The idea is that the
electrons in the inner shells screen the outer electrons from the potential of the nucleus. To see how this
works we take sodium as an example.

4We shall discuss how the Pauli exclusion principle gives rise to exchange energy shifts in Chapter 6.
5This approximation is justified by the fact that the fine structure and magnetic field splittings are smaller than the

gross structure energies by a factor of about Z2α2 = (Z2/137)2 ∼ 10−4 Z2. Note, however, that the fine structure energy
can get to be quite significant for large Z.

6The German word Aufbau means “building up”.
7There are some exceptions to the general rules. For example, copper (Cu) with Z = 29 has a configuration of · · · 4s1 3d10

instead of · · · 4s2 3d9. This happens because filled shells are particularly stable. It is therefore energetically advantageous
to promote the second 4s electron into the 3d shell to give the very stable 3d10 configuration. The energy difference between
the two configurations is not particularly large, which explains why copper sometimes behaves as though it is monovalent,
and sometimes divalent.
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Shell n l ml ms Nshell Naccum

1s 1 0 0 ±1/2 2 2
2s 2 0 0 ±1/2 2 4
2p 2 1 −1, 0,+1 ±1/2 6 10
3s 3 0 0 ±1/2 2 12
3p 3 1 −1, 0,+1 ±1/2 6 18
4s 4 0 0 ±1/2 2 20
3d 3 2 −2,−1, 0,+1,+2 ±1/2 10 30
4p 4 1 −1, 0,+1 ±1/2 6 36
5s 5 0 0 ±1/2 2 38
4d 4 2 −2,−1, 0,+1,+2 ±1/2 10 48
5p 5 1 −1, 0,+1 ±1/2 6 54
6s 6 0 0 ±1/2 2 56
4f 4 3 −3,−2,−1, 0,+1,+2,+3 ±1/2 14 70
5d 5 2 −2,−1, 0,+1,+2 ±1/2 10 80
6p 6 1 −1, 0,+1 ±1/2 6 86
7s 7 0 0 ±1/2 2 88

Table 4.2: Atomic shells, listed in order of increasing energy. Nshell is equal to 2(2l + 1) and
is the number of electrons that can fit into the shell due to the degeneracy of the ml and ms

levels. The last column gives the accumulated number of electrons that can be held by the
atom once the particular shell and all the lower ones have been filled.

Element Atomic number Electronic configuration

H 1 1s1

He 2 1s2

Li 3 1s2 2s1

Be 4 1s2 2s2

B 5 1s2 2s2 2p1

C 6 1s2 2s2 2p2

N 7 1s2 2s2 2p3

O 8 1s2 2s2 2p4

F 9 1s2 2s2 2p5

Ne 10 1s2 2s2 2p6

Na 11 1s2 2s2 2p6 3s1

Table 4.3: The electronic configuration of the first 11 elements of the periodic table.

7s

6h6g6f6d6p6s

5g5f5d5p5s

4f4d4p4s

3d3p3s

2p2s

1s

7s

6h6g6f6d6p6s

5g5f5d5p5s

4f4d4p4s

3d3p3s

2p2s

1s

Figure 4.1: Atomic shells are filled in diagonal order when listed in rows according to the
principal quantum number n.
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Figure 4.2: The electronic configuration of the sodium atom according to the shell model.

Shell n Zeff radius (Å) Energy (eV)

1s 1 11 0.05 −1650
2s, 2p 2 9 0.24 −275
3s 3 1 4.8 −1.5

Table 4.4: Radii and energies of the principal atomic shells of sodium according to the Bohr
model. The unit of 1 Ångstrom (Å) = 10−10 m.

Sodium has an atomic number of 11, and therefore has a nucleus with a charge of +11e with 11
electrons orbiting around it. The picture of the atom based on the shell model is shown in Fig. 4.2. The
radii and energies of the electrons in their shells are estimated using the Bohr formulæ:

rn =
n2

Z
aH , (4.11)

En = −
(
Z

n

)2

RH , (4.12)

where aH = 5.29 × 10−11 m is the Bohr radius of hydrogen, RH = 13.6 eV is the Rydberg constant and
Z is the atomic number.

The first two electrons go into the n = 1 shell. These electrons see the full nuclear charge of +11e.
With n = 1 and Z = 11, we find r1 = 12/11 × aH = 0.05 Å and E1 = −112RH = −1650 eV. The next
eight electrons go into the n = 2 shell. These are presumed to orbit outside the n = 1 shell. The two inner
electrons partly screen the nuclear charge, and the n = 2 electrons see an effective charge Zeff = +9e.
The radius is therefore r2 = (22/9)×aH = 0.24 Å and the energy is E2 = −(9/2)2RH = −275 eV. Finally,
the outermost electron in the n = 3 shell orbits outside the filled n = 1 and n = 2 shells, and therefore
sees Zeff = 1. With Z = 1 and n = 3 we find r3 = 4.8 Å and E3 = −1.5 eV. These values are summarized
in Table 4.4. Note the large jump in energy and radius in moving from one shell to the next.

The treatment of the screening discussed in the previous paragraph is clearly over-simplified because
it is based on Bohr-type orbits and does not treat the electron-electron repulsion properly. In Section 4.5
we shall see how we might improve on it. One point to realize, however, is that the model is reasonably
self-consistent: by assuming that the inner shells screen the outer ones, we find that the orbital radius
increases in each subsequent shell, which corroborates our original assumption. This is why the model
works so well.

4.4 Experimental evidence for the shell model

There is a wealth of experimental evidence to confirm that the shell model is a good one. The main
points are discussed briefly here.

The periodic table of elements

The periodic table of elements follows from the electronic configuration of the elements, which is derived
from the shell structure of atoms. The periodic table underpins the chemical activity of the elements.
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Figure 4.3: First ionization potentials of the elements up to calcium. The noble gas elements
(He, Ne, Ar) have highly stable fully filled shells with large ionization potentials. The alkali
metals (Li, Na, K) have one weakly-bound valence electron outside fully-filled shells.

It can thus be argued that the whole subject of chemistry can be regarded as experimental proof of the
shell structure of atoms.

Ionization potentials and atomic radii

The ionization potentials of the noble gas elements are the highest within a particular period of the
atomic table, while those of the alkali metals are the lowest. This can be seen by looking at the data in
Fig. 4.3. The ionization potential gradually increases as the atomic number increases until the shell is
filled, and then it drops abruptly. This shows that the filled shells are very stable, and that the valence
electrons go in larger, less tightly-bound orbits. The results correlate with the chemical activity of the
elements. The noble gases require large amounts of energy to liberate their outermost electrons, and
they are therefore chemically inert. The alkali metals, on the other hand, need much less energy, and are
therefore highly reactive.

It is also found that the average atomic radius determined by X-ray crystallography on closely packed
crystals is largest for the alkali metals. This is further evidence that we have weakly-bound valence
electrons outside strongly-bound, small-radius, inner shells.

X-ray line spectra

Measurements of X-ray line spectra allow the energies of the inner shells to be determined directly. The
experimental arrangement for observing an X-ray emission spectrum is shown in Fig. 4.4(a). Electrons
are accelerated across a potential drop of several kV and then impact on a target. This ejects core
electrons from the inner shells of the target, as shown in Fig. 4.4(b). X-ray photons are emitted as the
higher energy electrons drop down to fill the empty level (or hole) in the lower shell.

Each target emits a series of characteristic lines. The series generated when a K-shell (n = 1) electron
has been ejected is called the K-series. Similarly, the L- and M-series correspond to ejection of L-shell
(n = 2) or M-shell (n = 3) core electrons respectively. This old spectroscopic notation dates back to the
early work on X-ray spectra.

Figure 4.5(a) shows a typical X-ray emission spectrum. The spectrum consists of a series of sharp
lines on top of a continuous spectrum. The groups of sharp lines are generated by radiative transitions
following the ejection of an inner shell electron as indicated in Fig. 4.4(b). The group of lines around
0.2 Å originate from K-shell transitions, while the three groups of lines between 1.0 Å and 1.6 Å arise
from L-shell transitions. A particular set of lines is only observed if the tube voltage is high enough to
eject the relevant electron. Hence new groups of lines appear as the voltage is increased, as the higher
energy electron beam ejects ever deeper inner shell electrons. At a given voltage, several groups of lines
are observed as the hole in the initial shell moves up through the higher shells. For example, L-shell lines
are observed at the same time as K-shell lines after the electron in the L-shell drops to the hole in the
K-shell, thus leaving a hole in the L-shell, and so on.
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Figure 4.4: (a) A typical X-ray tube. Electrons are accelerated with a voltage of several kV
and impact on a target, causing it to emit X-rays. (b) Transitions occurring in the K-series
emission lines. An electron from the discharge tube ejects one of the K-shell electrons of the
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higher shells drop down to fill the hole in the K-shell.
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Figure 4.5: (a) X-ray emission spectra for tungsten at two different electron voltages. The
sharp lines are caused by radiative transitions after the electron beam ejects an inner shell
electron, as indicated in Fig. 4.4(b). The continuum is caused by bremsstrahlung, which has
a short wavelength limit equal to hc/eV at voltage V . (b) X-ray absorption cross-section
spectrum for lead.
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The continuous spectrum is caused by bremsstrahlung.8 Bremsstrahlung occurs when the electron
is scattered by the atoms without ejecting a core electron from the target. The acceleration of the electron
associated with its change of direction causes it to radiate. Conservation of energy demands that the
frequency of the radiation must cut off when hν = eV , V being the voltage across the tube. This means
that the minimum wavelength is equal to hc/eV . The reduction of the short wavelength limit of the
bremsstrahlung with increasing voltage is apparent in the data shown in Fig. 4.5(a).

The energy of an electron in an inner shell with principal quantum number n is given by:

En = −Z
eff
n

2

n2
RH , (4.13)

where Zeff
n is the effective nuclear charge, and RH = 13.6 eV. The difference between Z (the atomic

number of the target) and Zeff
n is caused by the screening effect of the other electrons. The energy of the

optical transition from n→ n′ is thus given by:

hν = |En′ − En| =

∣∣∣∣∣Zeff
n

2

n2
− Zeff

n′
2

n′2

∣∣∣∣∣RH . (4.14)

In practice, the wavelengths of the various series of emission lines are found to obey Moseley’s law,
where we make the approximation Zeff

n = Zeff
n′ and write both as (Z−σn). For example, the K-shell lines

are given by:9

hc

λ
≈ (Z − σK)2RH

(
1

12
− 1

n2

)
, (4.15)

where n > 1 and σK ∼ 3. Similarly, the L-shell spectra obey:

hc

λ
≈ (Z − σL)2RH

(
1

22
− 1

n2

)
, (4.16)

where n > 2, and σL ∼ 10. We can see that these are just the expected wavelengths predicted by the Bohr
model, except that we have an effective charge of (Z−σn) instead of Z. The phenomenological screening
parameter σn that appears here accounts for the screening of the nucleus by the other electrons and
varies from shell to shell.

X-ray absorption spectra show a complementary frequency dependence to the emission spectra. Fig-
ure 4.5(b) shows a typical X-ray absorption spectrum. A sharp increase in the absorption cross section10

occurs whenever the photon energy crosses the threshold to eject an electron out of an inner shell to empty
states above the highest occupied shell. This sharp increase in the absorption is called the absorption
edge. The final state for the electron after the absorption transition could either be one of the excited
states of the valence electrons or in the continuum above the ionization limit. The binding energy of the
valence electrons is negligible on the scale of X-ray energies, and so we can effectively put En′ = 0 in
eqn 4.14 and hence obtain the energy of the absorption edge as:

hνedge =
Zeff
n

2

n2
RH ≡

(Z − σn)2

n2
RH . (4.17)

The absorption probability decreases as the electron gets promoted further into the continuum. Hence
we see a peak in the absorption at hνedge and a decrease thereafter. The K and L shell absorption edges
are clearly visible at 88 keV and 15 keV respectively in Fig. 4.5(b).

Close inspection of Fig. 4.5(b) reveals that there is some sub-structure in the L-shell absorption
edge, but not in the K-shell edge. This is a consequence of the fact that the L-shell has two sub-shells
corresponding to different values of the angular momentum quantum number l, namely the 2s and 2p
sub-shells. These have slightly different screening parameters, and hence slightly different energies, on
account of the different shape of their radial wave functions. The K shell, by contrast, can only have
l = 0, and thus consists a unique state, namely the 1s level. The situation is further complicated by the

8German: brems = braking (i.e. deceleration) + strahlung = radiation.
9There is no real scientific justification for the approximation Zeff

n = Zeff
n′ in Moseley’s law. The law is an empirical one

and reflects the fact that the transition wavelength is mainly dominated by the energy of the lower shell. Note also that
close inspection of the line spectra reveals sub-structure due to the relatively small energy differences between the l states
for a particular value of n, and further smaller splittings due to spin-orbit coupling.

10Absorption coefficients are often expressed as “cross sections”. The cross section is equal to the effective area of the
beam that is blocked out by the absorption of an individual atom. If there are N atoms per unit volume, and the cross
section is equal to σabs, the absorption coefficient in m−1 is equal to Nσabs.
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Figure 4.6: (a) Typical effective potential Veff(r) for the valence electrons of an atom with
atomic number Z. (b) Radial probability densities for hydrogenic 3s and 3p wave functions.
a0 is the Bohr radius (0.529 Å). The shaded region near r = 0 represents the inner core shells
for the case of sodium with Z = 11.

fact that the 2p sub-shell is split by the spin-orbit effect that will be discussed in Chapter 7, which means
that the L-shell actually consists of three sub-shells.11 This explains why the L-edge around 20 keV has
three sub-edges in Fig. 4.5(b), and why there are three groups of lines in the emission spectrum shown
in Fig. 4.5(a) for the L-shell transitions from 1.0–1.6Å.

Detailed lists of X-ray transition energies may be found on the NIST atomic data base. 12 Another
useful reference is maintained by the National Physical Laboratory (NPL) in the United Kingdom.

4.5 Effective potentials, screening, and alkali metals

The electrons in a multi-electron atom arrange themselves with the smallest number of electrons in
unfilled shells outside inner filled shells. These outermost electrons are called the valence electrons of
the atom. They are responsible for the chemical activity of the particular elements.

In order to work out the energy levels of the valence electrons, we need to solve the N -electron
Schrödinger equation given in eqn 4.1. Within the central-field approximation, each valence electron
satisfies a Schrödinger equation of the type given in eqn 4.6, which can be written in the form:(

− ~2

2m
∇2 + V leff(r)

)
ψ = E ψ . (4.18)

The Coulomb repulsion from the core electrons is lumped into the effective potential V leff(r). This is only
an approximation to the real behaviour, but it can be reasonably good, depending on how well we work
out V leff(r). Note that the effective potential depends on l. This arises from the term in l that appears in
eqn 4.10 and has important consequences, as we shall see below.

The overall dependence of Veff(r) with r must look something like Fig. 4.6. At very large values of r,
the outermost valence electron will be well outside any filled shells, and will thus only see an attractive
potential equivalent to a charge of +e. On the other hand, if r is very small, the electron will see
the full nuclear charge of +Ze. The potential at intermediate values of r must lie somewhere between
these two limits: hence the generic form of Veff(r) shown in Fig. 4.6. The task of calculating V leff(r)
keeps theoretical atomic physicists busy. Two common approximation techniques used to perform the
calculations are called the Hartree and Thomas-Fermi methods.

As a specific example, we consider the alkali metals such as lithium, sodium and potassium, which
come from group I of the periodic table. They have one valence electron outside filled inner shells, as
indicated in Table 4.5. They are therefore approximately one-electron systems, and can be understood
by introducing a phenomenological number called the quantum defect to describe the energies. To see
how this works, we consider the sodium atom.

11The spin-orbit effect is zero for s-states such as the 1s and 2s sub-shells, because they have l = 0. See eqn 7.35.
12See http://www.nist.gov/pml/data/xray gammaray.cfm. The National Physical Laboratory (NPL) maintains an online,

updated version of the classic data reference book by G.W.C. Kaye and T.H. Laby, which includes detailed X-ray data. See
http://www.kayelaby.npl.co.uk.
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Element Z Electronic configuration

Lithium 3 1s22s1

Sodium 11 [Ne] 3s1

Potassium 19 [Ar] 4s1

Rubidium 37 [Kr] 5s1

Cesium 55 [Xe] 6s1

Table 4.5: Alkali metals. The symbol [. . . ] indicates that the inner shells are filled according
to the electronic configuration of the noble gas element identified in the bracket.

l n = 3 n = 4 n = 5 n = 6

0 1.373 1.357 1.352 1.349

1 0.883 0.867 0.862 0.859

2 0.010 0.011 0.013 0.011

3 − 0.000 -0.001 -0.008

Table 4.6: Values of the quantum defect δ(l) for sodium against n and l.

The shell model picture of sodium is shown in Fig. 4.2. The optical spectra are determined by
excitations of the outermost 3s electron. The energy of each (n, l) term of the valence electron is given
by:

Enl = − RH
[n− δ(l)]2

, (4.19)

where n ≥ 3 and δ(l) is the quantum defect. The quantum defect allows for the penetration of the inner
shells by the valence electron.

The dependence of the quantum defect on l can be understood with reference to Fig. 4.6(b). This
shows the radial probability densities Pnl(r) = r2|R(r)|2 for the 3s and 3p orbitals of a hydrogenic atom
with Z = 1, which might be expected to be a reasonable approximation for the single valence electron of
sodium. The shaded region near r = 0 represents the inner n = 1 and n = 2 shells with radii of ∼ 0.09a0

and ∼ 0.44a0 respectively. (See Section 4.3.) We see that both the 3s and 3p orbitals penetrate the inner
shells, and that this penetration is much greater for the 3s electron. The electron will therefore see a
larger effective nuclear charge for part of its orbit, and this will have the effect of reducing the energies.
The energy reduction is largest for the 3s electron due to its larger core penetration.

The quantum defect δ(l) was introduced empirically to account for the optical spectra. In principle
it should depend on both n and l, but it was found experimentally to depend mainly on l. This can be
seen from the values of the quantum defect for sodium tabulated in Table 4.6. The corresponding energy
spectrum is shown schematically in Fig. 4.7. Note that δ(l) is very small for l ≥ 2.

We can use the quantum defect to calculate the wavelengths of the emission lines. The D lines
correspond to the 3p → 3s transition.13 By using the values of δ given in Table 4.6, we can find the
photon energy, and hence the photon wavelength, from the energy difference between the two levels:

hν =
hc

λ
= E3p − E3s . (4.20)

We therefore find that the wavelength λ is given by:

1

λ
=

RH
hc

(
1

[3− δ(3s)]2
− 1

[3− δ(3p)]2

)
= (1.10× 105 cm−1)×

(
1

1.6272
− 1

2.1172

)
.

The wave number ν ≡ 1/λ of the transition is thus 1.70 × 104 cm−1, and so λ is equal to 590nm. This
corresponds to the yellow-orange part of the spectrum, as we would expect for the D-lines of sodium.

13The labelling of the 3p→ 3s transition as a ”D-line” dates back to Fraunhofer’s catalogue of spectral lines. The term
is now applied to the first transition from the ground state of any alkali atom, i.e. the ns↔ np transition, where ns is the
ground state of the alkali.
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Figure 4.7: Schematic energy level diagram for sodium, showing the ordering of the energy
levels.
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Chapter 5

Angular momentum

The treatment of angular momentum is very important for understanding the properties of atoms. It is
now time to explore these effects in detail, and to see how this leads to the classification of the quantized
states of atoms by their angular momentum.

5.1 Conservation of angular momentum

In the Sections that follow, we are going to consider several different types of angular momentum, and
the ways in which they are coupled together. Before going into the details, it is useful to stress one
very important point related to conservation of angular momentum. In an isolated atom, there are
many forces (and hence torques) acting inside the atom. These internal forces cannot change the total
angular momentum of the atom, since conservation of angular momentum demands that the angular
momentum of the atom as a whole must be conserved in the absence of any external torques. The total
angular momentum of the atom is normally determined by its electrons. The total electronic angular
momentum is written J , and is specified by the quantum number J . The principle of conservation of
angular momentum therefore requires that isolated atoms always have well-defined J states.1 It is this
J value that determines, for example, the magnetic dipole moment of the atom.

The principle of conservation of angular momentum does not apply, of course, when external pertur-
bations are applied. The most obvious example is the perturbation caused by the emission or absorption
of a photon. In this case the angular momentum of the atom must change because the photon itself
carries angular momentum, and the angular momentum of the whole system (atom + photon) has to be
conserved. The change in J is then governed by selection rules, as discussed, for example, in Section 5.8.
Another obvious example is the effect of a strong external DC magnetic field. In this case it is possible
for the magnetic field to produce states where the component of angular momentum along the direction
of the field is well-defined, but not the total angular momentum. (See the discussion of the Paschen-Back
effect in Section 8.1.3.)

5.2 Types of angular momentum

The electrons in atoms possess two different types of angular momentum, namely orbital and spin angular
momentum.These are discussed separately below.

5.2.1 Orbital angular momentum

The electrons in atoms orbit around the nucleus, and therefore possess orbital angular momentum. In
classical mechanics, we define the orbital angular momentum of a particle by:

L = r × p , (5.1)

1This statement about J has to be qualified somewhat when we add in the effects of the nucleus. The angular momentum
of an atom is the resultant of the electronic angular momentum and the nuclear spin. The total angular momentum of an
isolated atom has to be conserved, but the electrons can exchange angular momentum with the nucleus through hyperfine
interactions. (See Section 7.7.2.) These interactions are very weak, and can usually be neglected except when explicitly
considering nuclear effects.

49
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where r is the radial position, and p is the linear momentum. The components of L are given byLxLy
Lz

 =

xy
z

×
pxpy
pz

 =

ypz − zpyzpx − xpz
xpy − ypx

 . (5.2)

In quantum mechanics we represent the linear momentum by differential operators of the type

p̂x = −i~ ∂

∂x
. (5.3)

Therefore, the quantum mechanical operators for the Cartesian components of the orbital angular mo-
mentum are given by:

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
(5.4)

L̂y = −i~
(
z
∂

∂x
− x ∂

∂z

)
(5.5)

L̂z = −i~
(
x
∂

∂y
− y ∂

∂x

)
. (5.6)

Note that the “hat” symbol indicates that we are representing an operator and not just a number.
In classical mechanics, the magnitude of the angular momentum is given by:

L2 = L2
x + L2

y + L2
z .

We therefore define the quantum mechanical operator for the magnitude of the angular momentum by:

L̂
2

= L̂2
x + L̂2

y + L̂2
z . (5.7)

The operators like L̂2
x that appear here should be understood in terms of repeated operations:

L̂2
xψ = −~2

(
y
∂

∂z
− z ∂

∂y

)(
y
∂ψ

∂z
− z ∂ψ

∂y

)
= −~2

(
y2 ∂

2ψ

∂z2
− y ∂ψ

∂y
− z ∂ψ

∂z
− 2yz

∂2ψ

∂y∂z
+ z2 ∂

2ψ

∂y2

)
.

Note that we have already met the L̂
2

and L̂z operators when we solved the Schrödinger equation for
hydrogen in Section 2.2. (See eqns 2.27 and 2.33.) When considering hydrogen, the spherical symmetry
of the atom made it convenient to work in spherical polar rather than Cartesian co-ordinates. The two
approaches are, of course, completely equivalent, and the operators are physically identical, whether
expressed in their spherical polar or Cartesian forms.

A key property of the orbital angular momentum operator is that its components do not commute

with each other, but they do commute with L̂
2
. We can summarise this by writing the commutators:2

[L̂x, L̂y] 6= 0 ,

[L̂
2
, Lz] = 0 . (5.8)

The non-commutation of the components can be proved as follows:

L̂xL̂yψ = (−i~)2

(
y
∂

∂z
− z ∂

∂y

)(
z
∂ψ

∂x
− x∂ψ

∂z

)
,

= −~2

(
yz

∂2ψ

∂z∂x
+ y

∂ψ

∂x
− yx∂

2ψ

∂z2
− z2 ∂

2ψ

∂y∂x
+ zx

∂2ψ

∂y∂z

)
.

On the other hand, we have:

L̂yL̂xψ = (−i~)2

(
z
∂

∂x
− x ∂

∂z

)(
y
∂ψ

∂z
− z ∂ψ

∂y

)
,

= −~2

(
zy

∂2ψ

∂x∂z
− z2 ∂

2ψ

∂x∂y
− xy∂

2ψ

∂z2
+ xz

∂2ψ

∂z∂y
+ x

∂ψ

∂y

)
.

2The commutator of two quantum mechanical operators Â and B̂ is defined by: [Â, B̂] = ÂB̂ − B̂Â. Hence [L̂x, L̂y ] =

L̂xL̂y − L̂yL̂x.
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On recalling that ∂2ψ/∂x∂y = ∂2ψ/∂y∂x, we find:

L̂xL̂yψ − L̂yL̂xψ ≡ [L̂x, L̂y]ψ = −~2

(
y
∂ψ

∂x
− x∂ψ

∂y

)
,

= i~×−i~
(
x
∂ψ

∂y
− y ∂ψ

∂x

)
,

= i~L̂zψ .

We therefore conclude that:
[L̂x, L̂y] = i~L̂z (5.9)

The other commutators of the angular momentum operators, namely [L̂y, L̂z] and [L̂z, L̂x] are obtained
by cyclic permutation of the indices in Eq. 5.9: x→ y, y → z, z → x.

The commutation of L̂
2

with L̂z (i.e. [L̂
2
, L̂z] = 0) can be proven by a number of ways. Here is one.

We use the identity:3

[Â2, B̂] = Â[Â, B̂] + [Â, B̂]Â (5.10)

together with eqn 5.7 and the cyclic permutations of eqn 5.9 to write

[L̂
2
, L̂z] = [L̂2

x, L̂z] + [L̂2
y, L̂z] + [L̂2

z, L̂z] ,

= [L̂2
x, L̂z] + [L̂2

y, L̂z] + 0 ,

= L̂x[L̂x, L̂z] + [L̂x, L̂z]L̂x + L̂y[L̂y, L̂z] + [L̂y, L̂z]L̂y ,

= −i~L̂xL̂y − i~L̂yL̂x + i~L̂yL̂x + i~L̂xL̂y ,
= 0 .

It can be shown that the measurable quantities corresponding to two quantum mechanical operators
that do not commute must obey an uncertainty principle. The general result for operators Â and B̂ is:

∆A2∆B2 ≥ 1

4

∣∣∣〈[Â, B̂]〉
∣∣∣2 . (5.11)

The Heisenberg uncertainty principle ∆x∆p ≥ ~/2 is a well known example of this.4 The non-commutation
of the components of L thus implies that it is not possible to know the values of Lx, Ly, Lz simultane-
ously: we can only know one of them (usually Lz) at any time. Once Lz is known, we cannot know Lx

and Ly as well. On the other hand, the fact that L̂z commutes with L̂
2

(cf. eqn 5.8) means that we can
know the length of the angular momentum vector and its z component simultaneously. In summary:

• We can know the length of the angular momentum vector L and one of its components.

• For mathematical convenience, we usually take the component we know to be Lz.

• We cannot know the values of all three components of the angular momentum simultaneously.

The eigenvalues of the angular momentum operators were discussed in Section 2.2.3. The orbital
angular momentum is specified by two quantum numbers: l and m. The latter is sometimes given an
extra subscript (i.e. ml) to distinguish it from the spin quantum number ms considered below. The
magnitude of l is given by

|l| =
√
l(l + 1)~ , (5.12)

and the component along the z axis by
lz = m~ . (5.13)

Note that we have switched to a lower case notation here because we are referring to a single electron.
(See Section 5.7.) l can take positive integer values (including 0) and m can take values in integer steps

3This is proven as follows:

[Â2, B̂] ≡ ÂÂB̂ − B̂ÂÂ = ÂÂB̂ − ÂB̂Â+ ÂB̂Â− B̂ÂÂ = Â(ÂB̂ − B̂Â) + (ÂB̂ − B̂Â)Â ≡ Â[Â, B̂] + [Â, B̂]Â.

4The commutator of x̂ and p̂ is given by:

[x̂, p̂]ψ = (x̂p̂− p̂x̂)ψ = −i~x
(

dψ

dx

)
+ i~

d(xψ)

dx
= i~ψ .

Hence [x̂, p̂] = i~.
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Figure 5.1: The Stern–Gerlach experiment. A beam of monovalent atoms with L = 0 (i.e.
zero orbital angular momentum and hence zero orbital magnetic dipole moment) is deflected
in two discrete ways by a non-uniform magnetic field. The force on the atoms arises from the
interaction between the field and the magnetic moment due to the electron spin.

from −l to +l. The number of m states for each l state is therefore equal to (2l+ 1). These m states are
degenerate in isolated atoms, but can be split by external perturbations (e.g. magnetic or electric fields.)

The quantisation of the angular momentum can be represented pictorially in the vector model , as
shown previously in figure 2.3. In this model the angular momentum is represented as a vector of length√
l(l + 1)~ angled so that its component along the z axis is equal to m~. The x and y components of the

angular momentum are not known.
In classical mechanics, the orbital angular momentum is conserved when the force F is radial: i.e.

F ≡ F r̂, where r̂ is a unit vector parallel to r. This follows from the equation of motion:

dl

dt
= Γ = r × F = r × F r̂ = 0 , (5.14)

where Γ is the torque. In the hydrogen atom, the Coulomb force on the electron acts towards the nucleus,
and hence l is conserved. This is why the angular momentum ends up being quantized with well-defined
constant values when we consider the quantum mechanics of the hydrogen atom. It is also the case
that the individual electrons of many-electron atoms have well-defined l states. This follows because the
central field approximation gives a very good description of the behaviour of many electron atoms (see
Section 4.1), and the dominant resultant force on the electron is radial (i.e. central) in this limit.5

5.2.2 Spin angular momentum

A wealth of data derived from the optical, magnetic and chemical properties of atoms points to the fact
that electrons possess an additional type of angular momentum called spin. The electron behaves as if
it spins around its own internal axis, but this analogy should not be taken literally — the electron is,
as far as we know, a point particle, and so cannot be spinning in any classical way. In fact, spin is a
purely quantum effect with no classical explanation. Paul Dirac at Cambridge successfully accounted for
electron spin when he produced the relativistic wave equation that bears his name in 1928.

The discovery of spin goes back to the Stern-Gerlach experiment, in which a beam of atoms is deflected
by a non-uniform magnetic field. (See Fig. 5.1). The force on a magnetic dipole in a non-uniform magnetic
field is given by:6

Fz = µz
dB

dz
, (5.15)

where dB/dz is the field gradient, which is assumed to point along the z direction, and µz is the z-
component of the magnetic dipole of the atom. In Chapter 7 we shall explore the origin of magnetic
dipoles in detail. At this stage, all we need to know is that the magnetic dipole is directly proportional
to the angular momentum of the atom. (See Section 7.1.)

5The inclusion of non-central forces via the residual electrostatic interaction leads to some mixing of the orbital angular
momentum states. This can explain why transitions that are apparently forbidden by selection rules can sometimes be
observed, albeit with low transition probabilities.

6Note that we need a non-uniform magnetic field to deflect a magnetic dipole. A uniform magnetic field merely exerts
a torque, not a force. We can understand this by analogy with electrostatics. Electric monopoles (i.e. free charges) can
be moved by applying electric fields, but an electric dipole experiences no net force in a uniform electric field because the
forces on the positive and negative charges cancel. If we wish to apply a force to an electric dipole, we therefore need to
apply a non-uniform electric field, so that the forces on the two charges are different. Magnetic monopoles do not exist
(as far as we know), and so all atomic magnets are dipoles. Hence we must apply a non-uniform magnetic field to exert
a magnetic force on an atom. The magnitude of the force in the non-uniform field can be worked out from the energy:
U = −µ ·B = −(µxBx + µyBy + µzBz). With Bx = By = 0 and Fz = −∂U/∂z, eqn 5.15 follows directly.
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The original Stern–Gerlach experiment was performed on silver atoms, which have a ground-state
electronic configuration of [Kr] 4d10 5s1. Filled shells have no net orbital angular momentum, because
there are as many positive ml states occupied as negative ones. Furthermore, electrons in s-shells have
l = 0 and therefore the orbital angular momentum of the atom is zero. This implies that the orbital
magnetic dipole of the atom is also zero, and hence we expect no deflection. However, the experiment
showed that the atoms were deflected either up or down, as indicated in Fig. 5.1.

In order to explain the up/down deflection of the atoms with no orbital angular momentum, we have
to assume that each electron possesses an additional type of magnetic dipole moment. This magnetic
dipole is attributed to the spin angular momentum. In analogy with orbital angular momentum, spin
angular momentum is described by two quantum numbers s and ms, where ms can take the (2s + 1)
values in integer steps from −s to +s. The magnitude of the spin angular momentum is given by

|s| =
√
s(s+ 1)~ , (5.16)

and the component along the z axis is given by

sz = ms~ . (5.17)

The fact that atoms with a single s-shell valence electron (e.g. silver) are only deflected in two directions
(i.e. up or down) implies that (2s+ 1) = 2 and hence that s = 1/2. Hence the spin quantum numbers of
the electron can have the following values:

s = 1/2 ,

ms = ±1/2 .

The Stern–Gerlach experiment is just one of many pieces of evidence that support the hypothesis for
electron spin. Here is an incomplete list of other evidence for spin based on atomic physics:

• The periodic table of elements, which is the foundation of the whole subject of chemistry, cannot
be explained unless we assume that the electrons possess spin.

• High resolution spectroscopy of atomic spectral lines shows that they frequently consist of closely-
spaced multiplets. This fine structure is caused by spin–orbit coupling , which can only be explained
by postulating that electrons possess spin. See Chapter 7.

• If we ignore spin, we expect to observe the normal Zeeman effect when an atom is placed in an
external magnetic field. However, most atoms display the anomalous Zeeman effect, which is a
consequence of spin. See Chapter 8.

• The ratio of the magnetic dipole moment to the angular momentum is called the gyromagnetic ratio.
(See Section 7.1.) The gyromagnetic ratio can be measured directly by a number of methods. In
1915, Einstein and de Haas measured the gyromagnetic ratio of iron and came up with a value twice
as large as expected. They rejected this result, assigning it to experimental errors. However, we
now know that the magnetism in iron is caused by the spin rather the orbital angular momentum,
and so the experimental value was correct. (The electron spin g-factor is 2: see Section 7.2.) This
is a salutary lesson from the history that even great physicists like Einstein and de Haas can get
their error analysis wrong!

5.3 Addition of angular momentum

Having discovered that electrons have different types of angular momentum, the question now arises as
to how we add them together. Let us suppose that C is the resultant of two angular momentum vectors
A and B as shown in Fig. 5.2(a), so that:

C = A+B . (5.18)

We assume for the sake of simplicity that |A| > |B|. (The argument is unaffected if |A| < |B|.) We
define θ as the angle between the two vectors, as shown in figure 5.2(a).

In classical mechanics the angle θ can take any value from 0◦ to 180◦. Therefore, |C| can take any
value from (|A|+ |B|) to (|A| − |B|). This is not the case in quantum mechanics, because the lengths of
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Figure 5.2: (a) Vector addition of two angular momentum vectors A and B to form the
resultant C. (b) Vector model of the atom. The spin-orbit interaction couples l and s together
to form the resultant j. The magnitudes of the vectors are given by: |j| =

√
j(j + 1)~,

|l| =
√
l(l + 1)~, and |s| =

√
s(s+ 1)~ .

the angular momentum vectors must be quantized according to:

|A| =
√
A(A+ 1)~

|B| =
√
B(B + 1)~

|C| =
√
C(C + 1)~ , (5.19)

where A, B and C are the quantum numbers. This makes it apparent that θ can only take specific values
in quantum mechanics. The rule for working out the allowed values of C from the known values of A and
B is as follows:

C = A⊕B = (A+B), (A+B − 1), · · · , |A−B| , (5.20)

where the ⊕ symbol indicates that we are adding together angular momentum quantum numbers. Here
are some examples of the rule given in eqn 5.20:

• J = L+ S, L = 3, S = 1:
J = 3⊕ 1, 3 + 1 = 4, |3− 1| = 2, therefore J = 4, 3, 2.

• L = l1 + l2, l1 = 2, l2 = 0:
L = 2⊕ 0, 2 + 0 = 2, |2− 0| = 2, therefore L = 2.

• S = s1 + s2, s1 = 1/2, s2 = 1/2:
S = 1/2⊕ 1/2, 1/2 + 1/2 = 1, |1/2− 1/2| = 0, therefore S = 1, 0.

• J = j1 + j2, j1 = 5/2, j2 = 3/2:
J = 5/2⊕ 3/2, 5/2 + 3/2 = 4, |5/2− 3/2| = 1, therefore J = 4, 3, 2, 1.

5.4 Spin-orbit coupling

The orbital and spin angular momenta of electrons in atoms are not totally independent of each other,
but interact through the spin-orbit interaction. Spin-orbit coupling and its effects are considered in
detail in Chapter 7, and at this stage we just need to know two basic things:

1. Spin-orbit coupling derives from the interaction between the magnetic dipole due to spin and the
magnetic field that the electron experiences due to its orbital motion. We can thus write the
spin-orbit interaction in the form (see eqn 7.35):

Ĥ = −µspin ·Borbital ∝ l · s , (5.21)

since µspin ∝ s and Borbital ∝ l.

2. The spin-orbit interaction scales roughly as Z2. (See eqn 7.45.) It is therefore weak in light atoms,
and stronger in heavy atoms.

We introduce the spin-orbit interaction here because it is one of the mechanisms that is important in
determining the angular momentum coupling schemes that apply in different atoms.
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5.5 Angular momentum coupling in single electron atoms

If an atom has just a single electron, the addition of the orbital and spin angular momenta is relatively
straightforward. The physical mechanism that couples the orbital and spin angular momenta together is
the spin-orbit interaction, and the resultant total angular momentum vector j is defined by:

j = l+ s . (5.22)

j is described by the quantum numbers j and mj according to the usual rules for quantum mechanical
angular momenta, namely:

|j| =
√
j(j + 1)~ , (5.23)

and

jz = mj~ , (5.24)

where mj takes values of j, (j − 1), · · · ,−j. The addition of l and s to form the resultant j is illustrated
by Fig. 5.2(b).

The allowed values of j are worked out by applying eqn 5.20, with the knowledge that the spin
quantum number s is always equal to 1/2. If the electron is in a state with orbital quantum number l,
we then find j = l⊕ s = (l± 1/2), except when l = 0, in which case we just have j = 1/2. In the second
case, the angular momentum of the atom arises purely from the electron spin.

5.6 Angular momentum coupling in multi-electron atoms

The Hamiltonian for an N -electron atom can be written in the form:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 , (5.25)

where:

Ĥ0 =

N∑
i=1

(
− ~2

2m
∇2
i + Vcentral(ri)

)
, (5.26)

Ĥ1 = −
N∑
i=1

Ze2

4πε0ri
+

N∑
i>j

e2

4πε0|ri − rj |
−

N∑
i=1

Vcentral(ri) , (5.27)

Ĥ2 =

N∑
i=1

ξ(ri)li · si . (5.28)

As discussed in Section 4.1, Ĥ0 is the central-field Hamiltonian and Ĥ1 is the residual electrostatic
potential. Ĥ2 is the spin-orbit interaction summed over the electrons of the atom.

In Chapter 4 we neglected both Ĥ1 and Ĥ2, and just concentrated on Ĥ0. This led to the conclusion
that each electron occupies a state in a shell defined by the quantum numbers n and l. The reason why
we neglected Ĥ1 is that the off-radial forces due to the electron-electron repulsion are smaller than the
radial ones, while Ĥ2 was neglected because the spin-orbit effects are much smaller than the main terms
in the Hamiltonian. It is now time to study what happens when these two terms are included. In doing
so, there are two obvious limits to consider:7

• LS coupling: Ĥ1 � Ĥ2.

• jj coupling: Ĥ2 � Ĥ1.

Since the spin-orbit interaction scales approximately as Z2, LS-coupling mainly occurs in atoms with
small to medium Z, while jj-coupling occurs in some atoms with large Z. In the sections below, we focus
on the LS-coupling limit. The less common case of jj-coupling is considered briefly in Section 5.10.

7In some atoms with medium-large Z (e.g. germanium Z = 32) we are in the awkward situation where neither limit
applies. We then have intermediate coupling, and the behaviour is quite complicated to describe.
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5.7 LS coupling

In the LS-coupling limit (alternatively called Russell–Saunders coupling), the residual electrostatic
interaction is much stronger than the spin-orbit interaction. We therefore deal with the residual elec-
trostatic interaction first and then apply the spin-orbit interaction as a perturbation. The LS coupling
regime applies to most atoms of small and medium atomic number.

Let us first discuss some issues of notation. We shall need to distinguish between the quantum
numbers that refer to the individual electrons within an atom and the state of the atom as a whole. The
convention is:

• Lower case quantum numbers (j, l, s) refer to individual electrons within atoms.

• Upper case quantum numbers (J , L and S) refer to the angular momentum states of the whole
atom.

For single electron atoms like hydrogen, there is no difference. However, in multi-electron atoms there
is a real difference because we must distinguish between the angular momentum states of the individual
electrons and the resultants which give the angular momentum states of the whole atom.

We can use this notation to determine the angular momentum states that the LS-coupling scheme
produces. The residual electrostatic interaction has the effect of coupling the orbital and spin angular
momenta of the individual electrons together, so that we find their resultants according to:

L =
∑
i

li , (5.29)

S =
∑
i

si . (5.30)

Filled shells of electrons have no net angular momentum, and so the summation only needs to be carried
out over the valence electrons. In a many-electron atom, the rule given in eqn 5.20 usually allows several
possible values of the quantum numbers L and S for a particular electronic configuration. Their energies
will differ due to the residual electrostatic interaction. The atomic states defined by the values of L and
S are called terms.

For each atomic term, we can find the total angular momentum of the whole atom from:

J = L+ S . (5.31)

The values of J , the quantum number corresponding to J , are found from L and S according to eqn 5.20.
The states of different J for each LS-term have different energies due to the spin-orbit interaction. In
analogy with eqn 5.21, the spin-orbit interaction of the whole atom is written:

∆Eso ∝ −µatom
spin ·B

atom
orbital ∝ L · S , (5.32)

where the ‘atom’ superscript indicates that we take the resultant values for the whole atom. The details
of the spin-orbit interaction in the LS coupling limit are considered in Section 7.6. At this stage, all we
need to know is that the spin-orbit interaction splits the LS terms into levels labelled by J .

It is convenient to introduce a shorthand notation to label the energy levels that occur in the LS
coupling regime. Each level is labelled by the quantum numbers J , L and S and is represented in the
form:

2S+1LJ .

The factors (2S + 1) and J appear as numbers, whereas L is a letter that follows the rule:8

• S implies L = 0,

• P implies L = 1,

• D implies L = 2,

• F implies L = 3.

8The letters increment alphabetically for values of L above 3, with the exception that the letter ‘J’ is omitted in order to
avoid confusion with the angular momentum quantum number J . Hence L = 6 is designated by I, but L = 7 is designated
by K.
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Figure 5.3: Splitting of the energy levels for the (3s,3p) configuration of magnesium in the
LS coupling regime.

Thus, for example, a 2P1/2 term is the energy level with quantum numbers S = 1/2, L = 1, and J = 1/2,
while a 3D3 has S = 1, L = 2 and J = 3. The factor of (2S+ 1) in the top left is called the multiplicity.
It indicates the degeneracy of the level due to the spin: i.e. the number of MS states available. If S = 0,
the multiplicity is 1, and the terms are called singlets. If S = 1/2, the multiplicity is 2 and we have
doublet terms. If S = 1 we have triplet terms, etc.

As an example, consider the (3s,3p) electronic configuration of magnesium, where one of the valence
electrons is in an s-shell with l = 0 and the other is in a p-shell with l = 1. We first work out the LS
terms:

• L = l1 ⊕ l2 = 0⊕ 1 = 1.

• S = s1 ⊕ s2 = 1/2⊕ 1/2 = 1 or 0.

We thus have two terms: a 3P triplet and a 1P singlet. The allowed levels are then worked out as follows:

• For the 3P triplet, we have J = L ⊕ S = 1 ⊕ 1 = 2, 1, or 0. We thus have three levels: 3P2, 3P1,
and 3P0.

• For the 1P singlet, we have J = L⊕ S = 1⊕ 0 = 1. We thus have a single 1P1 level.

These levels are illustrated in Fig. 5.3. The ordering of the energy states should not concern us at this
stage. The main point to realize is the general way the states split as the new interactions are turned on,
and the terminology used to designate the states.

5.8 Electric dipole selection rules in the LS coupling limit

When considering electric-dipole transitions between the states of many-electron atoms that have LS-
coupling, a single electron makes a jump from one atomic shell to a new one. The rules that apply to
this electron are the same as the ones discussed in Section 3.4. However, we also have to think about the
angular momentum state of the whole atom as specified by the quantum numbers (L, S, J). The rules
that emerge are as follows:

1. The parity of the wave function must change.

2. ∆l = ±1 for the electron that jumps between shells.

3. ∆L = 0,±1, but L = 0→ 0 is forbidden.9

4. ∆J = 0,±1, but J = 0→ 0 is forbidden.

9∆L = 0 transitions are obviously forbidden in one-electron atoms, because L = l and l must change. However, in atoms
with more than one valence electron, it is possible to get transitions between different configurations that satisfy rule 2, but
have the same value of L. An example is the allowed 3p3p 3P1 → 3p4s 3P2 transition in silicon at 250.6 nm.



58 CHAPTER 5. ANGULAR MOMENTUM

5. ∆S = 0.

Rule 1 follows from the odd parity of the dipole operator. Rule 2 applies the ∆l = ±1 single-electron
rule to the individual electron that makes the jump in the transition, while Rule 3 applies Rule 2 to the
resultant orbital angular momentum of the whole atom according to the rules for addition of angular
momenta. Rule 4 follows from the fact that the total angular momentum must be conserved in the
transition, allowing us to write:

J initial = Jfinal + Jphoton . (5.33)

The photon carries one unit of angular momentum, and so we conclude from eqn 5.20 that ∆J =
−1, 0, or + 1. However, the ∆J = 0 rule cannot be applied to J = 0 → 0 transitions because it is not
possible to satisfy eqn 5.33 in these circumstances. Finally, rule 5 is a consequence of the fact that the
photon does not interact with the spin.10

5.9 Hund’s rules

We have seen above that there are many terms in the energy spectrum of a multi-electron atom. Of these,
one will have the lowest energy, and will form the ground state. All the others are excited states. Each
atom has a unique ground state, which is determined by minimizing the energy of its valence electrons
with the residual electrostatic and spin-orbit interactions included. In principle, this is a very complicated
calculation. Fortunately, however, Hund’s rules allow us to determine which level is the ground state
for atoms that have LS-coupling without lengthy calculation. The rules are:

1. The term with the largest multiplicity (i.e. largest S) has the lowest energy.

2. For a given multiplicity, the term with the largest L has the lowest energy.

3. The level with J = |L − S| has the lowest energy if the shell is less than half full. If the shell is
more than half full, the level with J = L+ S has the lowest energy.

The first of these rules basically tells us that the electrons try to align themselves with their spins parallel
in order to minimize the exchange interaction. (See Chapter 6.) The other two follow from the minimizing
the spin-orbit interaction.

Let us have a look at carbon as an example. Carbon has an atomic number Z = 6 with two valence
electrons in the outermost 2p shell. Each valence electron therefore has l = 1 and s = 1/2. Consider first
the (2p,np) excited state configuration with one electron in the 2p shell and the other in the np shell,
where n ≥ 3. We have from eqn 5.20 that L = 1 ⊕ 1 = 0, 1 or 2, and S = 1/2 ⊕ 1/2 = 0 or 1. We
thus have three singlet terms (1S, 1P, 1D), and three triplet terms (3S, 3P, 3D). This gives rise to three
singlet levels:

1S0,
1P1,

1D2 ,

and seven triplet levels:
3S1,

3P0,
3P1,

3P2,
3D1,

3D2,
3D3 .

We thus have a confusing array of ten levels in the energy spectrum for the (2p,np) configuration.
The situation in the ground state configuration (2p,2p) is simplified by the fact that the electrons are

equivalent, i.e. in the same shell. The Pauli exclusion principle forbids the possibility that two or more
electrons should have the same set of quantum numbers, and in the case of an atom with two valence
electrons, it can be shown that this implies that L + S must be equal to an even number. There is no
easy explanation for this rule, but the simplest example of its application, namely to two electrons in
the same s-shell, is considered in Section 6.3. For these two s-electrons, we have L = 0 ⊕ 0 = 0 and
S = 1/2⊕ 1/2 = 0 or 1, giving rise to two terms: 1S and 3S. Both terms are allowed when the electrons
are in different s-shells, but the L+ S = even rule tells us that only the singlet 1S term is allowed if the
electrons are in the same s-shell. The proof that the triplet term does not exist for the (1s,1s) ground-state
configuration of helium is given in Section 6.3.

On applying the rule that L + S must be even to the equivalent 2p electrons in the carbon ground
state, we find that only the 1S, 1D, and 3P terms are allowed, which means that only five of the ten levels
listed above are possible:11

1S0,
1D2,

3P0,
3P1,

3P2 .

10∆S 6= 0 transitions can be weakly allowed when the spin-orbit coupling is strong, because the spin is then mixed with
the orbital motion.

11The full derivation of the allowed states for the (np,np) configuration of a group IV atom is considered, for example,
in Woodgate, Elementary Atomic Structure, 2nd Edition, Oxford University Press, 1980, Section 7.2.
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ml

ms –1 0 +1
+1/2 ↑ ↑
−1/2

Table 5.1: Distribution of the two valence electrons of the carbon ground state within the ms

and ml states of the 2p shell.

We can now apply Hund’s rules to find out which of these is the ground state. The first rule states that
the triplet levels have the lower energy. Since these all have L = 1 we do not need to consider the second
rule. The shell is less than half full, and so we have J = |L − S| = 0. The ground state is thus the 3P0

level. All the other levels are excited states.
It is important to notice that, if we had forgotten the rule that L + S must be even, we would have

incorrectly concluded from Hund’s rules that the ground state is a 3D1 term, which does not exist for the
(2p,2p) configuration. It is therefore safer to use a different version of Hund’s rules, based on the allowed
combinations of (ms,ml) sub-levels:

1. Maximize the spin and set S =
∑
ms.

2. Maximize the orbital angular momentum, subject to rule 1, and set L =
∑
ml.

3. J = |L− S| if the shell is less than half full, otherwise J = |L+ S|.

These rules should work in all cases, since they incorporate the Pauli exclusion principle properly.
As an example of how to use the second version of Hund’s rules, we apply them again to the two 2p

electrons of carbon. The two electrons can go into the six possible (ms,ml) sub-levels of the 2p shell.

1. To get the largest value of the spin, we must have both electron spins aligned with ms = +1/2.
This gives S = 1/2 + 1/2 = 1.

2. Having put both electrons into spin up states, we cannot now put both electrons into ml = +1
states because of Pauli’s exclusion principle. The best we can do is to put one into an ml = 1 state
and the other into an ml = 0 state, as illustrated in Table 5.1. This gives L = 1 + 0 = 1.

3. The shell is less than half full, and so we have J = |L− S| = 0.

We thus deduce that the ground state is the 3P0 level, as before.
The ground state levels for the first 11 elements, as worked out from Hund’s rules, are listed in

Table 5.2. Experimental results confirm these predictions. Note that full shells always give 1S0 level with
no net angular momentum: S = L = J = 0.

It is important to be aware that Hund’s rules cannot be used to find the energy ordering of excited
states with reliability. For example, consider the (2p,3p) excited state configuration of carbon, which has
the ten possible levels listed previously. Hund’s rules predict that the 3D1 level has the lowest energy,
but the lowest state is actually the 1P1 level.

5.10 jj coupling

The spin-orbit interaction gets larger as Z increases. (See, for example, eqn 7.45.) This means that in
some atoms with large Z (eg tin with Z = 50) we can have a situation in which the spin-orbit interaction
is much stronger than the residual electrostatic interaction. In this regime, jj coupling coupling occurs.
The spin-orbit interaction couples the orbital and spin angular momenta of the individual electrons
together first, and we then find the resultant J for the whole atom by adding together the individual js:

ji = li + si

J =

N∑
i=1

ji (5.34)

These J states are then split by the weaker residual electrostatic potential, which acts as a perturbation.
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Z Element Configuration Ground state

1 H 1s1 2S1/2

2 He 1s2 1S0

3 Li 1s2 2s1 2S1/2

4 Be 1s2 2s2 1S0

5 B 1s2 2s2 2p1 2P1/2

6 C 1s2 2s2 2p2 3P0

7 N 1s2 2s2 2p3 4S3/2

8 O 1s2 2s2 2p4 3P2

9 F 1s2 2s2 2p5 2P3/2

10 Ne 1s2 2s2 2p6 1S0

11 Na 1s2 2s2 2p6 3s1 2S1/2

Table 5.2: Electronic configurations and ground state terms of the first 11 elements in the
periodic table.
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Chapter 6

Helium and exchange symmetry

In this chapter we will look at atoms with two valence electrons. This includes helium, and the group
II elements: beryllium, magnesium, calcium, etc. As we will see, this leads to the idea of the exchange
energy. We shall use helium as the main example, as it is a true two electron system and illustrates the
physical points most clearly.

6.1 Exchange symmetry

Consider a multi-electron atom with N electrons, as illustrated in figure 6.1(a). The wave function of the
atom will be a function of the co-ordinates of the individual electrons:

Ψ ≡ Ψ(r1, r2, · · · , rK , rL, · · · rN )

However, the electrons are indistinguishable particles. It is not physically possible to stick labels on
the individual electrons and then keep tabs on them as the move around their orbits. This means that
the many-electron wave function must have exchange symmetry:

|Ψ(r1, r2, · · · , rK , rL, · · · rN )|2 = |Ψ(r1, r2, · · · , rL, rK , · · · rN )|2 . (6.1)

This says that nothing happens if we switch the labels of any pair of electrons. Equation 6.1 will be
satisfied if

Ψ(r1, r2, · · · , rK , rL, · · · rN ) = ± Ψ(r1, r2, · · · , rL, rK , · · · rN ) . (6.2)

The + sign in equation 6.2 applies if the particles are bosons. These are said to be symmetric with
respect to particle exchange. The − sign applies to fermions, which are anti-symmetric with respect
to particle exchange.

Electrons have spin 1/2 and are therefore fermions. Hence the wave function of a multi-electron atom
must be anti-symmetric with respect to particle exchange. This is a very fundamental property, and is
the physical basis of the Pauli exclusion principle, as we shall see below.

The discussion of exchange symmetry gets quite complicated when there are lots of electrons, and so
we shall just concentrate on helium here.
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Figure 6.1: (a) A multi-electron atom with N electrons. (b) The helium atom.
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ψspatial ψspin

symmetric anti-symmetric (S = 0)

anti-symmetric symmetric (S = 1)

Table 6.1: Allowed combinations of the exchange symmetries of the spatial and spin wave
functions of fermionic particles.

6.2 Helium wave functions

Figure 6.1(b) shows a schematic diagram of a helium atom. It consists of one nucleus with Z = 2 and
two electrons. The position co-ordinates of the electrons are written r1 and r2 respectively.

The quantum state in the helium atom will be specified both by the spatial co-ordinates and by the
spin of the two electrons. The two-electron wave function is therefore written as a product of a spatial
wave function and a spin wave function:

Ψ = ψspatial(r1, r2)ψspin . (6.3)

As we have seen above, the fact that electrons are indistinguishable fermions requires that the two-electron
wave function Ψ must be anti-symmetric with respect to exchange of electrons 1 and 2. Table 6.1 lists the
two possible combinations of wave function symmetries that can produce an antisymmetric total wave
function.

We first consider the spin wave function. We have two spin 1/2 electrons, and so the total spin
quantum number S is given by S = 1/2 ⊕ 1/2 = 1 or 0. S = 0 states are called singlets because they
only have one possible MS value, namely 0, while S = 1 states are called triplets because they have
three possible MS values, namely +1, 0, and −1.

There are four possible ways of combining the spins of the two electrons so that the total wave function
has exchange symmetry. These are listed in Table 6.2. The component of S along the z-axis is obtained
by adding together the sz values of the individual electrons. This gives the Sz value of the whole helium
atom, and hence the spin quantum number MS .

Inspection of Table 6.2 shows us that we have three symmetric spin states with MS values of +1, 0
and −1 and one antisymmetric spin wave function with MS = 0. The MS = +1 and MS = −1 wave
functions are derived unambiguously from the triplet state. On the other hand, the two MS = 0 wave
functions could come from either the singlet or triplet states. However, the spin states must have well-
defined exchange symmetries, and the MS = ±1 wave functions are clearly symmetric. This implies that
the symmetric MS = 0 wave function comes from the triplet state, and hence that the anti-symmetric
wave function corresponds to the singlet state. We thus conclude that triplet states have symmetric spin
wave functions, while singlets have anti-symmetric spin wave functions.

Now let us consider the spatial wave functions. The state of the atom will be specified by the
configuration of the two electrons. In the ground state both electrons are in the 1s shell, and so we
have a configuration of 1s2. In the excited states, one or both of the electrons will be in a higher shell.
The configuration is thus given by the n, l values of the two electrons, and we write the configuration as
(n1l1, n2l2). This means that the spatial part of the helium wave function must contain terms of the
type uA(r1)uB(r2), where unl(r) is the wave function for an electron with quantum numbers n and l,
and the subscripts A and B stand for the quantum numbers n, l of the two electrons.

The discussion above does not take account of the fact that the electrons are indistinguishable: we
cannot distinguish between the state with electron 1 in state A and electron 2 in state B, and vice versa.
uB(r1)uA(r2) is therefore an equally valid wave function for the particular electronic configuration. The
wave function for the configuration A,B must therefore take the form:

ψAB(r1, r2) =
1√
2

(
uA(r1)uB(r2)± uB(r1)uA(r2)

)
. (6.4)

The 1/
√

2 factor ensures that ψAB(r1, r2) is correctly normalized. It is easy to verify that the wave
function with the + sign is symmetric with respect to particle exchange, while the wave function with
the − sign is antisymmetric.
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Spin wave function symmetry MS

↑1 ↑2 + +1

1√
2
(↑1 ↓2 + ↓1 ↑2) + 0

1√
2
(↑1 ↓2 − ↓1 ↑2) − 0

↓1 ↓2 + −1

Table 6.2: Spin wave functions for a two-electron system. The arrows indicate whether the
spin of the individual electrons is up or down (ie + 1

2
or − 1

2
). The + sign in the symmetry

column applies if the wave function is symmetric with respect to particle exchange, while the
− sign indicates that the wave function is anti-symmetric. The Sz value is indicated by the
quantum number for MS , which is obtained by adding the ms values of the two electrons
together.

S MS ψspin ψspatial

0 0 1√
2
(↑1 ↓2 − ↓1 ↑2) 1√

2

(
uA(r1)uB(r2) + uB(r1)uA(r2)

)
+1 ↑1 ↑2

1 0 1√
2
(↑1 ↓2 + ↓1 ↑2) 1√

2

(
uA(r1)uB(r2)− uB(r1)uA(r2)

)
−1 ↓1 ↓2

Table 6.3: Spin and spatial wave functions for a two-electron atom with electronic configura-
tion designated by the labels A and B.

We have seen above that spin singlet and triplet states are, respectively, antisymmetric and symmetric
under exchange symmetry. The fact that the overall symmetry must be negative, as summarized in
Table 6.1, then implies that spin singlets and triplets must be paired off with symmetric and antisymmetric
spatial wave functions respectively. This leads to the detailed pairing of spin and spatial wave functions
shown in Table 6.3. The key point is that the singlet and triplet states have different spatial wave
functions, which has a strong effect on the energy of the atom, as we shall see below. This is a surprising
result when you consider that the spin and spatial co-ordinates are basically independent of each other.

6.3 The Pauli exclusion principle

Let us suppose that we try to put the two electrons in the same atomic shell. The ground state of helium
is an example of such a configuration, with both electrons in the 1s shell. The spatial wave functions will
be given by eqn 6.4 with A = B. The antisymmetric combination with the − sign in the middle is zero in
this case. From Table 6.3 we see that this implies that there are no triplet S = 1 states if both electrons
are in the same shell.

The fact that the triplet state does not exist for the helium ground state is a demonstration of the
rule that L+ S must be even for a two-electron atom with both electrons in the same shell. In the case
of the 1s2 configuration, we have L = 0, and therefore S = 1 is not allowed. This rule was introduced
without any justification in Section 5.9. The general justification of the rule is beyond the scope of this
course, but the example of the helium ground state at least demonstrates that the rule is true for the
simplest case.

The absence of the triplet state for 1s2 configuration is equivalent to the Pauli exclusion principle.
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We are trying to put two electrons in the same state as defined by the n, l,ml quantum numbers. This
is only possible if the two electrons have different ms values. In other words, their spins must be aligned
anti-parallel. The S = 1 state contains terms with both spins pointing in the same direction, and is
therefore not allowed. The analysis of the symmetry of the wave function discussed here thus shows
us that the Pauli exclusion principle is a consequence of the fact that electrons are indistinguishable
fermions.

6.3.1 Slater determinants

We note in passing that the anti-symmetric wave function given in eqn. 6.4 can be written as a determi-
nant:

ψspatial =
1√
2

∣∣∣∣ uA(r1) uA(r2)
uB(r1) uB(r2)

∣∣∣∣ . (6.5)

This can be generalized to give the correct anti-symmetric wave function when we have more than two
electrons:

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
uα(1) uα(2) · · · uα(N)
uβ(1) uβ(2) · · · uβ(N)

...
...

. . .
...

uν(1) uν(2) · · · uν(N)

∣∣∣∣∣∣∣∣∣ , (6.6)

where {α, β, · · · , ν} each represent a set of quantum numbers {n, l,ml,ms} for the individual electrons,
and {1, 2, · · · , N} are the electron labels. Determinants of this type are called Slater determinants.
Note that the determinant is zero if any two rows are equal, which tells us that each electron in the atom
must have a unique set of quantum numbers, as required by the Pauli exclusion principle.

We shall not make further use of Slater determinants in this course. They are mentioned here for
completeness.

6.4 The exchange energy

The Hamiltonian for the helium atom before we consider fine-structure effects is given by:

Ĥ =

(
− ~2

2m
∇2

1 −
2e2

4πε0r1

)
+

(
− ~2

2m
∇2

2 −
2e2

4πε0r2

)
+

e2

4πε0r12
, (6.7)

where r12 = |r1 − r2|. The first two terms enclosed in brackets account for the kinetic energy of the
two electrons and their attraction towards the nucleus, which has a charge of +2e. The final term is the
Coulomb repulsion between the two electrons. It is this Coulomb repulsion which makes the equations
difficult to deal with.

In § 4.1 and following we described how to deal with a many-electron Hamiltonian by splitting it into
a central field and a residual electrostatic interaction. In the case of helium, we just have one Coulomb
repulsion term and it is easier to go back to first principles. We can then use the correctly symmeterized
wave functions to calculate the energies for specific electronic configurations of the helium atom.

The energy of the electronic configuration (n1l1, n2l2) is found by computing the expectation value
of the Hamiltonian:

〈E〉 =

∫∫
ψ∗spatial Ĥ ψspatial d3r1d3r2 . (6.8)

The spin wave functions do not appear here because the Hamiltonian does not affect the spin directly,
and so the spin wave functions just integrate out to unity.

We start by re-writing the Hamiltonian given in eqn 6.7 in the following form:

Ĥ = Ĥ1 + Ĥ2 + Ĥ12 , (6.9)

where

Ĥi = − ~2

2m
∇2
i −

2e2

4πε0ri
, (6.10)

Ĥ12 =
e2

4πε0 |r1 − r2|
. (6.11)
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The energy can be split into three parts:

E = E1 + E2 + E12 , (6.12)

where:

Ei =

∫∫
ψ∗spatialĤiψspatiald

3r1d3r2 , (6.13)

and

E12 =

∫∫
ψ∗spatialĤ12ψspatiald

3r1d3r2 . (6.14)

The first two terms in eqn 6.12 represent the energies of the two electrons in the absence of the electron-
electron repulsion. These are just equal to the hydrogenic energies of each electron:

E1 + E2 = −4RH
n2

1

− 4RH
n2

2

, (6.15)

where the factor of 4 ≡ Z2 accounts for the nuclear charge. (See Appendix C for the evaluation of the
integrals.) The third term is the electron-electron Coulomb repulsion energy:

E12 =

∫∫
ψ∗spatial

e2

4πε0r12
ψspatial d3r1d3r2 . (6.16)

As shown in Appendix C, the end result for the correctly symmeterized wave functions given in eqn 6.4
is:

E12 = DAB ± JAB , (6.17)

where the + sign is for singlets and the − sign is for triplets. DAB is the direct Coulomb energy given
by:

DAB =
e2

4πε0

∫∫
u∗A(r1)u∗B(r2)

1

r12
uA(r1)uB(r2) d3r1 d3r2 , (6.18)

and JAB is the exchange Coulomb energy given by

JAB =
e2

4πε0

∫∫
u∗A(r1)u∗B(r2)

1

r12
uB(r1)uA(r2) d3r1 d3r2 . (6.19)

Note that in the exchange integral, we are integrating the expectation value of 1/r12 with each electron
in a different shell. This is why it is called the “exchange” energy. The total energy of the configuration
(n1l1, n2l2) is thus given by:

E(n1l1, n2l2) = −4RH
n2

1

− 4RH
n2

2

+DAB ± JAB , (6.20)

where the + sign applies to singlet (S = 0) states and the − sign to triplets (S = 1). We thus see that
the energies of the singlet and triplet states differ by 2JAB . This splitting of the spin states is a direct
consequence of the exchange symmetry.

Note that:

• The exchange splitting is not a small energy. It is part of the gross structure of the atom. This
contrasts with the other spin-dependent effect that we have considered, namely the spin-orbit
interaction, which is a small relativistic correction and only contributes to the “fine” structure of
the atom. The value of 2JAB for the first excited state of helium, namely the 1s2s configuration, is
0.80 eV.

• We can give a simple physical reason why the symmetry of the spatial wave function (and hence
the spin) affects the energy so much. If we put r1 = r2 into eqn 6.4, we see that we get ψspatial = 0
for the anti-symmetric state. This means that the two electrons have a low probability of coming
close together in the triplet state, and hence reduces their Coulomb repulsion energy. On the other
hand, ψspatial(r1 = r2) 6= 0 for singlet states with symmetric spatial wave functions. They therefore
have a larger Coulomb repulsion energy.

• The exchange energy is sometimes written in the form

∆Eexchange ∝ −J s1 · s2 . (6.21)

This emphasizes the point that the change of energy is related to the relative alignment of the
electron spins. If both spins are aligned, as they are in the triplet states, the energy goes down. If
the spins are anti-parallel, the energy goes up.
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Figure 6.2: The ionization energies of helium atom.

• The notation given in eqn 6.21 is extensively used when explaining the phenomenon of ferromag-
netism in the subject of magnetism. The energy that induces the spins to align parallel to each
other is caused by the spin-dependent change of the Coulomb repulsion energy of the electrons.
The magnetic energy of the electrons due to the dipole-dipole interaction is completely negligible
on this scale.

6.5 The helium term diagram

The term diagram for helium can be worked out if we can evaluate the direct and exchange Coulomb
energies. The total energy for each configuration is given by eqn 6.20.

The ground state

In the ground state both electrons are in the 1s shell, and so we have a configuration of 1s2. We have
seen above that we can only have S = 0 for this configuration. The energy is thus given by:

E(1s2) = −4RH
12
− 4RH

12
+
(
D1s2 + J1s2

)
= −54.4 eV − 54.4 eV + 29.8 eV

= −79.0 eV . (6.22)

The computation of the direct and exchange energies is non-trivial (to say the least) and keeps theoretical
atomic physicists busy. The value of 29.8 eV given here can be deduced experimentally from the first
ionization potential (see below).

Ionization potentials

The excited states are made by promoting one of the electrons to higher shells. When the second electron
has been promoted into the energy continuum at n2 =∞, we are left with a singly ionized helium atom:
He+. This is now a hydrogenic system. We have one electron in the 1s shell orbiting around a nucleus
with charge +2e, and the energy is just −Z2RH = −54.4 eV. We thus deduce that the first ionization
potential of helium is −54.4− (−79.0) = 24.6 eV. The second ionization potential (ie the energy required
to liberate the second electron) is then equal to 54.4 eV. This point is illustrated in Fig. 6.2. Note that
this is an example of the point made in the discussion of Fig. 1.5 in Section 1.3, namely that the ionization
limit of the neutral He atom corresponds to the ground state of the He+ ion.

Optical spectra

The first few excited states of helium are listed in Table 6.4. We do not need to consider “two electron
jump” excited states such as the 2s2s configuration here. This is because the Bohr model tells us that
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Ground state 1s 1s (≡ 1s2)

First excited state 1s 2s

Second excited state 1s 2p

Third excited state 1s 3s

Fourth excited state 1s 3p

...

Ionization limit 1s ∞l

Table 6.4: Electron configurations for the states of the helium atom.
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Figure 6.3: Approximate energy term diagram for helium. The diagram is split into singlet
and triplet states because only ∆S = 0 transitions are allowed by the selection rules. The
energy difference between the singlet and triplet terms for the same configuration is caused
by the exchange energy, as identified for the 1s2s configuration.

we need an energy of about 2× 3
4RH to promote two electrons to the n = 2 shell. This is larger than the

first ionization energy.

For each excited state we have two spin states corresponding to S equal to 0 or 1. The triplet S = 1
terms are at lower energy than the singlets due to the exchange energy. (See eqn 6.17.) The ∆S = 0
selection rule tells us that we cannot get optical transitions between the singlets and triplet terms. The
transitions involving singlet states have a normal Zeeman effect since S = 0, but the triplet transitions
have an anomalous Zeeman effect since S 6= 0.

The energy term diagram for the first few excited states are shown in Fig. 6.3. The energy of the
(1s, nl) state approaches the hydrogenic energy −RH/n2 when n is large. This is because the excited
electron is well outside the 1s shell, which just partly screens the nuclear potential. The outer electron
just sees Zeff = 1, and we have a hydrogenic potential.

Excited states states such as the 1s 2s configuration are said to be metastable. They cannot relax
easily to the ground state. The relaxation would involve a 2s → 1s transition, which is forbidden by the
∆l = ±1 selection rule. Furthermore, the relaxation of the triplet 1s 2s configuration is further forbidden
by the ∆S = 0 selection rule. These states therefore have very long lifetimes.
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6.6 Optical spectra of group II elements

The principles that we have been discussing here with respect to helium apply equally well to other
two-electron atoms. In particular, they apply to the elements in group IIA of the periodic table (e.g. Be,
Mg, Ca.) These atoms have two valence electrons in an s-shell outside a filled shell. The term diagram
for group IIA elements would appear generically similar to Fig. 6.3, and the optical spectra would follow
similar rules, with singlet and triplet transitions split by the exchange energy. The singlet and triplet
transitions have normal and anomalous Zeeman effects, respectively.
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Demtröder, W., Atoms, Molecules and Photons, section 6.1.
Haken and Wolf, The physics of atoms and quanta, chapters 17 and 19.
Hertel and Schulz, Atoms, Molecules and Optical Physics, 1, chapter 7
Foot, Atomic physics, Chapter 3.
Eisberg and Resnick, Quantum Physics, chapter 9.
Beisser, Concepts of Modern Physics, chapter 7.



Chapter 7

Fine structure and nuclear effects

Up to this point, we have been mainly studying the gross structure of atoms. When we consider the
gross structure, we include only the largest interaction terms in the Hamiltonian, namely, the electron
kinetic energy, the electron-nuclear attraction, and the electron-electron repulsion.

It is now time to start considering the smaller interactions in the atom that arise from magnetic
effects. In this chapter we shall consider only those effects caused by internal magnetic fields, leaving
the discussion of the effects produced by external fields to the next set of notes. The internal fields
within atoms cause fine structure in atomic spectra. We shall start by considering the fine structure of
hydrogen and then move on to many-electron atoms. At the end of these notes we shall also look briefly
at hyperfine structure, which is a similar, but smaller, effect due to the magnetic interactions between
the electrons and the nucleus.

7.1 Orbital magnetic dipoles

The quantum numbers n and l were first introduced in the old quantum theory of Bohr and Sommerfeld.
The principal quantum number n was introduced in the Bohr model as a fundamental postulate con-
cerning the quantization of the angular momentum (see eqn 2.1), while the orbital quantum number
l was introduced a few years later by Sommerfeld as a patch-up to account for the possibility that the
atomic orbits might be elliptical rather than circular. In Section 2.2.3 we saw how these two quantum
numbers naturally re-appear in the full quantum mechanical treatment of the hydrogen atom. Then, in
Section 4.1, we saw how they carry across to many-electron atoms.

Two key results that drop out of the quantum mechanical treatment of atoms are:

• The magnitude L of the orbital angular momentum of an electron is given by (see eqn 2.37):

L =
√
l(l + 1)~ , (7.1)

where l can take integer values up to (n− 1).

• The component of the angular momentum along a particular axis (usually taken as the z axis) is
quantized in units of ~ and its value is given by (see eqn 2.38):

Lz = ml~ , (7.2)

where the magnetic quantum number ml can take integer values from −l to +l.

These two relationships give rise to the vector model of angular momentum illustrated in Fig. 2.3.
The orbital motion of the electron causes it to have a magnetic moment. Let us first consider an

electron in a circular Bohr orbit, as illustrated in Fig. 7.1(a). The electron orbit is equivalent to a current
loop, and we know from electromagnetism that current loops behave like magnets. The electron in the
Bohr orbit is equivalent to a little magnet with a magnetic dipole moment µ given by:

µ = i×Area = −(e/T )× (πr2) , (7.3)

where T is the period of the orbit. Now T = 2πr/v, and so we obtain

µ = − ev

2πr
πr2 = − e

2me
mevr = − e

2me
L, (7.4)
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Figure 7.1: (a) The orbital motion of the electron around the nucleus in a circular Bohr orbit
is equivalent to a current loop, which generates a magnetic dipole moment. (b) Magnetic
dipole moment of an electron in a non-circular orbit.

where we have substituted L for the orbital angular momentum mevr.
This relationship can easily be generalized to the case of electrons in non-circular orbits. Consider

an electron at position vector r in a non-circular orbit with an origin O. The magnetic dipole moment is
given by:

µ =

∮
i dA , (7.5)

where i is the current in the loop and dA is the incremental area swept out by the electron as it performs
its orbit. The incremental area dA is related to the path element du by:

dA =
1

2
r × du , (7.6)

and so eqn 7.5 becomes:

µ =
1

2

∮
i r × du . (7.7)

We can write the current as i = dq/dt, where q is the charge, which implies:

µ =
1

2

∮
dq

dt
r × du ,

=
1

2

∮
dq r × du

dt
,

=
1

2

∮
dq r × v ,

=
1

2me

∮
dq r × p , (7.8)

where v is the velocity, and p is the momentum. The angular momentum is defined as usual by

L = r × p (7.9)

and so we finally obtain:

µ =
1

2me

∮
Ldq =

1

2me
L

∮
dq =

1

2me
L(−e) , (7.10)

as in eqn 7.4. Note that the result works because the angular momentum L is a constant of the motion
in the central field approximation (see Section 5.2.1), and so it can be taken out of the integral.

Equation 7.4 shows us that the orbital angular momentum is directly related to the magnetic dipole
moment. The quantity e/2me that appears is called the gyromagnetic ratio. It specifies the propor-
tionality constant between the angular momentum of an electron and its magnetic moment. It is apparent
from eqns 7.1 and 7.4 that the magnitude of atomic magnetic dipoles is given by:

|µ| = e

2me
~
√
l(l + 1) = µB

√
l(l + 1) , (7.11)
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where µB is the Bohr magneton defined by:

µB =
e~

2me
= 9.27× 10−24 JT−1. (7.12)

This shows that the size of atomic dipoles is of order µB. In many cases we are interested in the z
component of the magnetic dipole, which is given from eqns 7.2 and 7.4 as:

µz = − e

2me
Lz = −µBml , (7.13)

where ml is the orbital magnetic quantum number.

7.2 Spin magnetism

We have seen in Section 5.2.2 that electrons also have spin angular momentum. The deflections measured
in the Stern-Gerlach experiment (see Fig. 5.1) enabled the magnitude of the magnetic moment due to
the spin angular momentum to be determined. The component along the z axis was found to obey:

µz = −gsµBms , (7.14)

where gs is the g-value of the electron, and ms = ±1/2 is the magnetic quantum number due to spin.
This is identical in form to eqn 7.13 apart from the factor of gs. The experimental value of gs was found
to be close to 2. The Dirac equation predicts that gs should be exactly equal to 2, and more recent
calculations based on quantum electrodynamics (QED) give a value of 2.0023192 · · · , which agrees very
accurately with the most precise experimental data.

It should be noted that other branches of physics sometimes use a different sign convention in which
the electron spin g-factor is negative. The negative charge of the electron is factored into the g-factor,
which is defined by:

µspin = ge
µB

~
s , (7.15)

where s is the spin angular momentum, and µB/~ = e/2me is the magnitude of the electron gyromagnetic
ratio. This implies:

µz = ge
µB

~
sz = geµBms . (7.16)

On comparing to eqn 7.14, it is apparent that gs and ge are related to each other through:

gs = |ge| = −ge . (7.17)

The convention in which the sign of the g-factor relates to the charge of the particle is frequently used in
tables of fundamental constants. However, in atomic physics we are almost always dealing with electrons,
and so it is more convenient to use the the positive value gs rather than the negative one ge.

7.3 Spin-orbit coupling

The fact that electrons in atoms have both orbital and spin angular momentum leads to a new interaction
term in the Hamiltonian called spin-orbit coupling. Sophisticated theories of spin-orbit coupling (e.g.
those based on the Dirac equation) indicate that it is actually a relativistic effect. At this stage it is more
useful to consider spin-orbit coupling as the interaction between the magnetic field due to the orbital
motion of the electron and the magnetic moment due to its spin. This more intuitive approach is the one
we adopt here. We start by giving a simple order of magnitude estimate based on the semi-classical Bohr
model, and then take a more general approach that works for the fully quantum mechanical picture.

7.3.1 Spin-orbit coupling in the Bohr model

The easiest way to understand the spin-orbit coupling is to consider the single electron of a hydrogen atom
in a Bohr-like circular orbit around the nucleus, and then shift the origin to the electron, as indicated in
Fig. 7.2. In this frame, the electron is stationary and the nucleus is moving in a circular orbit of radius
rn. The orbit of the nucleus is equivalent to a current loop, which produces a magnetic field at the origin.
Now the magnetic field produced by a circular loop of radius r carrying a current i is given by:

Bz =
µ0i

2r
, (7.18)



72 CHAPTER 7. FINE STRUCTURE AND NUCLEAR EFFECTS

+Ze

-e

-v

r

shift origin to the electron

+Ze

-e

v

r

E
+Ze

-e

-v

r

+Ze

-e

-v

r

shift origin to the electron

+Ze

-e

v

r

E

+Ze

-e

v

r

+Ze

-e

v

r

E

Figure 7.2: An electron moving with velocity v through the electric field E of the nucleus
experiences a magnetic field equal to (E×v)/c2. The magnetic field can be understood by
shifting the origin to the electron and calculating the magnetic field due to the orbital motion
of the nucleus around the electron. The velocity of the nucleus in this frame is equal to −v.

where z is taken to be the direction perpendicular to the loop. As in Section 7.1, the current i is given
by the charge Ze divided by the orbital period T = 2πr/v. On substituting for the velocity and radius
in the Bohr model from eqns 2.12 and 2.13, we find:

Bz =
µ0Zevn

4πr2
n

=

(
Z4

n5

)
µ0αce

4πa2
0

, (7.19)

where α = e2/2ε0hc ≈ 1/137 is the fine structure constant defined in eqn 2.15. For hydrogen with
Z = n = 1, this gives Bz ≈ 12 Tesla, which is a large field.

The electron at the origin experiences this orbital field and we thus have a magnetic interaction energy
of the form:

∆Eso = −µspin ·Borbital , (7.20)

which, from eqn 7.14, becomes:
∆Eso = gsµBmsBz = ±µBBz , (7.21)

where we have used gs = 2 and ms = ±1/2 in the last equality. By substituting from eqn. 7.19 and
making use of eqn 7.12, we find:

|∆Eso| =
(
Z4

n5

)
µ0αce

2~
8πmea2

0

≡ α2Z
2

n3
|En| , (7.22)

where En is the quantized energy given by eqn 2.6. For the n = 2 orbit of hydrogen, this gives:1

|∆Eso| = α2RH/2
5 = 13.6 eV/32× 1372 = 0.02 meV ≡ 0.2 cm−1 .

This shows that the spin-orbit interaction is about 105 times smaller than the gross structure energy in
hydrogen. Note that the relative size of the spin-orbit interaction grows as Z2, so that spin-orbit effects
are expected to become more important in heavier atoms, which is indeed the case.

A connection with relativistic theories can be made by noting that eqn 7.22 can be re-written using
eqn 2.13 as

|∆Eso| =
(vn
c

)2 |En|
n

. (7.23)

This shows that the spin-orbit interaction energy depends on v2/c2, just as we would expect for a
relativistic correction to the Bohr model. This is hardly surprising, given that Dirac tells us that we
should really think of spin-orbit coupling as a relativistic effect.

7.3.2 Spin-orbit coupling beyond the Bohr model

In this sub-section we repeat the calculation above but without making use of the semi-classical results
from the Bohr model. The electrons experience a magnetic field as they move through the electric field of
the nucleus. If the electron velocity is v, it will see the nucleus orbiting around it with a velocity of −v,

1The actual spin-orbit splitting of the hydrogen n = 2 level is shown in Fig. 7.4, and is about twice the size calculated
from the Bohr model. The equivalent Bohr-model value for the n = 1 orbit is 0.7 meV (6 cm−1). However, this is not very
meaningful, as the n = 1 level only has l = 0, and so the spin-orbit interaction is, in fact, zero.
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Figure 7.3: The magnetic field at the origin O due to a loop carrying a current i is calculated
by the Biot-Savart law given in Eq. 7.24. The field points out of the paper.

as shown in Fig. 7.2. The magnetic field generated at the electron can be calculated by the Biot-Savart
law as shown by Fig. 7.3. This gives the magnetic field at the origin of a loop carrying a current i as:

B =
µ0

4π

∮
loop

i
du× r
r3

, (7.24)

where du is an orbital path element. For simplicity we consider the case of a circular orbit with constant
r. In this case we have: ∮

idu =

∮
dq

dt
du = Ze

du

dt
= Ze(−v) .

We thus obtain:

B = −µ0

4π

Ze

r3
v × r =

µ0

4π

Ze

r3
r × v . (7.25)

For a Coulomb field the electric field E is given by:

E =
Ze

4πε0r2
r̂ =

Ze

4πε0r3
r , (7.26)

where the hat symbol on r̂ in the first equality indicates that it is a unit vector. On combining equations
7.25 and 7.26 we obtain:

B = µ0ε0 E×v . (7.27)

We know from Maxwell’s equations that µ0ε0 = 1/c2, and so we can re-write this as:

B =
1

c2
E×v . (7.28)

The same formula can also be derived for the more general case of non-circular orbits and non-Coulombic
electric fields such as those found in multi-electron atoms.

The spin-orbit interaction energy is given by:

∆Eso = −µspin·Borbital , (7.29)

where µspin is the magnetic moment due to spin, which is given by:

µspin = −gs
|e|

2me
s = −gs

µB

~
s . (7.30)

On substituting Eqs. 7.28 and 7.30 into Eq. 7.29, we obtain:

∆Eso =
gsµB

~c2
s·(E×v) . (7.31)

If we have a central field (ie the potential V is a function of r only), we can write:2

E =
1

e

r

r

dV

dr
. (7.32)

On making use of this, the spin-orbit energy becomes:

∆Eso =
gsµB

~c2eme

(
1

r

dV

dr

)
s·(r × p) , (7.33)

2It is easy to verify that this works for a Coulomb field where V = −Ze2/4πε0r and E is given by eqn 7.26.
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where we have substituted v = p/me. On recalling that the angular momentum l is defined as r × p,
we find:

∆Eso =
gsµB

~c2eme

(
1

r

dV

dr

)
s · l . (7.34)

This calculation of ∆Eso does not take proper account of relativistic effects. In particular, we moved the
origin from the nucleus to the electron, which is not really allowed because the electron is accelerating
all the time and is therefore not an inertial frame. The translation to a rotating frame gives rise to an
extra effect called the Thomas precession which reduces the energy by a factor of 2. (See Eisberg and
Resnick, Appendix O.) On taking the Thomas precession into account, and recalling that µB = e~/2me,
we obtain the final result:

∆Eso =
gs

2

1

2c2m2
e

(
1

r

dV

dr

)
l · s . (7.35)

This is the same as the result derived from the Dirac equation, except that gs is exactly equal to 2 in
Dirac’s theory. Equation 7.35 shows that the spin and orbital angular momenta are coupled together. If
we have a simple Coulomb field and take gs = 2, we find

∆Eso =
Ze2

8πε0c2m2
e

(
1

r3

)
l · s . (7.36)

We can use this formula for hydrogenic atoms, while we can use the more general form given in Eq. 7.35 for
more complicated multi-electron atoms where the potential will differ from the Coulombic 1/r dependence
due to the repulsion between the electrons.

7.4 Evaluation of the spin-orbit energy for hydrogen

The magnitude of the spin-orbit energy can be calculated from eqn 7.35 as:

∆Eso =
1

2c2m2
e

〈
1

r

dV

dr

〉
〈l · s〉 , (7.37)

where we have taken gs = 2, and the 〈· · · 〉 notation indicates that we take expectation values:〈
1

r

dV

dr

〉
=

∫∫∫
ψ∗nlm

(
1

r

dV

dr

)
ψnlm r2 sin θ drdθdφ . (7.38)

The function (dV/dr)/r depends only on r, and so we are left to calculate an integral over r only:〈
1

r

dV

dr

〉
=

∫ ∞
0

|Rnl(r)|2
(

1

r

dV

dr

)
r2dr , (7.39)

where Rnl(r) is the radial wave function. This integral can be evaluated exactly for the case of the
Coulomb field in hydrogen where (dV/dr)/r ∝ 1/r3, and the radial wave functions are known exactly.
(See Table 2.3.) We then have, for l ≥ 1:〈

1

r

dV

dr

〉
∝
〈

1

r3

〉
=

Z3

a3
0n

3l(l + 1
2 )(l + 1)

. (7.40)

This shows that we can re-write eqn 7.37 in the form:

∆Eso = Cnl 〈l · s〉 , (7.41)

where Cnl is a constant that depends only on n and l.
We can evaluate 〈l · s〉 by realizing from eqn 5.22 that we must have:

j2 = (l+ s)2 = l2 + s2 + 2l · s . (7.42)

This implies that:

〈l · s〉 =

〈
1

2
(j2 − l2 − s2)

〉
=

~2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] . (7.43)
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Figure 7.4: Fine structure in the n = 2 level of hydrogen.

We therefore find:

∆Eso = C ′nl [j(j + 1)− l(l + 1)− s(s+ 1)] , (7.44)

where C ′nl = Cnl~2/2. On using eqn 7.40 we obtain the final result for states with l ≥ 1:

∆Eso = −α
2Z2

2n2
En

n

l(l + 1
2 )(l + 1)

[j(j + 1)− l(l + 1)− s(s+ 1)] , (7.45)

where α ≈ 1/137 is the fine structure constant, and En = −RHZ
2/n2 is equal to the gross energy.

For states with l = 0 it is apparent from eqn 7.37 that ∆Eso = 0.

The fact that j takes values of l+1/2 and l−1/2 for l ≥ 1 means that the spin-orbit interaction splits
the two j states with the same value of l. We thus expect the electronic states of hydrogen with l ≥ 1 to
split into doublets. However, the actual fine structure of hydrogen is more complicated for two reasons:

1. States with the same n but different l are degenerate.

2. The spin-orbit interaction is small.

The first point is a general property of pure one-electron systems, and the second follows from the scaling
of ∆Eso/En with Z2. A consequence of point 2 is that other relativistic effects that have been neglected
up until now are of a similar magnitude to the spin-orbit coupling. In atoms with higher values of Z, the
spin-orbit coupling is the dominant relativistic correction, and we can neglect the other effects.

The fine structure of the n = 2 level in hydrogen is illustrated in figure 7.4. The fully relativistic Dirac
theory predicts that states with the same j are degenerate. The degeneracy of the two j = 1/2 states is
ultimately lifted by a quantum electrodynamic (QED) effect called the Lamb shift. The complications of
the fine structure of hydrogen due to other relativistic and QED effects means that hydrogen is not the
paradigm for understanding spin-orbit effects. The alkali metals considered below are in fact simpler to
understand.

7.5 Spin-orbit coupling in alkali atoms

Alkali atoms have a single valence electron outside close shells. Closed shells have no angular momentum,
and so the angular momentum state |L, S, J〉 of the atom is determined entirely by the valence electron.
By analogy with the results for hydrogen given in eqns 7.41 and eqn 7.44, we can write the spin-orbit
interaction term as:

∆ESO ∝ 〈L · S〉 ∝ [J(J + 1)− L(L+ 1)− S(S + 1)] . (7.46)

It follows immediately that the spin-orbit energy is zero when the valence electron is in an s-shell, since
L · S = 0 when L = 0. (Alternatively: J = S if L = 0, so J(J + 1)− L(L+ 1)− S(S + 1) = 0.)

Now consider the case when the valence electron is in a shell with l 6= 0. We now have L = l and
S = 1/2, so that L · S 6= 0. J has two possible values, namely J = L ⊕ S = L ⊕ 1/2 = L ± 1/2. On
writing eqn 7.46 in the form:

∆ESO = C [J(J + 1)− L(L+ 1)− S(S + 1)] , (7.47)
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Figure 7.5: Spin-orbit interactions in alkali atoms. (a) The spin-orbit interaction splits the
nl states into a doublet if l 6= 0. (b) Fine structure in the yellow sodium D lines.

the spin-orbit energy of the J = (L+ 1/2) state is given by:

∆Eso = C

[
(L+

1

2
)(L+

3

2
)− L(L+ 1)− 1

2
· 3

2

]
= +CL ,

while for the J = (L− 1/2) level we have:

∆Eso = C

[
(L− 1

2
)(L+

1

2
)− L(L+ 1)− 1

2
· 3

2

]
= −C(L+ 1) .

Hence the term defined by the quantum numbers n and l is split by the spin-orbit coupling into two
new states, as illustrated in figure 7.5(a). This gives rise to the appearance of doublets in the atomic
spectra. The magnitude of the splitting is smaller than the gross energy by a factor ∼ α2 = 1/1372.
(See Eq. 7.45.) This is why these effects are called “fine structure”, and α is called the “fine structure
constant”.

As an example, let us consider sodium, which has 11 electrons, with one valence electron outside filled
1s, 2s and 2p shells. It can therefore be treated as a one electron system, provided we remember that
this is only an approximation. One immediate consequence is that the differing l states arising from the
same value of n are not degenerate as they are in hydrogen. (See section 4.5.) The bright yellow D lines
of sodium correspond to the 3p→ 3s transition.3

It is well known that the D-lines actually consist of a doublet, as shown in Fig. 7.5(b). The doublet
arises from the spin-orbit coupling. The ground state is a 2S1/2 level with zero spin-orbit splitting. The
excited state is split into the two levels derived from the different J values for L = 1 and S = 1/2, namely
the 2P3/2 and 2P1/2 levels. The two transitions in the doublet are therefore:

2P3/2 → 2S1/2

and
2P1/2 → 2S1/2 .

The energy difference of 17 cm−1 between them arises from the spin-orbit splitting of the two J states of
the 2P term.

Similar arguments can be applied to the other alkali elements. The spin–orbit energy splittings of
their first excited states are tabulated in Table 7.1. Note that the splitting increases with Z, and that
the splitting energy is roughly proportional to Z2, as shown in Fig. 7.6. This is an example of the fact
that spin–orbit interactions generally increase with the atomic number, so that the spin–orbit coupling
is stronger in heavier elements.

It should be pointed out that the ordering of the levels shown in Fig. 7.5(a) assumes that the constant
C in eqn 7.47 is positive, so that the level with J = L+ 1/2 lies above the one with J = L− 1/2. This is
true in most cases, but there are some exceptions. For example, C is negative for the 3d states of sodium,
so that the 2D5/2 level lies below 2D3/2. The 4d term of potassium is also inverted. There is no simple
reason why this should be so. It depends on complicated exchange effects.

3The first optical transition of an alkali from its ground state is called a “D line”. This terminology dates back to
Fraunhofer’s classification of the absorption lines observed in the Sun’s spectrum. It originally applied only to sodium, but
is now used for all alkalis: see Table 7.1.
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Element Z Ground state 1st excited state Transition ∆E (cm−1)

Lithium 3 [He] 2s 2p 2p →2s 0.33
Sodium 11 [Ne] 3s 3p 3p →3s 17
Potassium 19 [Ar] 4s 4p 4p →4s 58
Rubidium 37 [Kr] 5s 5p 5p →5s 238
Cesium 55 [Xe] 6s 6p 6p →6s 554

Table 7.1: Spin-orbit splitting ∆E of the D lines of the alkali elements. The energy splitting
is equal to the difference of the energies of the J = 3/2 and J = 1/2 levels of the first excited
state.
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Figure 7.6: Spin-orbit splitting of the first excited state of the alkali atoms versus Z2, as
determined by the fine structure splitting of the D-lines. (See Table 7.1.)

7.6 Spin-orbit coupling in many-electron atoms

We have seen in Chapter 5 that atoms with more than one valence electron can have different types of
angular momentum coupling. We restrict our attention here to atoms with LS-coupling, which is the
most common type, as explained in Section 5.7. In LS-coupling, the residual electrostatic interaction
couples the orbital and spin angular momenta together according to eqns 5.29 and 5.30. The resultants
are then coupled together to give the total angular momentum J according to

J = L+ S . (7.48)

The rules for coupling of angular momenta produce several J states for each LS-term, with J running
from L+ S down to |L− S| in integer steps.4 These J states experience different spin-orbit interactions,
and so are shifted in energy from each other. Hence the spin-orbit coupling splits the J states of a
particular LS-term into fine structure multiplets.

The splitting of the J states can be evaluated as follows. The spin-orbit interaction takes the form:

∆Eso = −µspin ·Borbital ∝ 〈L · S〉 , (7.49)

which implies (cf. eqns 7.41 – 7.44):

∆ESO = CLS [J(J + 1)− L(L+ 1)− S(S + 1)] . (7.50)

It follows from eqn 7.50 that levels with the same L and S but different J are separated by an energy
which is proportional to J . This is called the interval rule. Figure 5.3 shows an example of the interval
rule for the 3P term of the (3s,3p) configuration of magnesium.

4There is only one J state, and hence no fine structure splitting, when one or both of L or S are zero.



78 CHAPTER 7. FINE STRUCTURE AND NUCLEAR EFFECTS

7.7 Nuclear effects in atoms

For most of the time in atomic physics we just take the nucleus to be a heavy charged particle sitting at
the centre of the atom. However, careful analysis of the spectral lines can reveal small effects that give
us direct information about the nucleus. The main effects that can be observed generally fall into two
categories, namely isotope shifts and hyperfine structure.

7.7.1 Isotope shifts

There are two main processes that give rise to isotope shifts in atoms, namely mass effects and field
effects.

Mass effects The mass m that enters the Schrödinger equation is the reduced mass, not the bare electron
mass me (cf. eqn 2.5). Changes in the nuclear mass therefore make small changes to m and hence
to the atomic energies.

Field effects Electrons in s shells have a finite probability of penetrating the nucleus, and are therefore
sensitive to its charge distribution.

Both effects cause small shifts in the wavelengths of the spectral lines from different isotopes of the same
element. The heavy isotope of hydrogen, namely deuterium, was discovered in this way through its mass
effect.

7.7.2 Hyperfine structure

In high–resolution spectroscopy, it is necessary to consider effects relating to the magnetic interaction
between the electron angular momentum (J) and the nuclear spin (I). This is called the hyperfine
interaction and arises from the interaction between the magnetic dipole due to the nuclear spin and the
magnetic field produced at the nucleus by the electrons.

The spin of the nucleus gives it a magnetic dipole moment which is proportional to I:

µnucleus = γII = gI
µN

~
I , (7.51)

where γI is the nuclear gyromagnetic ratio, gI is the nuclear g-factor, and µN ≡ e~/2mP is the nuclear
Bohr magneton, with mP being the proton mass. The value of µN in S.I. units is 5.050783× 10−27 A m2.
There are several interesting points that can be made here in comparison to the equivalent result for
electrons:

• The nuclear gyromagnetic ratio is positive, whereas the electron gyromagnetic ratio is negative (see
eqn 7.4). This follows from the positive charge of the nucleus, and means that nuclear dipoles are
parallel to the nuclear spin. This contrasts with electrons, where the dipole is anti-parallel to the
angular momentum on account of the negative sign of the electron charge.

• The nuclear gyromagnetic ratio is about 2000 times smaller than the electron gyromagnetic ratio
on account of the heavier proton mass.

• The presence of the nuclear g-factor in eqn 7.51 highlights the quantum-mechanical origin of nuclear
spin. Following the convention in which the sign of the g-factor relates to the sign of the particle’s
charge as discussed in Section 7.2, then the g-factors of protons and neutrons are +5.5857 and
−3.8261 respectively. These non-integer values point to the fact that protons and neutrons are
actually composite rather than elementary particles. The negative, non-zero value for the neutron
is particularly striking, given that the neutron is uncharged.

The hyperfine interaction is of the form:

∆Ehyperfine = −µnucleus ·Belectron ∝ 〈I · J〉 . (7.52)

The presence of J in this interaction term arises from the fact that the magnetic field generated by
the electrons at the nucleus depends on the total electronic angular momentum. The magnitude of the
hyperfine interaction is very small because the nuclear dipole is about 2000 times smaller than that of
the electron. The splittings are therefore about three orders of magnitude smaller than the fine structure
splittings: hence the name “hyperfine”.
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Figure 7.7: (a) Hyperfine structure of the 1s ground state of hydrogen. The arrows indicate
the relative directions of the electron and nuclear spin. (b) Hyperfine transitions for the
sodium D1 line. (c) Hyperfine transitions for the sodium D2 line. Note that the hyperfine
splittings are not drawn to scale. The splittings of the sodium levels are as follows: 2S1/2,
1772 MHz; 2P1/2, 190 MHz; 2P3/2 (3 → 2), 59 MHz; 2P3/2 (2 → 1), 34 MHz; 2P3/2 (1 → 0),
16 MHz.

Hyperfine states are labelled by the total angular momentum F of the whole atom (i.e. nucleus plus
electrons), where

F = I + J . (7.53)

This implies that the hyperfine interaction is of the form (cf. eqn 7.43):

∆Ehyperfine =
A

2
(F (F + 1)− I(I + 1)− J(J + 1)) , (7.54)

where A is the hyperfine constant. In analogy with the |LSJ〉 states of fine structure, the electric dipole
selection rule for transitions between hyperfine states is:

∆F = 0,±1 , (7.55)

with the exception that F = 0 → 0 transitions are forbidden. Let us consider two examples to see how
this works.

The hydrogen 21 cm line

Consider the ground state of hydrogen. The nucleus consists of just a single proton, and we therefore have
I = 1/2. The hydrogen ground state is the 1s 2S1/2 term, which has J = 1/2. The hyperfine quantum
number F is then found from F = I ⊕ J = 1/2⊕ 1/2 = 1 or 0. These two hyperfine states correspond to
the cases in which the spins of the electron and the nucleus are aligned parallel (F = 1) or antiparallel
(F = 0). The two F states are split by the hyperfine interaction by 0.0475 cm−1 (5.9 × 10−6 eV). (See
Fig. 7.7(a).) Transitions between these levels occur at 1420 MHz (λ = 21 cm), and are very important
in radio astronomy. Radio frequency transitions such as these are also routinely exploited in nuclear
magnetic resonance (NMR) spectroscopy. (See section 8.3.)

Hyperfine structure of the sodium D lines

The sodium D lines originate from 3p → 3s transitions. As discussed in Section 7.5, there are two lines
with energies split by the spin-orbit coupling, as indicated in Fig. 7.5(b).

Consider first the lower energy D1 line, which is the 2P1/2 →2 S1/2 transition. The nucleus of sodium
has I = 3/2, and so we have F = 3/2⊕1/2 = 2 or 1 for both the upper and lower levels of the transition,
as shown in Fig. 7.7(b). Note that the hyperfine splittings are not drawn to scale in Fig. 7.7(b): the
splitting of the 2S1/2 level is 1772 MHz, which is much larger than that of the 2P1/2, namely 190 MHz.
This is a consequence of the fact that s-electrons have higher probability densities at the nucleus, and
hence experience stronger hyperfine interactions. All four transitions are allowed by the selection rules,
and so we observe four lines. Since the splitting of the upper and lower levels are so different, we obtain
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two doublets with relative frequencies of (0, 190) MHz and (1772, 1962) MHz. These splittings should be
compared to the much larger (∼ 5× 1011 Hz) splitting between the two J states caused by the spin-orbit
interaction. Since the hyperfine splittings are much smaller, they are not routinely observed in optical
spectroscopy, and specialized techniques using narrow band lasers are typically employed nowadays.

Now consider the higher energy D2 line, which is the 2P3/2 →2 S1/2 transition. In the upper level
we have J = 3/2, and hence F = I ⊕ J = 3/2 ⊕ 3/2 = 3, 2, 1, or 0. There are therefore four hyperfine
states for the 2P3/2 level, as shown in Fig. 7.7(c). The hyperfine splittings of the 2P3/2 level are again
much smaller than that of the 2S1/2 level, on account of the low probability density of p-electrons near
the nucleus. Six transitions are allowed by the selection rules, with the F = 3 → 1 and F = 0 → 2
transitions being forbidden by the |∆F | ≤ 1 selection rule. We thus have six hyperfine lines, which split
into two triplets at relative frequencies of (0, 34, 59) MHz and (1756, 1772, 1806) MHz.
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Chapter 8

External fields: the Zeeman and
Stark effects

In the previous chapter, we considered the effects of the internal magnetic fields within atoms. We now
wish to consider the effects of external fields. Table 8.1 defines the nomenclature of the effects that we
shall be considering. We shall start by looking at magnetic fields and then move on to consider electric
fields.

Applied field Field strength Effect

Magnetic weak Zeeman
strong Paschen-Back

Electric all Stark

Table 8.1: Names of the effects of external fields in atomic physics.

8.1 Magnetic fields

The first person to study the effects of magnetic fields on the optical spectra of atoms was Zeeman in
1896. He observed that the transition lines split when the field is applied. Further work showed that the
interaction between the atoms and the field can be classified into two regimes:

• Weak fields: the Zeeman effect, either normal or anomalous;

• Strong fields: the Paschen-Back effect.

The “normal” Zeeman effect is so-called because it agrees with the classical theory developed by Lorentz.
The “anomalous” Zeeman effect is caused by electron spin, and is therefore a completely quantum result.
The criterion for deciding whether a particular field is “weak” or “strong” will be discussed in Section 8.1.3.
In practice, we usually work in the weak-field (i.e. Zeeman) limit.

8.1.1 The normal Zeeman effect

The normal Zeeman effect is observed in atoms with no spin. The total spin of an N -electron atom is
given by:

S =

N∑
i=1

si . (8.1)

Filled shells have no net spin, and so we only need to consider the valence electrons here. Since all the
individual electrons have spin 1/2, it will not be possible to obtain S = 0 from atoms with an odd number

81
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Figure 8.1: The normal Zeeman effect. (a) Splitting of the degenerate ml states of an atomic
level with l = 2 by a magnetic field. (b) Definition of longitudinal (Faraday) and transverse
(Voigt) observations. The direction of the field defines the z axis.

of valence electrons. However, if there is an even number of valence electrons, we can obtain S = 0 states.
For example, if we have two valence electrons, then the total spin quantum number S = 1/2⊕1/2 can be
either 0 or 1. In fact, the ground states of divalent atoms from group II of the periodic table (electronic
configuration ns2) always have S = 0 because the two electrons align with their spins antiparallel.

The magnetic moment of an atom with no spin will originate entirely from its orbital motion:

µ = −µB

~
L , (8.2)

where µB/~ = e/2me is the gyromagnetic ratio. (See eqn 7.4.) The interaction energy between a
magnetic dipole µ and a uniform magnetic field B is given by:

∆E = −µ ·B . (8.3)

We set up the axes of our spherically-symmetric atom so that the z axis coincides with the direction of
the field. In this case we have:

B =

 0
0
Bz

 ,

and the interaction energy of the atom is therefore:

∆E = −µzBz = µBBzml , (8.4)

where ml is the orbital magnetic quantum number. Equation 8.4 shows us that the application of an
external B-field splits the degenerate ml states evenly. This is why ml is called the magnetic quantum
number. The splitting of the ml states of an l = 2 electron is illustrated in Fig. 8.1(a).

The effect of the magnetic field on the spectral lines can be worked out from the splitting of the levels.
Consider the transitions between two Zeeman-split atomic levels as shown in Fig. 8.2. The selection rules
listed in Table 3.1 of Chapter 3 indicate that we can have transitions with ∆ml = 0 or ±1. The gives
rise to three transitions whose frequencies are given by:

hν = hν0 + µBBz ∆ml = −1 ,

hν = hν0 ∆ml = 0 , (8.5)

hν = hν0 − µBBz ∆ml = +1 .

This is the same result as that derived by classical theory.
The polarization of the Zeeman lines is determined by the selection rules, and the conditions of obser-

vation. If we are looking along the field (longitudinal observation), the photons must be propagating in
the z direction. (See Fig. 8.1(b).) Light waves are transverse, and so only the x and y polarizations are
possible. The z-polarized ∆ml = 0 line is therefore absent, and we just observe the σ+ and σ− circularly
polarized ∆ml = ±1 transitions. When observing at right angles to the field (transverse observation),
all three lines are present. The ∆ml = 0 transition is linearly polarized parallel to the field, while the
∆ml = ±1 transitions are linearly polarized at right angles to the field. These results are summarized in
Table 8.2.1

1In solid-state physics, the longitudinal and transverse observation conditions are frequently called the Faraday and
Voigt geometries, respectively.
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Figure 8.2: The normal Zeeman effect for a p → d transition. (a) The field splits the degen-
erate ml levels equally. Optical transitions can occur if ∆ml = 0,±1. (Only the transitions
originating from the ml = 0 level of the l = 1 state are identified here for the sake of clarity.)
(b) The spectral line splits into a triplet when observed transversely to the field. The ∆ml = 0
transition is unshifted, but the ∆ml = ±1 transitions occur at (hν0 ∓ µBBz).

∆ml Energy Polarization
Longitudinal Transverse
observation observation

+1 hν0 − µBB σ+ E ⊥ B

0 hν0 not observed E ‖ B

–1 hν0 + µBB σ− E ⊥ B

Table 8.2: The normal Zeeman effect. The last two columns refer to the polarizations observed
in longitudinal (Faraday) and transverse (Voigt) observation conditions. The direction of the
circular (σ±) polarization in longitudinal observation is defined relative to B. In transverse
observation, all lines are linearly polarized.
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Figure 8.3: (a) Slow precession of J around B in the anomalous Zeeman effect. The spin-
orbit interaction causes L and S to precess much more rapidly around J . (b) Definition of
the projection angles θ1 and θ2 used in the calculation of the Landé g factor.

8.1.2 The anomalous Zeeman effect

The anomalous Zeeman effect is observed in atoms with non-zero spin. This will include all atoms with
an odd number of electrons. In the LS-coupling regime, the spin-orbit interaction couples the spin and
orbital angular momenta together to give the resultant total angular momentum J according to:

J = L+ S . (8.6)

The orbiting electrons in the atom are equivalent to a classical magnetic gyroscope. The torque applied
by the field causes the atomic magnetic dipole to precess around B, an effect called Larmor precession.
The external magnetic field therefore causes J to precess slowly about B. Meanwhile, L and S precess
more rapidly about J due to the spin-orbit interaction. This situation is illustrated in Fig. 8.3(a). The
speed of the precession about B is proportional to the field strength. If we turn up the field, the Larmor
precession frequency will eventually be faster than the spin-orbit precession of L and S around J . This
is the point where the behaviour ceases to be Zeeman-like, and we are in the strong field regime of the
Paschen-Back effect.

The interaction energy of the atom is equal to the sum of the interactions of the spin and orbital
magnetic moments with the field:

∆E = −µzBz = −(µspin
z + µorbital

z )Bz = 〈gsSz +Lz〉
µB

~
Bz , (8.7)

where gs = 2, and the symbol 〈· · · 〉 implies, as usual, that we take expectation values. The normal
Zeeman effect is obtained by setting Sz = 0 and Lz = ml~ in this formula. In the case of the precessing
atomic magnet shown in Fig. 8.3(a), neither Sz nor Lz are constant. Only Jz = MJ~ is well-defined.
We must therefore first project L and S onto J , and then re-project this component onto the z axis.
The effective dipole moment of the atom is therefore given by:

µ = −
〈
|L| cos θ1

J

|J |
+ 2|S| cos θ2

J

|J |

〉
µB

~
, (8.8)

where the factor of 2 in the second term comes from the fact that gs = 2. The angles θ1 and θ2 that
appear here are defined in Fig. 8.3(b), and can be calculated from the scalar products of the respective
vectors:

L · J = |L| |J | cos θ1 ,

S · J = |S| |J | cos θ2 , (8.9)

which implies that:

µ = −
〈
L · J
|J |2

+ 2
S · J
|J |2

〉
µB

~
J . (8.10)

Now equation 8.6 implies that S = J −L, and hence that:

S · S = (J −L)·(J −L) = J · J +L · L− 2L · J .

We therefore find that:
L · J = (J · J +L · L− S · S)/2 ,
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so that: 〈
L · J
|J |2

〉
=

[J(J + 1) + L(L+ 1)− S(S + 1)]~2/2

J(J + 1)~2
,

=
[J(J + 1) + L(L+ 1)− S(S + 1)]

2J(J + 1)
. (8.11)

Similarly:
S · J = (J · J + S · S −L · L)/2 ,

and so: 〈
S · J
|J |2

〉
=

[J(J + 1) + S(S + 1)− L(L+ 1)]~2/2

J(J + 1)~2
,

=
[J(J + 1) + S(S + 1)− L(L+ 1)]

2J(J + 1)
. (8.12)

We therefore conclude that:

µ = −
(

[J(J + 1) + L(L+ 1)− S(S + 1)]

2J(J + 1)
+ 2

[J(J + 1) + S(S + 1)− L(L+ 1)]

2J(J + 1)

)
µB

~
J . (8.13)

This can be written in the form:
µ = −gJ

µB

~
J , (8.14)

where gJ is the Landé g-factor given by:

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (8.15)

This implies that
µz = −gJµBMJ , (8.16)

and hence that the interaction energy with the field is:

∆E = −µzBz = gJµBBzMJ . (8.17)

This is the final result for the energy shift of an atomic state in the anomalous Zeeman effect. Note that
we just obtain gJ = 1 if S = 0, as we would expect for an atom with only orbital angular momentum.
Similarly, if L = 0 so that the atom only has spin angular momentum, we find gJ = 2. Classical theories
always predict gJ = 1. The departure of gJ from unity is caused by the spin part of the magnetic moment,
and is a purely quantum effect.

The spectra can be understood by applying the following selection rules on J and MJ :

∆J = 0,±1 ;

∆MJ = 0,±1 .

These rules have to be applied in addition to the ∆l = ±1 and ∆S = 0 rules. (See discussion in § 5.8.)2

∆J = 0 transitions are forbidden when J = 0 for both states, and MJ = 0→ 0 transitions are forbidden
in a ∆J = 0 transition. The transition energy shift is then given by:

h∆ν = (hν − hν0) ,

=
(
gupper
J Mupper

J − glower
J M lower

J

)
µBBz ,

(8.18)

where hν0 is the transition energy at Bz = 0 and the superscripts refer to the upper and lower states
respectively.

The polarizations of the transitions follow the same patterns as for the normal Zeeman effect:

• With longitudinal observation the ∆MJ = 0 transitions are absent and the ∆MJ = ±1 transitions
are σ± circularly polarized.

• With transverse observation the ∆MJ = 0 transitions are linearly polarized along the z axis (i.e.
parallel to B) and the ∆MJ = ±1 transitions are linearly polarized in the x-y plane (i.e. perpen-
dicular to B).
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Level J L S gJ

2P3/2 3/2 1 1/2 4/3

2P1/2 1/2 1 1/2 2/3

2S1/2 1/2 0 1/2 2

Table 8.3: Landé g-factors evaluated from eqn 8.15 for the levels involved in the sodium D
lines.
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Figure 8.4: Splitting of the sodium D-lines by a weak magnetic field. Note that the Zeeman
splittings are smaller than the spin-orbit splitting, as must be the case in the “weak” field
limit.

Example: The sodium D lines

The sodium D lines correspond to the 3p→ 3s transition. At B = 0, the spin-orbit interaction splits the
upper 3p 2P term into the 2P3/2 and 2P1/2 levels separated by 17 cm−1. The lower 2S1/2 level has no
spin-orbit interaction. The Landé g-factors of the levels worked out from eqn 8.15 are given in Table 8.3.

The splitting of the lines in the field is shown schematically in Fig. 8.4. The 2P3/2 level splits into
four MJ states, while the two J = 1/2 levels each split into two states. The splittings are different for
each level because of the different Landé factors. On applying the ∆MJ = 0,±1 selection rule, we find
four allowed transitions for the D1 line and six for the D2. These transitions are listed in Table 8.4.

The results tabulated in Table 8.4 can be compared to those predicted by the normal Zeeman effect. In
the normal Zeeman effect we observe three lines with an energy spacing equal to µBB. In the anomalous
effect, there are more than three lines, and the spacing is different to the classical value: in fact, the lines
are not evenly spaced. Furthermore, none of the lines occur at the same frequency as the unperturbed
line at B = 0.

2There are no selection rules on ML and MS here because Lz and Sz are not constants of the motion when L and S are
coupled by the spin-orbit interaction.
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Mupper
J M lower

J ∆MJ Transition energy shift

D1 line D2 line

+ 3
2 + 1

2 −1 +1

+ 1
2 + 1

2 0 − 2
3 − 1

3

+ 1
2 − 1

2 −1 + 4
3 + 5

3

− 1
2 + 1

2 +1 − 4
3 − 5

3

− 1
2 − 1

2 0 + 2
3 + 1

3

− 3
2 − 1

2 +1 −1

Table 8.4: Anomalous Zeeman effect for the sodium D lines. The transition energy shifts are
worked out from eqn 8.18 and are quoted in units of µBBz.

8.1.3 The Paschen-Back effect

The Paschen-Back effect is observed at very strong magnetic fields. The criterion for observing the
Paschen-Back effect is that the interaction with the external magnetic field should be much stronger than
the spin-orbit interaction:

µBBz � ∆Eso . (8.19)

If we satisfy this criterion, then the precession speed around the external field will be much faster than
the spin-orbit precession. This means that the interaction with the external field is now the largest
perturbation, and so it should be treated first, before the perturbation of the spin-orbit interaction.

Another way to think of the strong-field limit is that it occurs when the external field is much stronger
than the internal field of the atom arising from the orbital motion. We saw in Section 7.3 that the internal
fields in most atoms are large. For example, the Bohr model predicts an internal field of 12 T for the
n = 1 shell of hydrogen. (See eqn 7.19.) This is a very strong field, that can only be obtained in the
laboratory by using powerful superconducting magnets. This internal field strength is typical of many
atoms, and so it will frequently be the case the field required to observe the Paschen-Back effect is so
large that we never go beyond the Zeeman regime in the laboratory.3 For example, in sodium, the field
strength equivalent to the spin-orbit interaction for the D-lines is given by:

Bz =
∆Eso

µB
=

17 cm−1

9.27× 10−24 JT−1 = 36 T ,

which is not achievable in normal laboratory conditions. On the other hand, since the spin-orbit inter-
action decreases with decreasing atomic number Z, the splitting for the equivalent transition in lithium
with Z = 3 (i.e. the 2p→ 2s transition) is only 0.3 cm−1. This means that we can reach the strong field
regime for fields � 0.6 T. This is readily achievable, and allows the Paschen-Back effect to be observed.

In the Paschen-Back effect, the spin-orbit interaction is assumed to be negligibly small, and L and S
are therefore no longer coupled together. Each precesses separately around B, as sketched in Fig. 8.5.
The precession rates for L and S are different because of the different g-values. Hence the magnitude of
the resultant J varies with time: the quantum number J is no longer a constant of the motion.

The interaction energy is now calculated by adding the separate contributions of the spin and orbital
energies:

∆E = −µzBz = −(µorbital
z + µspin

z )Bz = (ML + gsMS)µBBz . (8.20)

The shift of the spectral lines is given by:

∆(hν) = (∆ML + gs∆MS)µBBz . (8.21)

3There are extremely large magnetic fields present in the Sun due to the circulating plasma currents. This means that
the Paschen-Back effect can be observed for elements like sodium in solar spectra.
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Figure 8.5: Precession of L and S around B in the Paschen-Back effect.

We have noted before that optical transitions do not affect the spin, and so we must have ∆MS = 0. The
frequency shift is thus given by:

∆(hν) = µBBz ∆ML , (8.22)

where ∆ML = 0 or ±1. In other words, we revert to the normal Zeeman effect.

Putting it all together

The change of the spectra as we increase B from zero is illustrated for the p → s transitions of an alkali
atom in Fig. 8.6. At B = 0 the lines are split by the spin-orbit interaction. At weak fields we observe
the anomalous Zeeman effect, while at strong fields we change to the Paschen-back effect.
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Figure 8.6: Schematic progression of the optical spectra for the p → s transitions of an alkali
atom with increasing field.

8.1.4 Magnetic field effects for hyperfine levels

Everything we have said so far has ignored the hyperfine structure of the atom. The whole process can
be repeated to calculate the Zeeman and Paschen-Back energy shifts for the hyperfine levels. In this
case, the energy splittings at B = 0 are much smaller, due to the much smaller gyromagnetic ratio of the
nucleus compared to the electron. (See Section 7.7.2.) This implies that the change from the weak-field
to the strong-field limit occurs at much smaller field strengths than for the states split by fine-structure
interactions. We shall not consider the hyperfine states further in this course.

8.2 The concept of ‘good’ quantum numbers

It is customary to refer to quantum numbers that relate to constants of the motion as ‘good’ quantum
numbers. In this discussion of the effects of magnetic fields, we have used six different quantum numbers
to describe the angular momentum state of the atom: J , MJ , L, ML, S, MS . However, we cannot know
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all of these at the same time. In fact, we can only know four: (L, S, J,MJ) in the weak-field limit, or
(L, S,ML,MS) in the strong-field limit. In the weak-field limit, Lz and Sz are not constant which implies
that J and MJ are ‘good’ quantum numbers but ML and MS are not. Similarly, in the strong-field limit,
the coupling between L and S is broken and so J and Jz are not constants of the motion: ML and MS

are good quantum numbers, but J and MJ are not.
A similar type of argument applies to the two angular momentum coupling schemes discussed in

Section 5.6, namely LS-coupling and jj-coupling. As an example, consider the total angular momentum
state of a two electron atom. In the LS-coupling scheme, we specify (L, S, J,MJ), whereas in the jj-
coupling scheme we have (j1, j2, J,MJ). In both cases, we have four ‘good’ quantum numbers, which tell
us the precisely measurable quantities. The other quantum numbers are unknown because the physical
quantities they represent are not constant. In LS-coupling we cannot know the j values of the individual
electrons because the residual electrostatic potential overpowers the spin-orbit effect, whereas in the jj-
coupling scheme we cannot know L and S. Note, however, that J and MJ are good quantum numbers
in both coupling limits. This means that we can always describe the Zeeman energy of the atom by
eqn 8.17, although in the case of jj-coupling, the formula for the gJ factor given in eqn 8.15 will not be
valid because L and S are not good quantum numbers.

8.3 Nuclear magnetic resonance

Everything that has been covered so far in this chapter applies to the electrons in the atom. However,
a discussion of the Zeeman effect would not be complete if we did not at least mention the interaction
of an external magnetic field with the nucleus. As noted in Section 7.7.2, the nucleus has spin, and this
gives it a magnetic dipole moment. In analogy with eqn 8.14, the nuclear dipole moment is written (see
eqn 7.51):

µnucleus = gI
µN

~
I , (8.23)

where gI is the nuclear g-factor, and µN = e~/2mp is the nuclear magneton. I is the nuclear spin angular

momentum, which is assumed to be quantised in the usual way, so that |I| =
√
I(I + 1)~ and Iz = MI~,

with MI running in integer steps from −I to +I. Note that the omission of the minus sign in eqn 8.23
is deliberate, as nuclei are positively charged.

If an external magnetic field is applied along the z direction, the energy of the nucleus will shift by:

∆E = −µnucleus ·B = −µnucleus
z Bz . (8.24)

On substituting from eqn 8.23, the Zeeman energy becomes:

∆E = −gI
µN

~
IzBz = −gIµNBzMI . (8.25)

In magnetic resonance experiments, a radio-frequency (RF) electromagnetic field is applied to induce
magnetic-dipole transitions between the Zeeman-split levels. The angular momentum of the nucleus
changes by one unit when the photon is absorbed, so that the selection rule is ∆MI = ±1.4 The energy
of the photon required to induce this transition is thus given by:

hν = gIµNBz . (8.26)

The resonance is detected either by scanning ν at fixed Bz, or by scanning Bz at fixed ν.
In the magnetic resonance systems used in medical imaging, the RF photons are brought to resonance

with the hydrogen atoms or ions in the body. The g factor of the proton is 5.586, which implies that
ν = 42.6 MHz at a field of 1 T. The non-obvious value of the g value is a consequence of the internal
structure of the proton. Magnetic resonance can also be observed from other nuclei in a variety of liquid
and solid-state environments, and this gives rise to a host of techniques used especially in chemistry and
biology to obtain information about the structure and bonding of molecules.

8.4 Electric fields

In the case of electric fields, the weak and strong field limits are not normally distinguished, and all the
phenomena are collectively called the Stark effect. These effects are named after J. Stark, who was the

4In magnetic-dipole transitions, the parity of the initial and final states does not change. (See section 3.5.) The photon
interacts with the magnetic dipole of the nucleus, since its electric dipole is zero.
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Figure 8.7: Effect of an electric field E on the electron cloud of an atom. (a) When E = 0, the
negatively-charged electron cloud is arranged symmetrically about the nucleus, and there is
no electric dipole. (b) When the electric field is applied, the electron cloud is displaced, and
a net dipole parallel to the field is induced.

first person to study the effect of electric fields on atomic spectral lines, when he measured the splitting
of the hydrogen Balmer lines in an electric field in 1913. In most atoms we observe the quadratic Stark
effect and we therefore consider this effect first. We then move on to consider the linear Stark effect,
which is observed for the excited states of hydrogen, and in other atoms at very strong fields. The Stark
shift of an atom is harder to observe than the Zeeman shift, which explains why magnetic effects are
more widely studied in atomic physics. However, large Stark effects are readily observable in solid state
physics, and we therefore conclude by briefly considering the quantum-confined Stark effect.

8.4.1 The quadratic Stark effect

Most atoms show a small red shift (i.e. a shift to lower energy) which is proportional to the square of the
electric field. This phenomenon is therefore called the quadratic Stark effect. The energy of an atom in
an electric field E is given by

E = −p · E , (8.27)

where p is the electric dipole of the atom. We can understand the quadratic Stark effect intuitively with
reference to Fig. 8.7. The negatively-charged electron clouds of an atom are spherically symmetric about
the positively-charged nucleus in the absence of applied fields. A charged sphere acts like a point charge
at its centre, and it is thus apparent that atoms do not normally possess a dipole moment, as shown in
Fig. 8.7(a). When a field is applied, the electron cloud and the nucleus experience opposite forces, which
results in a net displacement of the electron cloud with respect to the nucleus, as shown in Fig. 8.7(b).
This creates a dipole p which is parallel to E and whose magnitude is proportional to |E|. This can be
expressed mathematically by writing:

p = αE , (8.28)

where α is the polarizability of the atom. The energy shift of the atom is found by calculating the
energy change on increasing the field strength from zero:

∆E = −
∫ E

0

p·dE ′ = −
∫ E

0

αE ′dE ′ = −1

2
αE2 , (8.29)

which predicts a quadratic red shift, as required. The magnitude of the red shift is generally rather small.
This is because the electron clouds are tightly bound to the nucleus, and it therefore requires very strong
electric fields to induce a significant dipole.

A more detailed description of the quadratic Stark effect is given in § D.1 of Appendix D.5 It is shown
there that the energy shift of the ith state is given by 2nd order perturbation theory as:

∆Ei =
∑
j 6=i

|〈ψi|H ′|ψj〉|2

Ei − Ej
, (8.30)

where the summation runs over all the other states of the system, and Ei and Ej are the unperturbed
energies of the states. Explicit evaluation of the matrix elements for sodium indicates that the Stark shift

5This analysis is relegated to the appendix because many of you will not have done perturbation theory yet, as it is
normally first encountered in detail in course PHY309, which is taken in the second semester.
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Figure 8.8: (a) Shift of the 2S1/2, 2P1/2, and 2P3/2 terms of an alkali atom in an electric field.
Note that the red shifts of the upper levels are larger than that of the lower level. (b) Red
shift of the D1 (2P1/2 → 2S1/2) and the D2 (2P3/2 → 2S1/2) lines in the field.

at a given field strength depends on M2
J . This means that electric fields do not completely break the

degeneracy of the MJ sub-levels of a particular |J〉 level, which contrasts with the Zeeman effect, where
the energy shift is proportional to MJ , and the degeneracy if fully lifted.

The quadratic Stark shift of the sodium D lines is shown schematically in Fig. 8.8. All states are
shifted to lower energy, with those of the same MJ values being shifted equally for a given level, as
indicated in Fig. 8.8(a). As discussed in § D.1, the shifts of the upper 3p levels are larger than that of
the lower 3s 2S1/2 term, and both spectral lines therefore show a net shift to lower energy, as indicated
in Fig. 8.8(b). Owing to the degeneracy of the sub-levels with the same |MJ |, the D1 (2P1/2 → 2S1/2)
line does not split, while the D2 (2P3/2 → 2S1/2) line splits into a doublet.

An interesting consequence of the perturbation caused by the electric field is that the unperturbed
atomic states get mixed with other states of the opposite parity. For example, the 3s state has even
parity at E = 0, but acquires a small admixture of the odd parity 3p state as the field is increased.
This means that parity forbidden transitions (eg s→s, p→p, d→s, etc.) become weakly allowed as the
field is increased. Since we are dealing with a second-order perturbation, the intensity of these forbidden
transitions increases in proportion to E2.

8.4.2 The linear Stark effect

Stark’s original experiment of 1913 was performed on the Balmer lines of hydrogen.6 In contrast to what
has been discussed in the previous subsection, the shift was quite large, and varied linearly with the
field. The explanation of the linear Stark effect in hydrogen by degenerate perturbation theory is given
in § D.2 of Appendix D. It is shown there that the linear Stark effect is observed when an atom possesses
degenerate states of opposite parities. The classic example is the 2s and 2p states of hydrogen, that are
degenerate in the absence of spin-orbit effects. Perturbation theory predicts that the n = 2 shell splits
into a triplet, with energies of −3ea0E , 0, and +3ea0E with respect to the unperturbed level, where a0

is the Bohr radius of hydrogen. The splitting is linear in the field and has a much larger magnitude
than that calculated for the quadratic Stark effect. For example, at E = 2.5× 107 V/m, we find shifts of
±4×10−3 eV (32 cm−1), which are more than two orders of magnitude larger than the shifts of the levels
in sodium at the same field strength. This, of course, explains why the linear Stark effect in hydrogen
was the first electric-field induced phenomenon to be discovered.

The second-order perturbation analysis discussed in § D.1 is expected to break down at large field
strengths when the field-induced perturbation becomes comparable to the splittings of the unperturbed
levels. The field strength required to reach this limit for the 3s ground-state level of sodium was shown in
§ D.1 to be extremely large (∼ 1010 V/m). However, the fields required for the breakdown of the second-
order approach for the excited states can be significantly smaller, because some atoms can have different
parity excited states which are relatively close to each other. We would then expect the behaviour to

6The Balmer series of hydrogen corresponds to those lines that terminate on the n = 2 level. These lines occur in the
visible spectral region.
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Figure 8.9: The quantum confined Stark effect. (a) Excitons are created by optical transitions
from the valence to the conduction band of a semiconductor. (b) A quantum well is formed
when a thin layer of a semiconductor with a band gap Eg is sandwiched between layers of
another semiconductor with a larger band gap E′g. (c) Electric fields are applied to an exciton
in a quantum well by embedding the quantum well within a P-N junction and applying reverse
bias.

change as the field is increased. At low fields we would observe the quadratic Stark effect, but when the
field is sufficiently large that the perturbation is comparable to the energy splitting, we would effectively
have degenerate levels with different parities, giving rise to a linear shift determined by degenerate
perturbation theory. This change from the quadratic to linear Stark effect at high fields was first studied
for the excited states of helium by Foster in 1927.

8.4.3 The quantum-confined Stark effect

An optical transition between the valence and conduction bands of a semiconductor leaves a positively-
charged hole in the valence band, and a negatively-charged electron in the conduction band, as shown in
Fig. 8.9(a). The electron and hole can bind together to form a hydrogen-like atom called an exciton.
The binding energy of the exciton is rather small, due to the high relative dielectric constant εr of the
semiconductor, and also because of the low reduced effective mass of the exciton. Typical values might
be εr ∼ 10 and m ∼ 0.1me, which implies from eqn 2.6 that the 1s binding energy would be ∼ 0.01 eV.7

From the discussion given in Section 8.4.1, we would expect the 1s exciton state to show a quadratic
Stark shift as an electric field is applied. However, in bulk semiconductors the excitons are very unstable
to applied electric fields due to their low binding energy, which implies that the electrostatic force between
the electron and hole is relatively small. The electrons and holes are pushed in opposite directions, and
the exciton then easily gets ripped apart by the field. This effect is called field ionization. It can also
be observed in atomic physics, but only at extremely high field strengths.

The situation in a quantum-confined structure such as a semiconductor quantum well or quantum
dot is rather different. Consider the case of the quantum well shown in Fig. 8.9(b). The quantum well is
formed by sandwiching a thin semiconductor with a band gap of Eg between layers of another semicon-
ductor with a larger band gap E′g. This then gives rise to spatial discontinuities in the conduction and
valence band energies as shown in the figure. The excitons that are formed by optical transitions across
the smaller band gap are then trapped in the finite potential well created by the band discontinuities.

A strong electric field can be applied to the quantum well by embedding it within a P-N junction, and
then applying reverse bias, as shown in Fig. 8.9(c). P-N junctions conduct when forward bias is applied,
but not under reverse bias. In the latter case, the applied voltage is dropped across the narrow junction
region, thereby generating an electric field that is controlled by the reverse bias. The excitons that are
created by optical transitions are now stable to the field, because the barriers of the quantum well prevent
them from being ripped apart. The electrons are pushed to one side of the quantum well, and the holes
to the other, which creates a dipole of magnitude ∼ ed, where d is the width of the quantum well. With

7Note that the factor of ε20 in the denominator of eqn 2.6 has to be replaced by (εrε0)2 in a dielectric medium.
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d ∼ 10 nm, much larger dipoles can be created than in atomic physics, resulting in correspondingly larger
Stark shifts. This effect is called the quantum-confined Stark effect, and is widely used for making
electro-optical modulators. The quantum-confined Stark effect will be studied in more detail in course
PHY475.
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Chapter 9

Lasers I: Stimulated emission

9.1 Introduction

The word “LASER” is an acronym standing for “Light Amplification by Stimulated Emission of Radi-
ation”. The origins of the laser may be traced back to Einstein’s seminal paper on stimulated emission
published in 1917, but it took until 1960 for the first laser to be invented. It is difficult to identify all of
the key milestones in the history of laser physics, but here are a few of the more important ones:

1917 Einstein’s treatment of stimulated emission.

1951 Development of the maser by C.H. Townes.1

1958 Proposal by C.H. Townes and A.L. Schawlow that the maser concept could be extended to optical
frequencies.

1960 T.H. Maiman at Hughes Laboratories reports the first laser: the pulsed ruby laser.

1961 The first continuous wave laser is reported: the helium neon laser.

1962 Invention of the semiconductor laser.

1964 Nicolay Basov, Charlie Townes and Aleksandr Prokhorov are awarded the Nobel prize for “funda-
mental work in the field of quantum electronics, which has led to the construction of oscillators and
amplifiers based on the maser-laser principle.”

1981 Art Schalow and Nicolaas Bloembergen are awarded the Nobel Prize for “their contribution to the
development of laser spectroscopy.”

1997 Steven Chu, Claude Cohen-Tannoudji and William D. Phillips are awarded the Nobel Prize for the
“development of methods to cool and trap atoms with laser light.”

2005 John Hall and Theodor Hänsch receive the Nobel Prize for “their contributions to the development
of laser-based precision spectroscopy, including the optical frequency comb technique”.

2010 50th anniversary of the laser.

Many different types of laser have been developed over the years. The “L” in “laser” stands for “Light”,
but light is understood here in a general sense to mean electromagnetic radiation with a frequency of
∼ 1014–1015 Hz, not specifically visible radiation. This provides the first general classification of laser
types:

• infrared, visible or ultraviolet wavelength.

Other general classifications include:

1A maser is basically the same as a laser, except that it works at microwave rather than optical frequencies. It took some
years to move on from masers to lasers because microwave cavities are designed on the assumption that the cavity dimensions
are comparable to the wavelength of the radiation within the cavity, which is typically around 10 cm at microwave frequencies.
Such designs cannot be scaled easily to optical wavelengths, where λ ∼ 1µm, and it required some lateral thinking to design
a cavity that would work in the regime where the cavity dimensions are much larger than the wavelength. It is only relatively
recently that it has been possible to make “microcavity lasers” and “nanolasers” that have physical dimensions that are
comparable to the wavelength of light.

95
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• solid, liquid or gas gain medium;

• continuous wave (CW) or pulsed operation;

• fixed wavelength or tuneable wavelength.

The gain medium (i.e. amplifying medium) of the laser determines the possible wavelengths that the
laser can emit, but the characteristic properties of laser light are also strongly affected by the design of
the cavity, which is the other essential part of a laser. Such properties include:

Monochromaticity Discharge lamps emit light of many different colours simultaneously, according to
the emission probabilities of the transitions in the atoms. Lasers, by contrast, emit light from just a
single atomic transition, and are therefore highly monochromatic.2 The transition that is “selected”
by the laser is determined by the amount of amplification that is available at that wavelength and
the reflectivity of the mirrors that comprise the cavity.

Directionality Discharge lamps emit in all directions, but lasers emit a well-defined beam in a specific
direction. The direction of the beam is governed by the orientation of the mirrors in the cavity.

Brightness The brightness of lasers arises from two factors. First, the radiation is emitted in a beam,
which means that the intensity (i.e. power per unit area) can be very high, even though the
total amount of power is relatively low. Second, all of the energy is concentrated within the narrow
spectrum of a single atomic transition. This means that the spectral brightness (i.e. the intensity
in the beam divided by the spectral width of the emission line) is even higher in comparison with
a white-light source such as an incandescent light bulb. For example, the spectral brightness of a
1 mW laser beam could easily be millions of time greater than that of a 100 W light bulb.

Coherence Lasers have a high degree of both spatial and temporal coherence. The coherence of laser
light will be considered in more detail in Section 10.3.

These four properties are common to all lasers. In addition, some lasers emit radiation in very short pulses,
which can be used for studying fast processes in physics, chemistry, and biology, or for transmitting optical
data at a very high rate down optical fibres. The principles that govern whether a laser can produce very
short pulses are considered in Section. 10.2.2.

9.2 Principles of laser oscillation

As mentioned above, the word “LASER” is an acronym that stands for “light amplification by stimulated
emission of radiation”. However, there is more to a laser than just light amplification. A laser is actually
an oscillator rather than just an amplifier.3 The difference is that an oscillator has positive feedback in
addition to amplification. The key ingredients of a laser may thus be summarized as:

LASER = light amplification + positive optical feedback .

Light amplification is achieved by stimulated emission. Ordinary optical materials do not amplify
light. Instead, they tend to absorb or scatter the light, so that the light intensity out of the medium
is less than the intensity that went in. To get amplification you have to drive the material into a non-
equilibrium state by pumping energy into it. The amplification of the medium is determined by the gain
coefficient γ, which is defined by the following equation:

I(x+ dx) = I(x) + γI(x)dx ≡ I(x) + dI , (9.1)

where I(x) represents the intensity at a point x within the gain medium. The differential equation can
be solved as follows:

dI = γIdx

∴
dI

dx
= γI

∴ I(x) = I(0)eγx . (9.2)

2“Monochromatic” means “single coloured”.
3A more accurate acronym for a laser might therefore be “LOSER”, but it is easy to understand why this one never

caught on.
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Figure 9.1: Schematic diagram of a laser

Thus the intensity grows exponentially within the gain medium.
Positive optical feedback is achieved by inserting the amplifying medium inside a resonant cavity.

The effects of the cavity on the properties of laser light will be considered in detail in Sections 10.1–10.3.
At this stage, we confine ourselves to considering the parameters of the cavity that affect the condition
for laser oscillation.

Figure 9.1 shows a schematic diagram of a laser. Light in the cavity passes through the gain medium
and is amplified. It then bounces off the end mirrors and passes through the gain medium again, getting
amplified further. This process repeats itself until a stable equilibrium condition is achieved when the
total round trip gain balances all the losses in the cavity. Under these conditions the laser will oscillate.
The condition for oscillation is thus:

round-trip gain = round-trip loss .

The losses in the cavity fall into two categories: useful, and useless. The useful loss comes from the
output coupling. One of the mirrors (called the output coupler) has reflectivity less than unity, and
allows some of the light oscillating around the cavity to be transmitted as the output of the laser. The
value of the transmission is chosen to maximize the output power. If the transmission is too low, very
little of the light inside the cavity can escape, and thus we get very little output power. On the other
hand, if the transmission is too high, there may not be enough gain to sustain oscillation, and there would
be no output power. The optimum value is somewhere between these two extremes. Useless losses arise
from absorption in the optical components (including the laser medium), scattering, and the imperfect
reflectivity of the other mirror (the high reflector). By taking into account the fact that the light passes
twice through the gain medium during a round trip, the condition for oscillation in a laser can be written:

e2γlROCRHR L = 1 , (9.3)

where l is the length of the gain medium, ROC is the reflectivity of the output coupler, RHR is the
reflectivity of the high reflector, and L is the round-trip loss factor due to absorption and scattering, such
that L = 1 corresponds to the situation with no losses. If the total round-trip losses are small (. 10%),
then the gain required to sustain lasing will also be small, and eqn 9.3 simplifies to:

2γl = (1−ROC) + (1−RHR) + scattering losses + absorption losses . (9.4)

This shows more clearly how the gain in the laser medium must exactly balance the losses in the cavity.
In general we expect the gain to increase as we pump more energy into the laser medium. At low

pump powers, the gain will be small, and there will be insufficient gain to reach the oscillation condition.
The laser will not start to oscillate until there is enough gain to overcome all of the losses. This implies
that the laser will have a threshold in terms of the pump power. (See Section 9.6.)

9.3 Stimulated emission

In Chapter 3, we considered the spontaneous tendency for atoms in excited states to emit radiation. We
now consider the optical transitions that occur when the atom is subjected to electromagnetic radiation
with its frequency resonant with the energy difference of the two levels. We follow the treatment of
Einstein (1917).

In addition to transitions from the upper to the lower level due to spontaneous emission, there will
also be:

• absorption of photons causing transitions from level 1 up to level 2;



98 CHAPTER 9. LASERS I: STIMULATED EMISSION

absorption
spontaneous

emission

stimulated

emission
u(n)

Level 2: energyE2, population N2

Level 1: energyE1, population N1
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• stimulated emission in which atoms in level 2 drop to level 1 induced by the incident radiation.

The process of stimulated emission is a coherent quantum-mechanical effect. The photons emitted by
stimulated emission are in phase with the photons that induce the transition. This is the fundamental
basis of laser operation, as the name suggests: Light Amplified by Stimulated Emission of Radiation.

Consider an atom irradiated by white light, with N2 atoms in level 2 and N1 atoms in level 1.
The part of spectrum at frequency ν, where hν = (E2 − E1), can induce absorption and stimulated
emission transitions. We write the spectral energy density of the light at frequency ν as u(ν). The
transitions that can occur are shown in Fig. 9.2. In order to treat this situation, Einstein introduced
his A and B coefficients. We have already seen in Section 3.6 that the A coefficient determines the
rates of spontaneous transitions. The introduction of the B coefficient extends the treatment to include
absorption and stimulated emission. The transition rates for three processes are:

• Spontaneous emission (2→ 1):
dN2

dt
= −dN1

dt
= −A21N2 . (9.5)

• Stimulated emission (2→ 1):
dN2

dt
= −dN1

dt
= −B21N2u(ν) . (9.6)

• Absorption (1→ 2):
dN1

dt
= −dN2

dt
= −B12N1u(ν) . (9.7)

These are effectively the definitions of the Einstein A and B coefficients. At this stage we might be
inclined to think that the three coefficients are independent parameters for a particular transition. This
is not in fact the case. If you know one, you can work out the other two. To see this, we follow Einstein’s
analysis.

We imagine a gas of atoms inside a box at temperature T with black walls. If we leave the atoms
for long enough, they will come to equilibrium with the black-body radiation that fills the cavity. In
these steady-state conditions, the rate of upward transitions must exactly balance the rate of downward
transitions:

B12N1u(ν) = A21N2 +B21N2u(ν) , (9.8)

which implies that:
N2

N1
=

B12u(ν)

A21 +B21u(ν)
. (9.9)

Furthermore, since the gas is in thermal equilibrium at temperature T , the ratio of N2 to N1 must satisfy
Boltzmann’s law:

N2

N1
=
g2

g1
exp

(
− hν

kBT

)
, (9.10)

where g2 and g1 are the degeneracies of levels 2 and 1 respectively, and hν = (E2 − E1). Equations 9.9
and 9.10 together imply that:

B12u(ν)

A21 +B21u(ν)
=
g2

g1
exp

(
− hν

kBT

)
. (9.11)
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On solving this for u(ν), we find:

u(ν) =
g2A21

g1B12 exp(hν/kBT )− g2B21
. (9.12)

However, we know that the cavity is filled with black-body radiation, which has a spectral energy density
given by the Planck formula:

u(ν) =
8πhν3

(c/n)3

1

exp(hν/kBT )− 1
, (9.13)

where c/n is the speed of light in a medium with refractive index n. The only way to make eqns 9.12
and 9.13 to be consistent with each other at all temperatures and frequencies is if:

g1B12 = g2B21 ,

A21 =
8πn3hν3

c3
B21 .

(9.14)

A moment’s thought will convince us that it is not possible to get consistency between the equations
without the stimulated emission term. This is what led Einstein to introduce the concept.

The relationships between the Einstein coefficients given in eqn 9.14 have been derived for the case
of an atom in thermal equilibrium with black-body radiation at temperature T . However, once we have
derived the inter-relationships, they will apply in all other cases as well. This is very useful, since we
only need to know one of the coefficients to work out the other two. For example, we can measure the
radiative lifetime to determine A21 from (cf. eqn 3.25),

A21 =
1

τ
, (9.15)

and then work out the B coefficients from eqn 9.14.
Equation 9.14 shows that the probabilities for absorption and emission are the same apart from

the degeneracy factors, and that the ratio of the probability for spontaneous emission to stimulated
emission increases in proportion to ν3. In a laser we want to encourage stimulated emission and suppress
spontaneous emission. Hence it gets progressively more difficult to make lasers work as the frequency
increases, all other things being equal.

9.4 Population inversion

We have seen above that stimulated emission is the basis of laser operation. We now wish to study how
we can use stimulated emission to make a light amplifier. In a gas of atoms in thermal equilibrium, the
population of the lower level will always be greater than the population of the upper level. (See eqn 9.10).
Therefore, if a light beam is incident on the medium, there will always be more upward transitions due
to absorption than downward transitions due to stimulated emission. Hence there will be net absorption,
and the intensity of the beam will diminish on progressing through the medium.

To amplify the beam, we require that the rate of stimulated emission transitions exceeds the rate of
absorption.4 We see from eqns 9.6 and 9.7 that this condition is satisfied when:

B21N2u(ν) > B12N1u(ν) . (9.16)

On substituting from eqn 9.14, this leads to the conclusion:

N2 >
g2

g1
N1 , (9.17)

which simplifies to:
N2 > N1 , (9.18)

for non-degenerate levels. This is a highly non-equilibrium situation, and is called population inversion.
On comparing eqn 9.17 to eqn 9.10, we see that population inversion corresponds to negative temperatures.
This is not as ridiculous as it sounds, because the atoms are not in thermal equilibrium.

Once we have population inversion, we have a mechanism for generating gain in the laser medium.
The art of making a laser is to work out how to get population inversion for the relevant transition. We
will discuss how this is done for specific types of laser in Sections 10.5–10.6.

4We can usually ignore spontaneous emission in an operating laser because we are considering the case in which the light
intensity is very high, so that the stimulated emission rate far exceeds the spontaneous emission rate.
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Figure 9.3: (a) Relationship between the intensity I and energy density uν of a light beam.
(b) Incremental intensity increase in a gain medium.

9.5 Gain coefficient

Having realized that population inversion gives rise to amplification of light, we now want to work out
a relationship between the gain coefficient and the population inversion density. Before we can proceed,
we must first refine our analysis of the absorption and stimulated emission rates. Einstein’s analysis
considered the interaction of an ideal atom with a featureless white-light spectrum. In practice, we are
more interested in the interaction of real atoms with sharp emission lines with an even narrower band of
light that will eventually become the laser mode.

The energy density u(ν) that appears in eqns 9.6–9.13 is the spectral energy density (units: J m−3 Hz−1

≡ J s m−3). We now consider the interaction between an atom with a normalized line shape function g(ν)
as defined in Section 3.7 (units: Hz−1) and a beam of light whose emission spectrum is much narrower
than the spectral line width of the atomic transition. This situation is considered in Appendix E, where
it is shown that the rates of absorption and stimulated emission can be written respectively as: (cf.
eqns E.4 and E.5 with the subscript on the laser frequency omitted):

W12 = B12N1uνg(ν) ,

W21 = B21N2uνg(ν) .
(9.19)

The light source is considered to have a delta function spectrum at frequency ν with total energy density
uν per unit volume (units J m−3). uν is related to the intensity I of the optical beam by (see Fig. 9.3(a)):

I = uν
c

n
, (9.20)

where n is the refractive index of the medium. This means that the net stimulated rate downwards from
level 2 to level 1 is given by:

W net
21 ≡W21 −W12 = (N2 −N1)B21g(ν)

n

c
I , (9.21)

where we have assumed that the levels are non-degenerate so that B12 = B21.5 (See eqn 9.14.)
For each net transition a photon of energy hν is added to the beam. The energy added to a unit

volume of beam per unit time is thus W net
21 hν. Consider a small increment of the light beam inside the

gain medium with length dx, as shown in Fig. 9.3(b). The energy added to this increment of beam per
unit time is W net

21 hν × A dx, where A is the beam area. On remembering that the intensity equals the
energy per unit time per unit area, we can write:

dI = W net
21 hν dx ,

= (N2 −N1)B21g(ν)
n

c
Ihν dx .

(9.22)

On comparing this to eqn 9.2, we see that the gain coefficient γ is given by:

γ(ν) = (N2 −N1)B21g(ν)
n

c
hν . (9.23)

5For non-degenerate levels, eqn 9.21 gets modified to:

Wnet
21 =

(
N2 −

g2

g1
N1

)
B21g(ν)

n

c
I ≡ ∆NB21g(ν)

n

c
I ,

where ∆N = (N2 − (g2/g1)N1) is the population inversion density for a system with non-dengerate levels. See eqn 9.17.
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Figure 9.4: Level scheme for a four-level laser.

This result shows that the gain is directly proportional to the population inversion density, and also
follows the spectrum of the emission line. By using eqn 9.14 to express B21 in terms of A21, we can
re-write the gain coefficient in terms of the natural radiative lifetime τ using eqn 9.15 to obtain:

γ(ν) = (N2 −N1)
λ2

8πn2τ
g(ν) , (9.24)

where λ is the vacuum wavelength of the emission line. This is the required result. Equation 9.24 tells us
how to relate the gain in the medium to the population inversion density using experimentally measurable
parameters: λ, τ , n and g(ν).

9.6 Laser threshold

Equation 9.24 shows us that the gain in a laser medium is directly proportional to the population inversion
density. Laser operation will occur when there is enough gain to overcome the losses in the cavity. This
implies that a minimum amount of population inversion must be obtained before the laser will oscillate.
Population inversion is achieved by “pumping” atoms into the upper laser level. This pumping can be
done by a variety of techniques, which will be described in more detail when we consider individual laser
systems in Chapter 10. At this stage we just consider the general principles.

Lasers are classified as being either three-level of four-level systems. We will consider four-level
lasers first, as these are the most common. Examples are Helium Neon or Nd:YAG. The four levels are:
the ground state (0), the two lasing levels ( 1 & 2 ), and a fourth level (3) which is used as part of the
pumping mechanism. The level scheme for an ideal four-level laser is shown in Fig. 9.4. The feature that
makes it a four-level as opposed to a three-level laser is that the lower laser level is at an energy more
than kBT above the ground state. This means that the thermal population of level 1 is negligible, and
so level 1 is empty before we turn on the pumping mechanism.

We assume that the atoms are inside a cavity and are being pumped into the upper laser level (level
2) at a constant rate of R2. This is usually done by exciting atoms to level 3 with a bright flash lamp or
by an electrical discharge, and then by a rapid decay to level 2. We can write down the following rate
equations for the populations of levels 1 and 2:

dN2

dt
= −N2

τ2
−W net

12 + R2 ,

dN1

dt
= +

N2

τ2
+W net

12 −
N1

τ1
.

(9.25)

The various terms allow for:

• spontaneous emission from level 2 to level 1 (±N2/τ2),

• stimulated transitions from level 2 to level 1 (±W net
21 ),

• pumping into level 2 (R2),

• decay from level 1 to the ground state by radiative transitions and/or collisions (N1/τ1).
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Note that W net
21 is the net stimulated transition rate from level 2 to level 1, as given in eqn 9.21. This is

equal to the rate of stimulated emission transitions downwards minus the rate of stimulated absorption
transitions upwards.

There are two important assumptions implicitly contained in eqn 9.25:

1. There is no pumping into level 1.

2. The only decay route from level 2 is by radiative transitions to level 1 (i.e. there are no non-radiative
transitions between level 2 and level 1, and transitions to other levels are not possible).

It may not always be possible to satisfy these assumptions, but it helps if we can. That is why we
described the above scenario as an “ideal” four-level laser.

We can re-write eqn 9.21 in the following form:

W net
21 = B21g(ν)

n

c
I(N2 −N1) ≡W(N2 −N1) , (9.26)

where W = B21g(ν)nI/c, and I is the intensity inside the laser cavity. In steady-state conditions, the
time derivatives in eqn 9.25 must be zero. We can thus solve eqn 9.25 for N1 and N2 using eqn 9.26 to
obtain:

N1 = R2τ1 ,

N2 =
WN1 + R2

W + 1/τ2
.

(9.27)

Therefore the population inversion is given by

∆N ≡ N2 −N1 =
R2

W + 1/τ2

(
1− τ1

τ2

)
. (9.28)

This shows that the population inversion is directly proportional to the pumping rate into the upper
level. Note, however, that it is not possible to achieve population inversion (i.e. ∆N > 0) unless τ2 > τ1.
This makes sense if you think about it. Unless the lower laser level empties quickly, atoms will pile up in
the lower laser level and this will destroy the population inversion.

Equation 9.28 can be re-written as :

∆N =
R

W + 1/τ2
, (9.29)

where R = R2(1− τ1/τ2). This is the net pumping rate after allowing for the unavoidable accumulation
of atoms in the lower level because τ1 is non-zero. If the laser is below the threshold for lasing, there
will be very few photons in the cavity. Therefore, W will be very small because I is very small: see
eqn 9.26 above. The population inversion is simply Rτ2, and thus increases linearly with the pumping
rate. Equation 9.24 implies that the gain coefficient similarly increases linearly with the pumping rate
below threshold.

Eventually we will have enough gain to balance the round trip losses. This determines the threshold
gain coefficient γth for laser oscillation, as set out in eqn 9.3 or 9.4. From eqn 9.24 we have:

∆N th =
8πn2τ2
λ2g(ν)

γth . (9.30)

By combining eqns 9.28 and 9.29 with W = 0 we can work out the pumping rate required to instigate
lasing. This is the threshold pumping rate. It is given by Rth = ∆N th/τ2. All lasers have a threshold.
Unless you pump them hard enough, they will not work.

What happens if we increase the pumping rate beyond the threshold value? In steady-state conditions,
the gain cannot increase any more, which implies that the population inversion is clamped at the value
given by eqn 9.30 even when R exceeds Rth. This is shown in Fig. 9.5(a). What about the power output?
We set W to zero in eqn 9.29 because there was very little light in the cavity below threshold. This is no
longer true once the laser starts oscillating. If we are above threshold, ∆N is clamped at the value set
by eqn 9.30, and so eqn 9.29 tells us that:

W =
R

∆N th
− 1

τ2
=

1

τ2

(
R
Rth
− 1

)
. . . for R > Rth . (9.31)
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Figure 9.5: (a) Variation of the gain and population inversion in a laser with the pumping rate.
(b) Comparison of the threshold and light outputs for two different values of the transmission
of the output coupler. Note that these curves only apply to four-level laser systems.

Now W is proportional to the intensity I inside the cavity (see eqn 9.26), which in turn is proportional
to the output power P out emitted by the laser. Thus P out is proportional to W, and we may write:

P out ∝
(

R
Rth
− 1

)
. . . for R > Rth . (9.32)

This shows that the output power increases linearly with the pumping rate once the threshold has been
achieved, as shown in Fig. 9.5(b).

The choice of the reflectivity of the output coupler affects the threshold because it determines the
oscillation conditions: see eqn 9.3 or 9.4. If the output coupler transmission (1−ROC) is small, the laser
will have a low threshold, but the output coupling efficiency will be low. By increasing the transmis-
sion, the threshold increases, but the power is coupled out more efficiently. This point is illustrated in
Fig. 9.5(b). The final choice for ROC depends on how much pump energy is available, which will govern
the optimal choice to get the maximum output power.

9.7 Pulsed Lasers

So far we have only considered continuous wave (CW) lasers, but many lasers in fact operate in a pulsed
mode. Powerful pulsed flash lamps can give rise to very large pumping rates, with correspondingly large
output pulse energies, especially when using a trick called “Q-switching”. In this technique, the losses in
the cavity are kept artificially high by some external method.6 This prevents lasing and allows the build
up of very large population inversion densities, with correspondingly large gain coefficients. If the losses
are suddenly reduced, a very powerful pulse will build up because of the very high gain in the cavity.
Q-switching is widely used in solid-state lasers because they tend to have long upper state lifetimes, which
allows the storage of a large amount of energy in the crystal, but it is seldom used in gas lasers because
the lifetimes are shorter which makes it difficult to store much energy in the gain medium.

9.8 Three-level lasers

Some lasers are classified as being three-level systems. The standard example is ruby, which was the
first laser ever produced. The key difference between a three-level laser and a four-level laser is that
the lower laser level is the ground state, as shown in Fig. 9.6(a). On comparing Figs. 9.4 and 9.6, it
is apparent that the lower laser level of the four-level system has merged with the ground state in the
three-level system. This makes it much more difficult to obtain population inversion in three-level lasers
because the lower laser level initially has a very large population.

Consider a system with N0 atoms. With the pump turned off, all of the atoms will be in the lower
laser level, so that N1 = N0, N2 = 0, and ∆N = N2 − N1 = −N0. By turning on the pump, we excite
dN atoms to level 3, which then decay to level 2. The population N2 of level 2 is thus dN , while the
population N1 of the lower laser level is (N0 − dN). For population inversion we require N2 > N1 (i.e.
∆N positive), and hence dN > (N0 − dN), which implies dN > N0/2. Therefore, in order to obtain
population inversion we have to pump more than half of the atoms out of the ground state into the upper
laser level. This obviously requires a very large amount of energy, which contrasts with four-level lasers,

6One way to switch the cavity losses from high to low on fast timescales is to use an electro-optical modulator. This
effectively behaves like a fast intra-cavity shutter.
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Figure 9.6: (a) Level scheme for a three-level laser, for example: ruby. (b) Variation of the
population inversion density ∆N with pumping rate R in a three-level laser.

where the lower laser level is empty before the pumping process starts, and much less energy is required
to reach threshold.

The variation of the inversion density with pumping rate R for a three-level laser is shown schematically
in Fig. 9.6(b). As explained above, the inversion density is equal to −N0 at R = 0, and only becomes
positive when more than half of the atoms have been pumped to the upper level. Once ∆N is positive,
amplification occurs, and the lasing threshold will be reached when the inversion density is sufficiently
large to provide enough gain to overcome the cavity losses. As with the four-level laser, the gain (and
hence the inversion density) above threshold are fixed at the level set by the oscillation condition in
eqn 9.3, which is first reached at the threshold pumping rate Rth.

Despite the fact that the threshold for population inversion is very high in a three-level system, they
can be quite efficient once this threshold is overcome. Ruby lasers pumped by bright flash lamps actually
give very high output pulse energies. However, they only work in pulsed mode. Continuous lasers tend
to be made by using four-level systems.

Further Reading
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Smith and King, Optics and Photonics: chapters 15, 17
Svelto, Principles of Lasers: Chapter 1, §2.1–4, §7.1–3
Wilson and Hawkes, Optoelectronics: §5.1–8 , 6.5, and appendix 4
Yariv, Optical Electronics in Modern Communications: §5.1–3, 6.3–5



Chapter 10

Lasers II: Cavities and examples

In Chapter 9 we pointed out that a laser works by combining an amplifying medium with a resonant
cavity. In this chapter we study how the cavity affects the properties of the light emitted by the laser,
and then look at a few examples of important lasers, paying particular attention to the mechanism that
produces population inversion.

10.1 Laser cavities

The cavity is an essential part of a laser. It provides the positive feedback that turns an amplifier into
an oscillator, and determines the properties of the beam of light that is emitted, as shown schematically
in Fig. 10.1. This beam is characterized by its transverse and longitudinal mode structure, which are
considered separately below.

10.1.1 Transverse modes

The transverse modes of a laser beam describe the variation of the electrical field across a cross-sectional
slice of the beam. The modes are labelled TEMmn where m and n are integers. TEM stands for
“transverse electro magnetic”. If the field is propagating in the z direction, the (x, y) dependence of the
field is given by:

Emn(x, y) = E0Hm

(√
2x

w

)
Hn

(√
2y

w

)
exp

(
−x

2 + y2

w2

)
, (10.1)

where w is the beam waist parameter that determines the size of the beam, and Hm and Hn are
mathematical functions called the Hermite polynomials.1 The first few polynomials are:

H0(u) = 1 ,

H1(u) = 2u ,

H2(u) = 2(2u2 − 1) .

(10.2)

The most important mode is the TEM00 mode. This has a Gaussian radial distribution:

E00(x, y) = E0 exp

(
−x

2 + y2

w2

)
= E0 exp

(
− r

2

w2

)
, (10.3)

1Hermite polynomials also appear in the solution of the Schrödinger equation for a simple harmonic oscillator.
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Figure 10.2: (a) Intensity distribution of a TEM00 mode, which has a Gaussian profile. (b)
Beam profiles produced by various higher-order laser modes. Note that the side lobes in the
x direction for the TEM21 mode are too faint to be seen on this grey scale.

where r is the distance from the centre of the beam, as shown in Fig. 10.2(a). The TEM00 mode is the
closest thing to a ray of light found in nature. It has the smallest divergence of all the modes and can be
focussed to the smallest size. We therefore usually try hard to prevent the other modes from oscillating.
This is achieved by inserting apertures in the cavity which are lossy for the higher-order modes but not
for the smaller TEM00 mode.

Figure 10.2(b) compares the beam cross-section for a number of higher-order laser modes with that
of the TEM00 mode. Note that the TEMmn mode has m nodes (zeros) in the x direction and n nodes
in the y direction. These higher-order modes make pretty pictures, but are not useful for very much. A
well-designed laser will contain apertures that allow only the TEM00 mode to oscillate.

10.1.2 Longitudinal modes

The longitudinal modes determine the emission spectrum of the laser. The light bouncing repeatedly off
the end mirrors sets up standing waves inside the cavity, as shown in Fig. 10.1. There are nodes (field
zeros) at the mirrors because they have high reflectivities. Thus there must be an integer number of half
wavelengths inside the cavity. If the length of the cavity is L, this condition can be written:

L = integer× λ

2
= integer× c

2nν
, (10.4)

where n is the average refractive index of the cavity. In gas lasers, n will be very close to unity. It will
also be the case that n ≈ 1 in a solid-state laser with a short laser rod inside a long air-filled cavity.
Equation 10.4 implies that only certain frequencies that satisfy:

ν = integer× c

2nL
(10.5)

will oscillate. Most cavities are much larger than the optical wavelength and thus the value of the integer
in equations 10.4 and 10.5 is very large.2 The most important parameter is the longitudinal mode spacing:

∆νmode =
c

2nL
. (10.6)

Table 10.1 lists the longitudinal mode spacing for several lasers.

10.2 Single-mode, multi-mode, and mode-locked lasers

The gain bandwidth of a laser medium will usually be much wider than the spacing of the longitudinal
modes of the cavity. This leads to a number of ways of operating the laser.

2This is not true for “microcavity lasers”, where we deliberately make the cavity to be of similar dimensions to the
optical wavelength. In this case the integer would have a value of unity. The use of microcavity semiconductor lasers is
now widespread in optical fibre systems.
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Diode laser HeNe laser Argon ion laser
L 1 mm 30 cm 2 m
n 3.5 1 1
Mode spacing 150 GHz 500 MHz 75 MHz

Table 10.1: Mode spacing for several common laser
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Figure 10.3: Multi-mode, single-mode and mode-locked operation

10.2.1 Multi-mode and single-mode lasers

For a given longitudinal mode to oscillate, its frequency must lie within the emission spectrum of the
laser transition. Unless we do something about it, there will be a tendency for all the longitudinal modes
that experience gain to oscillate. Therefore the laser will have multi-mode operation, as illustrated in
Fig. 10.3. As a rough guide, the number of modes that will be oscillating is equal to the gain bandwidth
divided by the mode spacing. Thus for a 30 cm HeNe laser with a gain bandwidth of 1.5 GHz, there will
be three modes oscillating. In a Doppler-broadened emission line such as that from the Neon atoms in a
HeNe laser, the phases of these modes will be random relative to each other because they are emitted by
different atoms.

When a laser runs in multi-mode operation, its spectral bandwidth is not significantly smaller than
that of the light emitted from the same transition in a discharge lamp. For many applications (e.g.
supermarket bar-code readers), this is not an issue. However, for some others, it is. An obvious example is
high-resolution spectroscopy. Other examples include those that rely on having high temporal coherence,
for example: holography and interferometry. This follows from the fact that the temporal coherence is
inversely proportional to the spectral bandwidth. (See Section 10.3 below.) It is therefore interesting to
see if we can make the laser run on just a single longitudinal mode. The spectral linewidth would then
be determined by the quality factor (Q) of the cavity rather than the gain band width. This is called
single-mode operation.

One way to achieve to single-mode operation is to shorten the cavity so that the mode spacing exceeds
the gain bandwidth. See Fig. 10.3. In this case only one mode will fall within the emission line of the
transition and the laser will automatically oscillate on only one mode. However, this may not be practical.
For example, in the case of the HeNe laser considered above, we would need to make the cavity shorter
than 10 cm. Such a laser would have very small round-trip gain, and we would probably not be able to
make it oscillate. A better way to obtain single mode operation is to insert a narrow frequency filter in
the cavity such as a Fabry–Perot etalon. By tuning the spacing of the etalon, the frequency of the single
mode can be changed continuously, which is very useful for high-resolution spectroscopy. The spectral
line width of a single-mode laser is typically a few MHz. This is about a thousand times narrower than
the atomic emission line that produces the light.
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Figure 10.4: Mode-locked laser pulses from a cavity with n = 1.

10.2.2 Mode locking

Lasers can be made to operate continuously or in pulses. The length of the pulse might be determined,
for example, by the duration of the flash-lamp pulse that produces the population inversion, or by the
properties of a Q-switch. (See Section 9.7.) The pulses produced in this way are relatively long, e.g,
tens of nanoseconds at best. However, there is another technique called mode locking that leads to the
emission of a continuous train of very short (“ultrashort”) pulses. This is the technique we consider here.

Mode locking is the opposite extreme to single-mode operation. In a mode-locked laser we try to
get as many longitudinal modes oscillating as possible, but with all their phases locked together. (See
Fig. 10.3). This contrasts with a multi-mode laser in which many modes are oscillating but with random
phases with respect to each other.

In Appendix F we prove that the mode-locked operation of a laser corresponds to a single pulse
oscillating around the cavity and getting emitted every time it hits the output coupler, as shown in
Fig. 10.4. The time taken for a pulse to circulate around a cavity of length L with n = 1 is 2L/c.
Therefore we get pulses out of the laser at a repetition rate of (2L/c)−1.

The minimum pulse duration is set by the Fourier transform of the gain spectrum:

∆tmin∆ν & 1/2π , (10.7)

where ∆ν is the gain bandwidth. This “uncertainty principle” means that to get very short pulses we
need a wide gain bandwidth. Gas lasers are not very good in this context because they are based on
fairly narrow atomic transitions. For example, the bandwidth of the 632.8 nm line in the HeNe laser is
1.5 GHz (see Table 10.2), and so the pulses that can be produced must be at least 0.11 ns long.

The best results have been achieved in tuneable lasers such as dye lasers or titanium-doped sapphire
lasers. The gain bandwidth of the Ti:sapphire laser is nearly 1014 Hz, and mode-locked Ti:saphhire lasers
routinely produce pulses shorter than 100 fs (1 fs = 10−15 s), which corresponds to millions of longitudinal
modes oscillating. When the full gain bandwidth of the crystal is used, pulses shorter than 1 fs have been
produced from this laser.

Mode locking is achieved by two main techniques. With active mode locking, a time-dependent shutter
is inserted in the cavity.3 The shutter is opened briefly every 2L/c seconds. Continuous operation of the
laser is impossible, but the mode-locked pulses will be unaffected by the shutter. In passive mode locking,
a saturable absorber is inserted in the cavity. Such absorbers have strong absorption at low powers and
small absorption at high powers. The peak power in the pulsed mode is much higher than in continuous
operation, and thus the cavity naturally selects the pulsed mode.

Mode-locked lasers are widely used in scientific research to study fast processes in physics, chemistry,
and biology. For example, the typical time for a current-carrying electron in a copper wire to interact with
a phonon at room temperature is about 100 fs. Similarly, the early stages of many chemical reactions or
biological processes such as photosynthesis take place in less than 10−12 s. Another widespread application
of short pulse lasers in biology is in microscopy. It is common practice to obtain images of biological
molecules by tagging them with fluorescent chromophores (e.g. dyes, quantum dots) and then exciting
the sample with a laser in a confocal microscopy. The use of mode-locked lasers gives far superior depth
resolution compared to continuous wave (CW) lasers.4

Mode-locked lasers are also useful to telecommunication companies, who are interested in packing
as many bits of information (represented by pulses of light) as possible down their optical fibres. The
shorter the pulses, the higher the data rate. There are also medical applications: it is much cleaner to

3The time-dependent shutter is typically made by using a high speed acousto-optic modulator.
4When a mode-locked laser is used, the higher peak power allows the fluorescent chromophore to be excited by two-

photon absorption. The power is only high enough for this to occur at the focus of the laser, and so only the part of the
sample at the focus produces light. With a CW laser, by contrast, the chromophores are excited by standard one-photon
absorption, and the whole depth of the sample emits light.
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SOURCE Spectral line width Coherence time Coherence length
∆ν (Hz) tc (s) lc

Sodium discharge lamp (D-lines at 589 nm) 5× 1011 2× 10−12 0.6 mm
Multi-mode HeNe laser (632.8nm line) 1.5× 109 6× 10−10 20 cm
Single-mode HeNe laser (632.8 nm line) 1× 106 10−6 300 m

Table 10.2: Coherence length of several light sources.

use a very short, low-energy, high-peak-power pulse for laser surgery, than a longer pulse with the same
peak power but much higher energy.

10.3 Coherence of laser light

As mentioned in Section 9.1, laser light has a high degree of both spatial and temporal coherence. The
spatial coherence is related to the phase uniformity across a cross-sectional slice of the beam. When the
laser is running in a well-defined transverse mode, the optical phase across such a slice will be constant.
Hence the spatial coherence follows from the transverse modes, and will be very high when the laser is
running on a single transverse mode.

The temporal coherence of light refers to the time duration over which the phase is constant. In
general, the temporal coherence time tc is determined by the spectral line width ∆ν according to:

tc ∼
1

∆ν
. (10.8)

Hence the coherence length lc is given by:

lc = ctc ∼
c

∆ν
(10.9)

Typical values of the coherence length for a number of light sources are given in Table 10.2. The figures
explain why it is much easier to do interference experiments with a laser than with a discharge lamp. If
the path difference exceeds lc you will not get interference fringes, because the light is incoherent. In the
case of the single-mode HeNe laser, you can set up an interferometer in which the path lengths differ by
300 m, and you will still observe fringes. The long coherence length of laser light is useful in holography
and interferometry.

10.4 Examples of lasers

There are many different types of lasers in common use, and it is not possible to describe all of them
here. Most lasers operate at fixed wavelengths:

Infrared lasers CO2 (10.6µm), erbium (1.55µm), Nd:YAG (1.064µm), Nd:glass (1.054µm);

Visible lasers ruby (693 nm), krypton ion (676, 647 nm), HeNe (633 nm), copper vapour (578 nm),
doubled Nd:YAG (532 nm), argon ion (514, 488 nm), HeCd (442 nm);

Ultraviolet lasers argon ion (364, 351 nm), tripled Nd:YAG (355 nm), nitrogen (337 nm), HeCd (325 nm),
quadrupled Nd:YAG (266 nm), excimer (308, 248, 193, 150 nm).

Others lasers are tuneable, for example: dye lasers (typical tuning range ∼ 100 nm, dyes available from UV
to near infrared); Ti:sapphire lasers (700-1000 nm, doubled: 350-500nm); free electron lasers (far infrared
to ultraviolet). The most common lasers in widespread use are semiconductor diode lasers. Cheap
and efficient diode lasers available at blue (400 nm), red (620-670 nm), and near-infrared wavelengths
(700-1600 nm).

In the sections below we consider a few of the more important lasers that are available, following the
general classification according to whether the gain medium is a gas or a solid.5

5There are relatively few liquid-phase lasers. The most important examples are dye lasers. However, with the advent of
broadly-tuneable high power solid-state lasers such as Ti:sapphire lasers, and the development of techniques of nonlinear
optics to extend their frequency range (see Appendix G), dye lasers are gradually becoming obsolete.



110 CHAPTER 10. LASERS II: CAVITIES AND EXAMPLES

power supply

~ 1 kV

load resistor

anodecathode

He + Ne mixture

output

coupler

high

reflector

output

16

18

20

22

0

helium neon

1s2 1s2 2s2 2p6

1s2s

3s

4s

5s
4p

3p

632.8nm

E
n

e
rg

y
 (

e
V

)

ground state

S = 0

S = 1

S = 0

(a) (b)

Figure 10.5: (a) Schematic diagram of a HeNe laser. (b) Level scheme for the HeNe laser.

10.5 Gas lasers

10.5.1 The helium-neon (HeNe) laser

Helium-neon lasers consist of a discharge tube inserted between highly reflecting mirrors, as shown
schematically in Fig. 10.5(a). The tube contains a mixture of helium and neon atoms in the approx-
imate ratio of He:Ne 5:1. By applying a high voltage across the tube, an electrical discharge can be
induced. The electrons collide with the atoms and put them into excited states. The light is emitted by
the neon atoms, and the purpose of the helium is to assist the population inversion process. To see how
this works we need to refer to the level diagram in Fig. 10.5(b).

Helium has two electrons. In the ground state both electrons are in the 1s level. The first excited state
is the 1s2s configuration. There are two possible energies for this state because there are two possible
configurations of the electron spin: the singlet S = 0 and the triplet S = 1 terms. The helium atoms are
excited by collisions with the electrons in the discharge tube and cascade down the levels. When they get
to the 1s2s configuration, however, the cascade process slows right down. In the 2s1s → 1s2 transition
one of the electrons jumps from the 2s level to the 1s level. This is forbidden by the ∆l = ±1 selection
rule. Furthermore, transitions from the 1s2s S = 1 level to the 1s2 S = 0 ground state are also forbidden
by the ∆S = 0 selection rule. The net result is that all transitions from the 1s2s levels are strongly
forbidden. The 1s2s level therefore has a very long lifetime, and is called metastable. See Section 6.5
in Chapter 6 for more details.

Neon has ten electrons in the configuration 1s22s22p6. The excited states correspond to the promotion
of one of the 2p electrons to higher levels. This gives the level scheme shown in the diagram. The symbols
of the excited states refer to the level of this single excited electron. By good luck, the 5s and 4s levels
of the neon atoms are almost degenerate with the S = 0 and S = 1 terms of the 1s2s configuration of
helium. Thus the helium atoms can easily de-excite by collisions with neon atoms in the ground state
according to the following scheme:

He∗ + Ne⇒ He + Ne∗ . (10.10)

The star indicates that the atom is an excited state. Any small differences in the energy between the
excited states of the two atoms are taken up as kinetic energy.

This scheme leads to a large population of neon atoms in the 5s and 4s excited states. This gives
population inversion with respect to the 3p and 4p levels. It would not be easy to get this population
inversion without the helium because collisions between the neon atoms and the electrons in the tube
would tend to excite all the levels of the neon atoms equally. This is why there is more helium than neon
in the tube.

The main laser transition at 632.8 nm occurs between the 5s level and the 3p level. The lifetime of
the 5s level is 170 ns, while that of the 3p level is 10 ns. This transition therefore easily satisfies the
criterion τupper > τ lower. (See discussion of eqn 9.28.) This ensures that atoms do not pile up in the
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lower level once they have emitted the laser photons, as this would destroy the population inversion. The
atoms in the 3p level rapidly relax to the ground state by radiative transitions to the 3s level and then
by collisional de-excitation to the original 2p level. Lasing can also be obtained on other transitions: for
example, 5s → 4p at 3391 nm and 4s → 3p at 1152 nm. These are not as strong as the main 632.8 nm
line.

The gain in a HeNe tube tends to be rather low because of the relatively low density of atoms in
the gas (compared to a solid). This is partly compensated by the fairly short lifetime of 170 ns. (See
eqn 9.24.) The round trip gain may only be a few percent, and so very highly reflecting mirrors are
needed. With relatively small gain, the output powers are not very high - only a few mW. However, the
ease of manufacture makes these lasers to be extremely common for low power applications: bar-code
readers, laser alignment tools (theodolites, rifle sights), classroom demos etc. They are gradually being
replaced nowadays by visible semiconductor laser diodes, which are commonly used in laser pointers.

10.5.2 Helium-cadmium lasers

The HeCd laser is another gas laser system based on helium. The population inversion scheme in HeCd
is similar to that in HeNe except that the active medium is Cd+ ions. The laser transitions occur in the
blue and the ultraviolet at 442 nm, 354 nm and 325 nm. The UV lines are useful for applications that
require short wavelength lasers, such as high-precision printing on photosensitive materials. Examples
include lithography of electronic circuitry and making master copies of compact disks.

10.5.3 Ion lasers

There are several important types of gas lasers that use ions rather than neutral atoms as the gain
medium, for example, the argon-ion laser. The argon ions are produced by collisions with electrons
in a discharge tube. The atomic number of argon is 18, and so the Ar+ ion has 17 electrons in the
configuration 1s22s22p63s23p5. The excited states of the Ar+ ion are generated by exciting one of the
five 3p electrons to higher levels, and the most important laser transitions occur between the 4p and 4s
levels. Spin-orbit coupling splits this into a doublet, with emission lines at 488 nm (blue) and 514.5 nm
(green). The krypton ion laser works by similar principles, and has a strong laser emission line in the
red at 676.4 nm. This red line can be combined with the green and blue lines of the argon-ion laser to
make very colourful laser light shows.

In addition to laser light shows, argon-ion lasers are frequently used for pumping tuneable lasers such
as dye lasers and Ti:sapphire lasers. There are also some medical applications such as laser surgery, and
scientific applications include fluorescence excitation and Raman spectroscopy.

10.5.4 Carbon dioxide lasers

The CO2 laser is one of the best examples of a molecular laser. The transitions take place between the
vibrational levels of the molecule. The strongest emission lines are in the infrared around 10.6µm. The
lasers are very powerful with powers up to several kilowatts possible. Hence they are used in cutting
applications in industry (including the military industry!) and also for medical surgery. The high power
output is a consequence of the fact that the stimulated emission becomes more favourable compared to
spontaneous emission at lower frequencies: see eqn 9.14.

A mixture of nitrogen and CO2 in a ratio of about 4:1 is used in the laser tube. The N2 molecules
are excited by collisions with electrons, and then transfer their energy to the upper level of the CO2

molecules. This gives population inversion in much the same sort of way as for the HeNe mixture.

10.6 Solid-state lasers

10.6.1 Ruby lasers

Ruby lasers have historical importance because they were the first successful laser to operate. Ruby
consists of Cr3+ ions doped into crystalline Al2O3 (sapphire) at a typical concentration of around 0.05%
by weight. The Al2O3 host crystal is colourless. The light is emitted by transitions of the Cr3+ impurities.

The level scheme for ruby is shown in Fig. 10.6(a). Ruby is a three-level system (see Section 9.8),
with strong absorption bands in the blue and green spectral regions. (Hence the red colour: ruber means
“red” in Latin.) Electrons are excited to these bands by a powerful flashlamp. These electrons relax
rapidly to the upper laser level by non-radiative transitions in which phonons are emitted. This leads
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Figure 10.6: (a) Level diagram for ruby (Cr3+:Al2O3). (b) Schematic diagram of a ruby laser.

to a large population in the upper laser level. If the flashlamp is powerful enough, it will be possible to
pump more than half of the atoms from the ground state (level 1) to the upper laser level (level 2). In
this case, there will then be population inversion between level 2 and level 1, and lasing can occur if a
suitable cavity is provided. The laser emission is in the red at 694.3 nm.

Figure 10.6(b) shows a typical arrangement for a ruby laser. The crystal is inserted inside a powerful
helical flashlamp. Water-cooling prevents damage to the crystal by the intense heat generated by the
lamp. Mirrors at either end of the crystal define the cavity. Reflective coatings can be applied directly to
the end of the rod as shown, or external mirrors can be used (not shown). The lamps are usually driven
in pulsed mode by discharge from a capacitor bank. The pulse energy can be as high as 100 J per pulse.
This is because the upper laser level has a very long lifetime (3 ms) and can store a lot of energy.

10.6.2 Neodymium lasers (Nd:YAG and Nd:glass)

Neodymium ions form the basis for a series of high power solid-state lasers. In the two most common
variants, the Nd3+ ions are doped into either Yttrium Aluminium Garnet (YAG) crystals or into a
phosphate glass host. These two lasers are known as either Nd:YAG or Nd:glass. The main laser
transition is in the near-infrared at about 1.06µm. The wavelength does not change much on varying
the host.

Figure 10.7(a) shows the level scheme for the Nd3+ lasers, which are four-level lasers. Electrons are
excited to the pump bands by absorption of photons from a powerful flashlamp or from a diode laser
operating around 800 nm. The electrons rapidly relax to the upper laser level by phonon emission.
Lasing then occurs on the 4F3/2 →4 I11/2 transition.6 The electrons return to the ground state by rapid
non-radiative decay by phonon emission.

Figure 10.7(b) shows the cavity arrangement in a flashlamp-pumped system. The rod and lamp are
positioned at the foci of an elliptical reflector. This ensures that most of the photons emitted by the lamp
are incident on the rod to maximize the pumping efficiency. Mirrors at either end of the rod provide the
optical cavity. The laser can either be operated in pulsed or continuous wave mode.

As with the ruby laser, the lifetime of the upper laser level is long: 0.2–0.3 ms, depending on the host.
This long lifetime, which is a consequence of the fact that the laser transition is E1-forbidden, allows
the storage of large amounts of energy. Continuous wave Nd:YAG lasers can easily give 20–30 W, while
pulsed versions can give energies up to 1 J in 10 ns. The pulse energies possible from Nd:glass lasers are
even higher, although they can only operate at lower repetition rates. The Lawrence Livermore Lab in
California uses Nd:glass lasers for fusion research. The pulse energy in these systems is ∼ 10 kJ. With
pulse durations in the 10 ns range, this gives peak powers of 1012 W.

Nd lasers are extensively used in industry for cutting applications, and in medicine for laser surgery.
They are very rugged and can be used in extreme conditions (eg onboard military aircraft). Frequency-
doubled Nd:YAG lasers (see Appendix G) are now gradually replacing argon-ion lasers for pumping

6This transition is strongly forbidden for free atoms. However, the wave functions of the Nd3+ ion get distorted in
the crystal by the electric fields from the neighbouring host atoms, and this relaxes the selection rules. The Einstein A
coefficient of the 1064 nm transition in Nd:YAG is 4.3× 103 s−1.



10.6. SOLID-STATE LASERS 113

laser rod

Cross–section

of the elliptical

reflector

flash lamp

elliptical reflector

output

coupler

high

reflector

4I9/2

ground state

4I11/2

4F3/2

pumping bands

non-radiative

decay

non-radiative

decay

1.06 mm laser

Flash lamp

or

diode laser

pumping

(a)

(b)

laser rod

Cross–section

of the elliptical

reflector

flash lamp

elliptical reflector

output

coupler

high

reflector

4I9/2

ground state

4I11/2

4F3/2

pumping bands

non-radiative

decay

non-radiative

decay

1.06 mm laser

Flash lamp

or

diode laser

pumping

(a)

(b)

Figure 10.7: (a) Level diagram for the Nd3+ lasers. (b) Schematic diagram of an Nd:YAG
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tuneable lasers such as Ti:sapphire. (See below)

10.6.3 Ti:sapphire

Titanium-doped sapphire lasers represent the current state-of-the-art in tuneable lasers. The level scheme
is shown in Fig. 10.8. The active transitions occur in the Ti3+ ion. This has one electron in the 3d shell.
In the octahedral environment of the sapphire (Al2O3) host, the crystal field splits the five m levels of
the 3d shell into a doublet and a triplet. These are labelled as the 2E and 2T2 states in Fig. 10.8.7 The
electron-phonon coupling in Ti:sapphire is very strong, and the 2E and 2T2 states are broadened into
“vibronic” bands. The absorption of the 2E band peaks in the green-blue spectral region, and thus can
be pumped by the 488 nm and 514 nm lines of an argon ion laser. Alternatively, a frequency-doubled
Nd:YAG laser operating at (1064/2 = 532 nm) can be used.

Electrons excited into the middle of the 2E band rapidly relax by phonon emission to the bottom of
the band. Laser emission can then take place to anywhere in the 2T2 band. The electrons finally relax
to the bottom of the 2T2 band by rapid phonon emission.

The fact that tuning can be obtained over the entire 2T2 band is a very useful feature because it
means that the laser wavelength can be chosen at will. Lasing has in fact been demonstrated all the way
from 690 nm to 1080 nm i.e. over nearly 400 nm. This is why it makes sense to use one laser to pump
another: we convert a fixed frequency laser such as the argon-ion or frequency-doubled Nd:YAG into a
tuneable source. Energy conversion efficiencies of up to 25% are possible.

The broad emission band width is also ideal for making short pulse mode-locked lasers. (See Sec-
tion 10.2.2). The shortest pulses that can be produced are given by ∆t∆ν & 1/2π. With such a broad
emission band, it has been possible to generate pulses shorter than 10 fs.

7This notation might be familiar to the Chemical Physicists. The letters are abbreviations for German words. “E” and
“T” label doublet and triplet states. The superscript of 2 refers to the spin degeneracy. Thus these two states contain
(2× 2 + 2× 3 = 10) levels, as we would expect for the 3d states. The subscript of 2 on the triplet state indicates that it has
a particular symmetry.
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Figure 10.9: (a) Schematic diagram of the operation of a semiconductor diode laser. (b)
Detailed sketch of a typical GaAs diode laser chip.

10.6.4 Semiconductor diode lasers

Semiconductor diode lasers are by far the most common types of lasers. They are used in laser printers,
DVD players, laser pointers, and optical fibre communication systems. The laser consists of a semicon-
ductor p-n diode cleaved into a small chip, as shown in Fig. 10.9(a). Electrons are injected into the
n-region, and holes into the p-region. At the junction between the n- and p-regions we have both elec-
trons in the conduction band and holes (i.e. empty states) in the valence band. This creates population
inversion between the conduction and valence bands, and gain is produced at the band gap energy Eg of
the semiconductor. The electrons in the conduction band drop to the empty states in the valence band,
and laser photons with energy hν = Eg are emitted. The drive voltage must be at least equal to Eg/e,
where e is the electron charge.

The laser cavity is formed by using the cleaved facets of the chips. The refractive index of a typical
semiconductor is in the range 3-4, which gives about 30% reflectivity at each facet. This is enough to
support lasing, even in crystals as short as ∼ 1 mm, because the gain in the semiconductor crystal is very
high. A highly reflective coating is often placed on the rear facet to prevent unwanted losses through this
facet and hence reduce the threshold.

The semiconductor must have a direct band gap to be an efficient light emitter. Silicon has an indirect
band gap, and is therefore not used for laser diode applications. The laser diode industry is based mainly
on the compound semiconductor GaAs, which has a direct band gap at 1.4 eV (890 nm). A typical design
of a GaAs diode laser is shown in Fig. 10.9(b). By using alloys of GaAs, the band gap can be shifted into
the red spectral region for making laser pointers, or further into the infrared to match the wavelength
for lowest losses in optical fibres (1500 nm). Blue laser diodes are made from the wide band gap III–V
semiconductor GaN and its alloys. These lasers are used in “blue-ray” systems.

The power conversion efficiency of electricity into light in a diode laser is very high, with figures of
25% typically achieved. This compares with typical efficiencies of < 0.1% in gas lasers. Since the laser
chips are so small, it is possible to make high power diode lasers by running many GaAs chips in parallel.
Laser power outputs over 20W can easily be achieved in this way. These high power laser diodes are very
useful for pumping Nd:YAG lasers.
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Chapter 11

Laser cooling of atoms

11.1 Introduction

The resonant force between an atom and a light field was first observed in 1933, when Frisch measured
the deflection of a sodium beam caused by a sodium lamp shining on the side of the beam. The invention
of lasers opened up new possibilities, and the first laser cooling experiments were carried out in the
1980s. The importance of this work was recognized by the award of the Nobel Prize for Physics in 1997
to three of the pioneers of the field: Stephen Chu, Claude Cohen-Tannoudji, and William D. Phillips.

There are two aspects of laser cooling that make it particularly remarkable.

1. It is highly surprising that the technique works at all. We would normally expect a powerful laser
to cause heating rather than cooling. This makes us realize that the technique will only work when
special conditions are satisfied. These will be discussed in the rest of this chapter.

2. The very low temperatures achieved by laser cooling are extremely impressive, but this in itself is
not the main point. Techniques for achieving very low temperatures have been used for decades by
condensed matter physicists. For example, commercial dilution refrigerators routinely achieve
temperatures in the milli-Kelvin range, and as early as the 1950s, Nicholas Kurti and co-workers at
Oxford University used adiabatic demagnetisation to achieve nuclear spin temperatures in the
micro-Kelvin range. The novelty of laser cooling is that it produces of an ultracold gas of atoms,
in contrast to the condensed matter techniques which all work on liquids or solids. These ultracold
atoms only interact weakly with each other, which makes it possible to study the light-matter
interaction with unsurpassed precision.

These aspects of laser cooling have given rise to a whole host of related benefits. Atomic clocks have been
made with ever greater accuracy, and a whole range of new quantum phenomena have been discovered.
The most spectacular of these is Bose–Einstein condensation, which was observed for the first time
in 1995.

11.2 Gas temperatures

In order to understand how laser cooling works, we first need to clarify how the temperature of a gas
of atoms is measured. The key point is the link between the thermal motion of the atoms and the
temperature. Starting from the Maxwell–Boltzmann distribution (cf. eqn 3.40), it is possible to define
a number of different characteristic velocities for the gas. The simplest of these is the root-mean-square
(rms) velocity, which can be evaluated by remembering the principle of equipartition of energy. This
states that the average thermal energy per degree of freedom is equal to 1

2
kBT . For an atom of mass m,

each component of the velocity must therefore satisfy:

1

2
mv2

i =
1

2
kBT , (11.1)

which implies that the rms velocity is given by:

1

2
m(vrms)2 =

3

2
kBT . (11.2)
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Figure 11.1: In Doppler cooling, the laser frequency is tuned below the atomic resonance by
δ. The frequency seen by an atom moving towards the laser is Doppler shifted up by ν0(vx/c).

We therefore conclude that:1

vrms
x =

√
kBT

m
, (11.3)

vrms =

√
3kBT

m
. (11.4)

These simple relationships allow us to work out, for example, that the atoms in a typical gas at room
temperature jostle about in a random way with thermal velocities of around 1000 kmph. The random
thermal motion is the cause of the Doppler broadening of spectral lines considered in Section 3.10.

The link between temperature and the velocity distribution tells us that we can cool the gas if we
can slow the atoms down, which is the strategy adopted in laser cooling experiments. Furthermore, the
temperature of the gas can be inferred from a measurement of the velocity distribution of the atoms.
This is the method that is used to determine the temperature of an ultra cold gas cooled by a laser.

11.3 Doppler Cooling

11.3.1 The laser cooling process

Consider an atom emitting at ν0 moving in the +x direction towards a laser of frequency νL with velocity
vx as shown in Fig. 11.1. The laser is tuned so that its frequency is below the resonance line by an
amount δ:

νL = ν0 − δ . (11.5)

The Doppler-shifted frequency νobserved
L of the laser in the atom’s frame of reference is given by:

νobserved
L = νL

(
1 +

vx
c

)
= (ν0 − δ)

(
1 +

vx
c

)
= ν0 − δ +

vx
c
ν0 −

vx
c
δ . (11.6)

The last term is small because δ � ν0 and vx � c. Hence if we choose

δ = ν0
vx
c
, (11.7)

we find νobserved
L = ν0. This situation is depicted in Fig. 11.2(a). The laser is in resonance with atoms

moving in the +x direction, but not with those moving away or obliquely. For sodium at 300 K with
vx ∼ 330 ms−1, we need to choose δ = 560 MHz for the D-lines at 589 nm. This means that only those
atoms moving towards the laser absorb photons from the laser beam.

Now consider what happens after the atom has absorbed a photon from the laser beam. The atom
goes into an excited state and then re-emits another photon by spontaneous emission. This occurs on
average after a time τ (the radiative lifetime), and the direction of the emitted photon is random. The
absorption-emission cycle is illustrated schematically in Fig. 11.2(b).

Repeated absorption-emission cycles generate a net force in the same direction as the laser beam,
that is, the −x direction. This happens because each photon of wavelength λ has a momentum of h/λ.
Conservation of momentum demands that every time a photon is absorbed from the laser beam the
momentum of the atom changes by (−h/λ). On the other hand, the change of momentum due to the
recoil of the atom after spontaneous emission averages to zero, because the photons are emitted in random
directions. Hence the net change of momentum per absorption-emission cycle is given by:

∆px = −h
λ
. (11.8)

1The rms velocity of the atoms of a beam of atoms effusing from a hot oven differs from eqn 11.3 by factor of 2, and the
most probable velocity by factor of

√
3. These numerical factors arise from the fact that the probability of escaping from

the oven is related to the velocity, which modifies the probability distribution of the atoms in the beam. These finer details
needs not concern us here.
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Figure 11.2: Doppler cooling. (a) Doppler-shifted laser frequency in the rest frame of the
atom. A laser with frequency ν0 − δ is in resonance with the atoms when they are moving
towards the laser, but not if they are moving sideways or away, if δ = ν0(vx/c). (b) An
absorption-emission cycle. (1) A laser photon impinges on the atom. (2) The atom absorbs
the photon and goes into an excited state. (3) The atom re-emits a photon in a random
direction by spontaneous emission after a time τ .
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If the laser intensity is large, then the probability for absorption will be large, and the absorption process
will be fast. Hence the time to complete the absorption-emission cycle is determined by the radiative
lifetime τ . The maximum force exerted on the atom is thus given by:

Fx =
dp

dt
=

∆px
τ

= − h

λτ
, (11.9)

and the deceleration is given by

v̇x =
Fx
m

= − h

mλτ
. (11.10)

For the sodium D-lines with λ = 589 nm and τ = 16 ns, we find Fx = −7.0 × 10−20 N and v̇x =
−1.8× 106 ms−2 ∼ 105g.

The number of absorption-emission cycles required to stop the atom is given by:

Nstop =
mux
∆px

=
muxλ

h
, (11.11)

where ux is the initial velocity of the atom. This sets a minimum time for the laser beam to slow the
atoms to a halt:

tmin = Nstop × τ =
muxλτ

h
. (11.12)

In this time, the atoms move a minimum distance dmin given by:

0− u2
x = 2 v̇x dmin , (11.13)

where v̇x is the deceleration given by eqn 11.10, and we have assumed that the final velocity of the atom
is very small. This gives:

dmin = − u2
x

2v̇x
=
mλτu2

x

2h
. (11.14)

For our standard sodium example with ux = 330 ms−1, we find Nstop = 1.1 × 104, tmin = 0.18 ms and
dmin = 0.03 m.

The analysis above ignores stimulated emission. The atom in the excited state — step 2 in Fig. 11.2(b)
— can be triggered to emit a photon by stimulated emission from other impinging laser photons. The
stimulated photon will be emitted in the same direction as the incident photon, and the photon recoil
exactly cancels the momentum kick given by the absorption process. When stimulated emission is included
in the analysis, the force is reduced by a factor two at high laser powers. This happens because the
population of levels 1 and 2 equalize at a value of N0/2, where N0 is the total number of atoms. The
final result is that the time to stop the atoms and the distance travelled in that time are both doubled.

11.3.2 The Doppler limit temperature

At first sight, we might think that we would be able to completely stop the atoms by the Doppler
cooling technique. However, the minimum temperature that can be achieved is set by the uncertainty
principle. The cooling effect only works if we have the right detuning frequency δ for the particular
velocity. However, from eqn 3.33 we see that the radiative lifetime τ of the transition causes broadening.
This gives rise to an intrinsic uncertainty in the energy of the atom, and we will therefore never be able
to reduce the thermal energy below:

Emin ∼
1

2
h∆νlifetime =

1

2
h

1

2πτ
=

~
2τ

. (11.15)

On equating Emin with kBTmin, we then find:

Tmin =
~

2kBτ
. (11.16)

This minimum temperature is called the Doppler limit. The equivalent minimum speed is found by
setting Emin equal to 1

2
mv2

min. For the sodium D-lines with τ = 16 ns, the Doppler limit temperature is
2.4× 10−4 K ≡ 240µK, and the minimum thermal velocity is around 0.4 ms−1.
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Figure 11.3: William D. Phillips’ apparatus at the NIST laboratory, USA, to stop a beam
of sodium atoms. The frequency of the cooling laser is fixed, and the transition energy of
the atoms is shifted in a controlled way by the Zeeman effect using a tapered solenoid. The
trapping coils prevent the atoms falling under gravity. A probe laser is used to measure the
velocity distribution of the cooled atoms.

11.4 Experimental considerations

Efficient cooling of the atoms requires that the laser should exert the optimal force on the atoms, which
occurs when the laser is detuned by the amount set out in eqn 11.7. However, the velocity of the atoms
decreases as the atoms cool, which suggests two possible strategies to achieve low temperatures:

1. Tune the laser frequency in a programmed way as the atoms slow down.

2. Keep the laser frequency fixed and tune the transition frequency.

The first method is called “chirp” cooling, in analogy to the chirping sound made by birds, in which the
frequency of the sound changes during the birdsong. Early experiments used tunable dye lasers, but more
modern experiments on cesium use tunable semiconductor diode lasers.

An ingenious approach that follows the second method is shown in Fig. 11.3. The sodium atoms are
produced by heating sodium metal in an oven to 450◦C. Some of the atoms emerge through a small hole
in the oven, and are collimated into a beam moving in the +x direction by a second aperture about 10 cm
away from the source. The atoms pass through a carefully-designed tapered solenoid, which shifts the
the transition energy by the Zeeman effect (see eqn 8.17):

hν(x) = hν0 + gJµBB(x)MJ , (11.17)

where B(x) is the spatially–varying magnetic field. For the 2S1/2 ground state of the 3s electron in
sodium, we have pure spin angular momentum, and hence gJ = 2 and MJ = ±1/2. If the laser is
tuned to ν0, then the laser cooling condition given in eqn 11.7 is satisfied for the MJ = +1/2 state when
µBB(x) = hν0(vx/c). The solenoid was therefore designed so that the reduction of the field strength
compensates for the reduction of the velocity as the atoms slow down due to the laser cooling process.
Coils were added at the end to prevent the ultra cold atoms falling out of the apparatus under gravity.
The atoms with MJ = −1/2 are not cooled and escape from the apparatus.

The properties of the cooled atoms can be measured by a second laser. This excites fluorescence which
is collected and imaged onto a detector. The velocity distribution can be measured by the “time-of-flight”
technique in which we turn the cooling laser off and then watch the gas of trapped atoms expand as a
function of time.

11.5 Optical molasses and magneto-optical traps

The arrangement with a single laser beam shown in Fig. 11.1 is able to stop the atoms moving in the
positive direction for one of the components of the velocity (i.e the +x direction). To stop the atoms
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Figure 11.4: (a) Optical molasses. Six laser beams are used to annul the three velocity
components of the atom’s velocity in both directions. (b) Magneto-optical trap, comprising
the optical molasses lasers and a quadrupole magnetic field.

in both directions for all three velocity components (i.e. the ±x, ±y and ±z directions), we need a six-
beam arrangement as shown in Fig. 11.4(a). This counter-propagating six-beam technique was pioneered
by Stephen Chu and co-workers at Bell Laboratories in 1985, and given the name optical molasses.
“Molasses” is the American word for “treacle”, and it gives a good description of how the Doppler cooling
force acts like a viscous medium for the trapped atoms.

The optical molasses experiment becomes a magneto-optical trap when magnetic coils are added
above and below the intersection point, as shown in Fig. 11.4(b). The current flows in opposite directions
through the coils, which produces a quadrupole field, where the field at the centre of the apparatus
cancels. However, on moving a small distance from the centre, the fields increases according to:

B(x, y, z) = B0(x2 + y2 + 4z2)1/2 , (11.18)

where (x, y, z) is the position relative to the centre. The atoms with MJ = +1/2 have a Zeeman energy
of +µBB, and so experience an increase in energy as they move away from the intersection point of the
lasers. In other words, they sit in a potential well, with the minimum at the origin. This has the effect
of trapping the atoms close to the origin if their thermal energy is less than the depth of the potential
well.2 The combination of optical molasses and the quadrupole field thus provides a method to cool and
trap a gas of atoms at very low temperatures.

11.6 Cooling below the Doppler limit

Careful measurements by Phillips at NIST in 1988 led to the rather startling result that the temperature
of the laser-cooled atoms in an optical molasses experiment was substantially less than the Doppler limit
given in eqn 11.16. The temperature of the trapped sodium atoms was measured to be 40µK, that
is, six-times smaller than the Doppler limit. Chu and Cohen-Tannoudji soon confirmed this result in
independent experiments.

The explanation of the discrepancy comes from realizing that the single-beam mechanism described
in Section 11.3 is too simplistic. The counter-propagating laser beams in an optical molasses experiment
form an interference pattern, and this leads to a new type of cooling mechanism called Sisyphus cooling.
The mechanism is named after the character in Greek mythology who was condemned to roll a stone up
a hill forever, only for it to roll down again every time he got near the top. This is an analogy for the
way Sisyphus cooling works: the atoms repeatedly climb to the top of a potential barrier created by the
Stark effect of the interfering laser beams, and then drop to the bottom of the potential barrier after
absorption and emission of a photon. The energy loss in the process is taken from the atom’s thermal
energy.

The detailed mechanism for Sisyphus cooling is too complicated at this level of treatment. The key
point is that the minimum temperature that can be achieved is set by the recoil limit, rather than

2Atoms with MJ = −1/2 are not trapped, since their energy decreases as they move away from the centre: it is as if
they are on the top of a hill.
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Sodium Cesium
Laser rhodamine dye semiconductor diode
Atomic transition 3p→ 3s 6p→ 6s
Wavelength λ 589 nm 852 nm
Atomic mass m 23.0 mH 132.9 mH

Radiative lifetime τ 16 ns 32 ns
Doppler limit Tmin 240 µK 120 µK
Recoil limit Trecoil 2.4 µK 0.2 µK

Table 11.1: Parameters for laser cooling of sodium and cesium atoms. Tmin and Trecoil are
the minimum temperature set by the Doppler and photon recoil limits given in eqns 11.16
and 11.20 respectively.

the Doppler limit. The atoms are constantly emitting spontaneous photons of wavelength λ in random
directions. The atom recoils each time with momentum h/λ, so it ends up with a random thermal energy
given by:

1

2
kBTrecoil =

(h/λ)2

2m
=

h2

2mλ2
. (11.19)

This gives a minimum temperature of:

Trecoil =
h2

mkBλ2
. (11.20)

Table 11.1 compares the key parameters of the sodium and cesium atoms that are frequently used in
laser cooling experiments.

In the years since Chu, Cohen-Tannoudji and Phillips’ pioneering experiments, the laser cooling
techniques have allowed the study of atom-photon interactions with unprecedented precision, and have
paved the way for the discovery of Bose-Einstein condensation, as described in the next sections.

11.7 Bose-Einstein condensation

We have seen above how laser cooling techniques can produce a very cold gas of atoms. Despite the
extremely low temperatures that are achieved, the motion of the atoms at the focus of the laser beams
is still classical in terms of statistical mechanics. We now wish to explore what happens when the gas
is cooled even further. It turns out that some atoms can undergo a phase transition to a quantum
state proposed by Bose and Einstein in 1924–5. In the sections that follow, we first consider the general
principles of Bose–Einstein condensation (BEC), and then describe how the experiments to observe BEC
in a gas of atoms are carried out.

11.7.1 The concept of Bose–Einstein condensation

The behaviour of a gas of atoms is said to be classical if the distribution of energies obeys Boltzmann
statistics:

p(Ei) ∝ exp

(
− Ei
kBT

)
, (11.21)

where p(Ei) is probability that the atom is in the quantum state with energy Ei at temperature T .
Boltzmann statistics apply at high temperatures when the probability for the occupation of any individual
quantum level is small. If we reduce the temperature, the atoms tend to occupy the lowest energy levels
of the system. It will therefore eventually be the case that the assumption that the occupancy factor is
small no longer applies. In this case, we will have quantum statistics rather than classical statistics.
It is this regime that we shall be exploring here.

The transition from classical to quantum behaviour occurs at a temperature that is determined by
the energy scales of the system. Consider, for example, the specific heat capacity of a gas of diatomic
molecules. The variation of the specific heat with temperature is shown schematically in figure 11.5.
A diatomic molecule possesses seven degrees of freedom: three translational, two rotational, and two
vibrational. As noted in Section 11.2, the classical principle of equipartition of energy states that the
thermal energy per molecule per degree of freedom is equal to 1

2
kBT . Since the heat capacity is equal to

dE/dT , we therefore expect a contribution of 3kB/2 for the translational motion, 2kB/2 for the rotational
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Figure 11.5: Schematic variation of the specific heat capacity of a gas of diatomic molecules
with temperature. The rotational and vibrational contributions freeze out at characteristic
temperatures, but the freezing out of the translational motion is not normally observed.

motion, and a further 2kB/2 for the vibrations, giving 7kB/2 in total. This is in fact observed, but only
at very high temperatures, as shown in Fig. 11.5.

The reason for the departure of the heat capacity from the classical result is the quantization of the
thermal motion. The vibrations of a molecule can be approximated to a simple harmonic oscillator, with
quantized energy levels given by:

E = (n+ 1/2)hνvib , (11.22)

where νvib is the vibrational frequency. The classical result will only be obtained if the thermal energy
is much greater than the vibrational quanta, that is when

kBT � hνvib . (11.23)

With typical values for νvib around 1013 Hz, the classical behaviour is only observed at temperatures
above about 1000 K. At room temperature the vibrational motion is usually “frozen out”, as shown in
Fig. 11.5. In the same way we expect the rotational motion to freeze out when the thermal energy is
comparable to the quantized rotational energy, that is when

kBT ∼
~2

Irot
, (11.24)

where Irot is the moment of inertia about the rotation axis. This typically occurs for T ∼ 50 K. Thus
the rotational motion is usually classical at room temperature, but freezes out at lower temperatures, as
indicated in Fig. 11.5.

We are finally left with the translational motion. The third law of thermodynamics tells us
that the heat capacity must eventually go to zero as we approach absolute zero. However, this is never
observed in practice. In any normal gas the attractive forces between the molecules cause liquefaction
and solidification long before the quantum effects for the translational motion become important. If,
however, we could somehow prevent the gas from condensing, we would eventually expect to observe
quantum effects related to the translational motion. This effect was first considered by Einstein in
1924–5, following Bose’s work on the statistical mechanics of photons.

A key point in understanding the concept of Bose–Einstein condensation is that we are considering
the quantised motion of non-interacting particles. The molecules in a gas do not normally behave as
non-interacting particles: there are attractive forces between them that cause condensation to the liquid
or solid phase at low temperatures. These forces can never be turned off, and the only way to make their
effect minimal is to keep the molecules far away from each other. This means that the gas density must
be very low, which, as we shall see below, makes the temperature required to observe the quantum effect
extremely low. This is why is took 70 years to observe Bose–Einstein condensation in a gas.

The phenomenon of Bose–Einstein condensation was described by Einstein in a letter to Paul Ehrenfest
in late 1924 as follows:
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Form a certain temperature on, the molecules “condense” without attractive forces, that is,
they accumulate at zero velocity. The theory is pretty, but is there some truth to it?3

Einstein had to wait 14 years for the beginnings of an answer to his question. The superfluid transition in
liquid helium was discovered in 1928 by W.H. Keesom, and in 1938 Fritz London successfully interpreted
Keesom’s discovery as a Bose–Einstein condensation phenomenon. In the years following London’s work,
the theory of Bose-Einstein condensation was applied to other condensed matter systems, e.g. super-
conductors. However, the problem with all of these condensed matter systems is that the particles are
not “non-interacting”. The mere fact that helium is a liquid at the superfluid temperature tells us that
there are strong interactions between the atoms over and above any effects due to the quantization of the
kinetic energy. For this reason, in 1946 Schrödinger described the modifications to the gas laws caused
by the quantum statistics as:4

— “satisfactory”, because they are negligible at high temperatures and low densities;

— “disappointing”, because they occur at such low temperatures and high densities that they are
hard to distinguish from other effects;

— “astounding”, because the behaviour is completely different to that of a classical system.

In an ideal world we would therefore like to observe the Bose–Einstein condensation in a weakly
interacting system (i.e. a gas) so that we can study it in isolation. This was not possible until the new
techniques of laser cooling described in the previous sections were developed.

11.7.2 Atomic bosons

Before going into the details of Bose–Einstein condensation, we need to clarify one important point. The
quantized behaviour of a gas of identical particles at low temperatures depends on the spin of the particle.
Particles with integer spins are called bosons, while those with half-integer spins are called fermions.
Fermions obey the Pauli exclusion principle, which says that it is not possible to put more than one
particle into a particular quantum state. Bosons, by contrast, do not obey the Pauli principle. There is
no limit to the number of particles that can be put into a particular level, which allows the observation
of new quantum effects such as BEC.

Atom are composite particles, made up of protons, neutrons, and electrons. These are all spin-1/2
particles, but the composite atom can be either a fermion or a boson depending on its total spin, which
can be worked out from:

Satom = Selectrons ⊕ I , (11.25)

where I is the nuclear spin. Since the number of electrons and protons in a neutral atom is equal, it is
easy to see that the atom will be a boson if the number of neutrons is an even number, and a fermion if
it is odd.

The simplest example to consider is hydrogen. 1H has one proton and one electron, and so we find
Satom = 0 or 1. 1H atoms are therefore bosons. Deuterium atoms (2H), by contrast are fermions. Now
consider helium. Helium has two common isotopes: 4He and 3He. The ground state of the 4He nucleus
is the α-particle with I = 0, and the electron ground state also has S = 0. (See Chapter 6). Thus the
spin of the 4He atom in its ground state is zero, which make it a boson. In 3He atoms, by contrast, the
nucleus has two protons and one neutron, with I = 1/2 in its ground state The electrons have spin 0 or
1, and so we find Satom = 1/2 or 3/2, making it a fermion.5 Note that the number of neutrons is two
for 4He and one for 3He, so that our general rule for deciding whether an atom is a boson or a fermion
applies.

11.7.3 The condensation temperature

Consider a gas of identical non-interacting bosons of mass m at temperature T . As noted above, the
word “non-interacting” is very important here. It implies that the particles are completely free, with only
kinetic energy, and no forces between the atoms. In these circumstances the de Broglie wavelength

3Letter to P. Ehrenfest, 29 November, 1924. An historical discussion of Einstein’s work may be found in Pais, A. (1982).
Subtle is the Lord, Oxford University Press.

4See E. Schrödinger, Statistical Thermodynamics, Cambridge University Press, 1946.
5It is interesting to note that a superfluid phase transition can also be observed for liquid 3He at 2.5 mK, even though the

individual atoms are fermions. The 3He atoms pair up to form a bosonic system analogous to the Cooper pairs developed
in the BCS (Bardeen–Cooper–Schrieffer) theory of superconductivity. This theory explains how electrons can undergo a
superconducting phase transition even though they are fermions.
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Figure 11.6: (a) Overlapping wave functions of two atoms separated by λdeB. (b) Number of
particles in the Bose-condensed state versus temperature. Tc is the condensation temperature
given by eqn 11.30.

λdeB is determined by the free thermal motion :

p2

2m
=

1

2m

(
h

λdeB

)2

=
3

2
kBT . (11.26)

This implies that

λdeB =
h√

3mkBT
. (11.27)

The thermal de Broglie wavelength thus increases as T decreases.
The quantum mechanical wave function of a free atom extends over a distance of ∼ λdeB. As λdeB

increases with decreasing T , a temperature will eventually be reached when the wave functions of neigh-
bouring atoms begin to overlap. This situation is depicted in Fig. 11.6(a). The atoms will interact with
each other and coalesce to form a “super atom” with a common wave function. This is the Bose–Einstein
condensed state.

The condition for wave function overlap is that the reciprocal of the effective particle volume deter-
mined by the de Broglie wavelength should be equal to the particle density. If we have N particles in
volume V , this condition can be written:

N

V
∼ 1

λ3
deB

. (11.28)

By inserting from eqn 11.27 and solving for T , we find:

Tc ∼
1

3

h2

mkB

(
N

V

)2/3

. (11.29)

We thus see that the condensation temperature is proportional to (N/V )2/3. This shows that low density
systems such as gases are expected to have very low transition temperatures, which explains why it has
been so difficult to observe BEC in gases until recently.

A rigorous formula for the Bose–condensation temperature Tc can be derived by applying the laws of
statistical mechanics to the non-interacting boson gas. For a gas of spin-0 bosons, the critical temperature
Tc is given by:6

Tc = 0.0839
h2

mkB

(
N

V

)2/3

. (11.30)

Note that this is the same as the intuitive result in eqn 11.29 apart from the numerical factor. As noted
previously, the theory of Bose–Einstein condensation was first applied to liquid helium-4. Below Tc some
of the liquid shows superfluid behaviour, while the remainder remains “normal”. On inserting the atom
density of 4He into eqn 11.30, we find Tc = 2.7 K, which is close to the actual superfluid transition
temperature of 2.17 K. The discrepancy is a consequence of the fact the 4He atoms in the liquid phase
are non truly “non-interacting”, and is an example of why Schrödinger described the properties of the
quantum gas as “disappointing”: the most spectacular effects usually occur in conditions where many
other interactions are important.

The picture which emerges from the statistical mechanics of Bose–Einstein condensation is as follows.
Above the critical temperature the particles are distributed among the energy states of the system

6See, for example, Mandl, Statistical Physics, Section 11.6.
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according to the Bose–Einstein distribution:

nBE(E) =
1

exp[(E − µ)/kBT ]− 1
, (11.31)

where µ is the chemical potential. In the case that we are considering here, the particles only have kinetic
energy with E = 1

2
mv2, so that the minimum value of E is zero. The chemical potential must therefore

be negative to keep nBE well-behaved for all possible values of E. The chemical potential increases with
decreasing temperature, and at Tc it reaches its maximum value of zero. In these conditions, there is a
singularity in eqn 11.31 for the zero-velocity state with E = 0, and a phase transition occurs in which a
macroscopic fraction of the total number of particles condenses into the ground state. The remainder of
the particles continue to be distributed thermally between the finite-velocity states. The fraction of the
particles in the zero-velocity state is given by:

N0(T ) = N

[
1−

(
T

Tc

)3/2
]
, (11.32)

where N is the total number of particles. This dependence is plotted in Fig. 11.6(b). We see that N0 is
zero at T = Tc and increases to the maximum value of N at T = 0.

The description of the system with a macroscopic fraction of the particles in the zero-velocity state
and the rest distributed thermally among the finite-velocity states gives rise to the two-fluid model.
The two fluids correspond to the Bose–Einstein condensed state with E = 0, and the “normal” particles
with E > 0. The total number of particles is written:

N = Nnormal +Ncondensed , (11.33)

where Ncondensed obeys eqn 11.32. This model gives a fairly good description of the behaviour of superfluid
liquid 4He and superconductors.

We can relate this behaviour to the discussion of the diatomic gas in Fig. 11.5 in the temperature
region indicated by the question mark. Since the number of particles in the zero-velocity state gradually
approaches 100% as T goes to zero, the thermal energy of the system goes to zero as T → 0. The heat
capacity therefore also goes to zero, and we finally reach consistency with the third law of thermodynamics.

11.8 Experimental techniques for atomic BEC

The conditions required to achieve Bose–Einstein condensation (BEC) in a gas impose severe technical
challenges. If we want to observe pure BEC without the complication of other effects such as liquefaction,
we have to keep the atoms well apart from each other. This means that the particle density must be
small, which in turn implies that the transition temperature is very low.

We have seen in section 11.6 that laser cooling can typically produce temperatures in the range
1–10 µK. This is not quite cold enough. The typical particle density achieved in an optical molasses
experiment is around 1017 m−3, which implies condensation temperatures below 100 nK. We therefore
have to invent new techniques to observe condensation. The general procedure usually follows three
steps:

1. Trap a gas of atoms and cool them towards the recoil-limit temperature using laser-cooling tech-
niques. Compress the gas by increasing the magnetic field.

2. Turn the cooling laser off to permit cooling below the recoil limit.

3. Cool the gas again by evaporative cooling until condensation occurs.

The first step has been discussed previously in section 11.6. The magnetic field has to be ramped
up carefully so as not to heat the gas while compressing it. Once the gas has been compressed, the
cooling lasers then have to be turned off, since the temperature will not fall below the recoil limit given
in eqn 11.20 while the lasers are on.

The final step is called evaporative cooling, in analogy to the cooling of a liquid by evaporation. In
this technique, the magnetic field strength is gradually turned down in order to reduce the depth of the
magnetic potential as shown in Fig. 11.7(b). The fastest-moving atoms now have enough kinetic energy
to escape from the trap, leaving the slower ones behind. This causes an overall reduction in the average
kinetic energy, which is equivalent to a reduction in the temperature.
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Figure 11.7: Evaporative cooling. (a) The laser-cooled atoms are first compressed in a mag-
netic trap. (b) The trap potential is then reduced by decreasing the magnetic field strength,
so that the hottest atoms can escape. This reduces the temperature, in the same way that
evaporation cools a liquid.
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Figure 11.8: Bose-Einstein condensation in rubidium atoms. The three figures show
the measured velocity distribution as the gas is cooled through Tc on going from left to
right. Above Tc, we have a broad Maxwell–Boltzmann, but as the gas condenses, the
fraction of atoms in the zero velocity state at the origin increases dramatically. Source:
http://jila.colorado.edu/bec/CornellGroup/index.html.

The first successful observation of Bose–Einstein condensation in an atomic gas was reported by the
group of Eric Cornell and Carl Wieman at the JILA Laboratory7 in the United States in 1995. In
their experiments they used 87Rb atoms with a density of about 1020 m−3. This density is eight orders
of magnitude smaller than that of liquid helium, and so the condensation temperature calculated from
eqn 11.30 is very low: 3.9 × 10−7 K.8 The inter-particle distance in the gas is equivalent to about 100
atomic radii. This means that the forces between the atoms are very small, and the BEC effects can
be observed in their own right. Similar results were reported by Wolfgang Ketterle and his team at
Massachusetts Institute of Technology for a gas of sodium atoms soon afterwards. The ground–breaking
nature of these discoveries was recognized by the joint award of the Nobel Prize for Physics in 2001 to
Cornell, Ketterle and Wieman.

Bose–Einstein condensation is observed by measuring the velocity distribution of the atoms at the
end of the experiment. Figure 11.8 shows some typical data. These pictures are obtained by turning the
trapping field off completely and allowing the gas to expand. An image of the gas is taken at a later
time, and the velocity distribution can be inferred from the amount of expansion that has occurred. The
key point in Fig. 11.8 is that a peak can be seen to appear at the centre as the temperature is lowered.
This corresponds to the zero-velocity state, and shows that a macroscopic fraction of the atoms have

7Joint Institute for Laboratory Astrophysics, run jointly by the University of Colorado and the National Institute of
Standards and Technology (NIST).

8The condensation temperature in a magnetic trap differs slightly from the one given in eqn 11.30, because the atoms
are subject to the trapping potential. This level of detail need not concern us here.
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condensed to the ground state.
In the years since the original observation, BEC has been observed in many other gaseous atomic

systems, and this has led to the observation of many other spectacular quantum effects, for example:
atom lasers. The use of the word “laser” is slightly confusing here, because there is no amplification. It
is used to emphasize the difference between the coherence of the atomic beam from the condensate and
that from a thermal source, in analogy to the difference between the coherence of the light from a laser
beam and that from a hot filament. The beam of atoms generated by hot ovens such as the one shown in
Fig. 11.3 has a Maxwell–Boltzmann velocity distribution, with random phases between different atoms.
The atoms in a beam emanating from a Bose–Einstein condensate, by contrast, are all in phase, because
they have a common wave function. This point has been proven by demonstrating that the atomic beams
from a condensate can form interference patterns when they overlap.

Further reading

Bransden and Joachain, Physics of Atoms and Molecules, sections 15.4–6
Foot, Atomic physics, chapters 9 and 10
Fox, Quantum optics, chapter 11
Haken, H. and Wolf, The Physics of Atoms and Quanta, sections 22.6, 23.11–12.
Mandl, Statistical Physics, Section 11.6.

The BEC homepage at the University of Colorado gives interactive tutorial articles on laser cooling and
Bose–Einstein condensation. See: http://www.colorado.edu/physics/2000/bec/index.html
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Appendix A

The reduced mass

The reduced mass is a very useful concept for dealing with the relative motion of two particles, such
as the nucleus and the electron in a hydrogen atom.1 It allows us to separate the motion of the centre
of mass of the whole atom from its internal motion associated with the quantised orbits of the electron
around the nucleus. It is the latter that is our concern when solving the Schrödinger equation.

Let r1 and r2 be the positive vectors of the two particles, which have masses of m1 and m2 respectively.
The centre of mass co-ordinate R and the relative co-ordinate r are defined by:

MR = m1r1 +m2r2 ,

r = r1 − r2 , (A.1)

where M = (m1 + m2) is the total mass. As the names suggest, these give the position of the centre of
mass and the relative separation of the two particles respectively. The reverse relationships are:

r1 = R+
m2

M
r ,

r2 = R− m1

M
r . (A.2)

We assume that the only force acting on the particles is via their mutual interaction, so that the
potential energy V (r) only depends on the separation of the particles. In the case of a hydrogen atom,
this is the Coulomb interaction between the two charged particles, with V (r) = −e2/4πε0r. In classical
mechanics we can write the total energy (i.e. the Hamiltonian) as the sum of the kinetic energies of the
particles and the potential energy due to their mutual interaction:

H =
1

2
m1v

2
1 +

1

2
m2v

2
2 + V (r) . (A.3)

It is easily verified from eqn A.2 that:

(ṙ1)2 = Ṙ
2

+
2m2

M
Ṙṙ +

(m2

M

)2

ṙ2

(ṙ2)2 = Ṙ
2 − 2m1

M
Ṙṙ +

(m1

M

)2

ṙ2 .

Hence

H =
1

2
m1(ṙ1)2 +

1

2
m2(ṙ2)2 + V (r)

=
1

2
MṘ

2
+

1

2
mṙ2 + V (r) , (A.4)

where the reduced mass m = m1m2/M is defined by:

1

m
=

1

m1
+

1

m2
. (A.5)

Equation A.4 shows that the energy is equal to the kinetic energy of the centre of mass, plus the energy
(i.e. kinetic energy + potential energy) of the relative motion of a particle of mass m, namely the reduced

1The reduced mass can also be used in gravitational problems such as planets orbiting the Sun. In that case, the potential
energy is V (r) = −Gm1m2/r.

129



130 APPENDIX A. THE REDUCED MASS

mass. In other words, we can separate the motion into the free motion of the whole system, plus the
internal energy in terms of the relative co-ordinates and the reduced mass.

In quantum mechanics, the Hamiltonian is given by

Ĥ = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V (r) , (A.6)

where

∇2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

. (A.7)

To transform this to the centre of mass and relative co-ordinates, we need to work with the Cartesian
co-ordinates:

x = x1 − x2 ,

X =
m1

M
x1 +

m2

M
x2 .

We start by finding the first derivatives:

∂

∂x1
=

∂X

∂x1

∂

∂X
+

∂x

∂x1

∂

∂x
=
m1

M

∂

∂X
+

∂

∂x
,

∂

∂x2
=

∂X

∂x2

∂

∂X
+

∂x

∂x2

∂

∂x
=
m1

M

∂

∂X
− ∂

∂x
.

This implies that the second derivative with respect to x1 is:

∂2

∂x2
1

=

(
m1

M

∂

∂X
+

∂

∂x

)(
m1

M

∂

∂X
+

∂

∂x

)
,

=
m2

1

M2

∂2

∂X2
+ 2

m1

M

∂2

∂X∂x
+

∂2

∂x2
.

Similarly:
∂2

∂x2
2

=
m2

2

M2

∂2

∂X2
− 2

m2

M

∂2

∂X∂x
+

∂2

∂x2
.

Therefore:

− ~2

2m1

∂2

∂x2
1

− ~2

2m2

∂2

∂x2
2

= − ~2

2M

∂2

∂X2
− ~2

2m

∂2

∂x2
,

where m is the reduced mass defined in eqn A.5. Similar results can be derived for the y and z components,
leading to:

Ĥ = ĤR + Ĥr , (A.8)

where

ĤR = − ~2

2M
∇2
R ,

Ĥr = − ~2

2m
∇2
r + V (r) . (A.9)

This shows that the Hamiltonian is the sum of:

• The Hamiltonian ĤR of a free particle of mass M with position co-ordinates of the centre of mass;

• The Hamiltonian Ĥr that describes the relative motion of the two particles, behaving as if they had
mass m, namely the reduced mass.

This is our final result. It shows that we can separate the motion of hydrogenic atoms into the motion of
the centre of mass, that moves freely throughout space, and the internal motion, that is governed by the
potential energy V (r) and acts like a particle of mass m. Hence the mass m that appears in the Bohr
model in Section 2.1 and in the hydrogen Schrödinger equation in Section 2.2 is the reduced mass. This
separation works for any central potential that depends only on the particle separation r.



Appendix B

Mathematical solutions of the radial
equation

This appendix deals with the more mathematical aspects of the Schrödinger equation for hydrogen that
were omitted from the main discussion in Chapter 2.

B.1 The angular equation

The eigenfunctions of the angular momentum operator are found by solving equation 2.32, namely:

L̂
2
F (θ, φ) ≡ −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
F (θ, φ) = CF (θ, φ) . (B.1)

For reasons that will become clearer later, the constant C is usually written in the form:

C = l(l + 1)~2 . (B.2)

At this stage, l can take any value, real or complex. We can separate the variables by writing:

F (θ, φ) = Θ(θ)Φ(φ) . (B.3)

On substitution into eqn 2.32 and cancelling the common factor of ~2, we find:

− 1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
Φ− 1

sin2 θ
Θ

d2Φ

dφ2
= l(l + 1)ΘΦ . (B.4)

Multiply by − sin2 θ/ΘΦ and re-arrange to obtain:

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ sin2 θ l(l + 1) = − 1

Φ

d2Φ

dφ2
. (B.5)

The left hand side is a function of θ only, while the right hand side is a function of φ only. The equation
must hold for all values of the θ and φ and hence both sides must be equal to a constant. On writing
this arbitrary separation constant m2, we then find:

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ l(l + 1) sin2 θ Θ = m2Θ , (B.6)

and
d2Φ

dφ2
= −m2Φ . (B.7)

The equation in φ is easily solved to obtain:

Φ(φ) = Aeimφ . (B.8)

The wave function must have a single value for each value of φ, and hence we require:

Φ(φ+ 2π) = Φ(φ) , (B.9)
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which requires that the separation constant m must be an integer. Using this fact in eqn B.6, we then
have to solve

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ [l(l + 1) sin2 θ −m2] Θ = 0 , (B.10)

with the constraint that m must be an integer. On making the substitution u = cos θ and writing
Θ(θ) = P (u), eqn B.10 becomes:

d

du

(
(1− u2)

dP

du

)
+

[
l(l + 1)− m2

1− u2

]
P = 0 . (B.11)

Equation B.11 is known as either the Legendre equation or the associated Legendre equation, depending
on whether m is zero or not. Solutions only exist if l is an integer ≥ |m| and P (u) is a polynomial function
of u. This means that the solutions to eqn B.10 are of the form:

Θ(θ) = Pml (cos θ) , (B.12)

where Pml (cos θ) is a polynomial function in cos θ called the (associated) Legendre polynomial function.
Putting this all together, we then find:

F (θ, φ) = normalization constant× Pml (cos θ) eimφ , (B.13)

where m and l are integers, and m can have values from −l to +l. The correctly normalized functions
are called the spherical harmonic functions Ylm(θ, φ).

It is apparent from eqns B.1 and B.2 that the spherical harmonics satisfy:

L̂
2
Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ) . (B.14)

Furthermore, on substituting from eqn 2.33, it is also apparent that

L̂zYlm(θ, φ) = m~Ylm(θ, φ) . (B.15)

The integers l and m that appear here are called the orbital and magnetic quantum numbers respectively.
Some of the spherical harmonic functions are listed in Table 2.2. Equations B.14–B.15 show that the
magnitude of the angular momentum and its z-component are equal to

√
l(l + 1)~ and m~ respectively,

as consistent with Fig. 2.3.

B.2 The radial equation

The radial wave equation for hydrogen is given from eqn 2.30 as:

− ~2

2m

1

r2

d

dr

(
r2 dR(r)

dr

)
+

~2l(l + 1)

2mr2
R(r)− Ze2

4πε0r
R(r) = ER(r) , (B.16)

where l is an integer ≥ 0. We first put this in a more user-friendly form by introducing the dimensionless
radius ρ according to:

ρ =

(
8m|E|
~2

)1/2

r . (B.17)

The modulus sign around E is important here because we are seeking bound solutions where E is negative.
The radial equation now becomes:

d2R

dρ2
+

2

ρ

dR

dρ
+

(
λ

ρ
− 1

4
− l(l + 1)

ρ2

)
R = 0 , (B.18)

where

λ =
1

4πε0

Ze2

~

(
m

2|E|

)1/2

. (B.19)

We first consider the behaviour at ρ→∞, where eqn B.18 reduces to:

d2R

dρ2
− 1

4
R = 0 . (B.20)
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This has solutions of e±ρ/2. The e+ρ/2 solution cannot be normalized and is thus excluded, which implies
that R(ρ) ∼ e−ρ/2.

Now consider the behaviour for ρ→ 0, where the dominant terms in eqn B.18 are:

d2R

dρ2
+

2

ρ

dR

dρ
− l(l + 1)

ρ2
R = 0 , (B.21)

with solutions R(ρ) = ρl or R(ρ) = ρ−(l+1). The latter diverges at the origin and is thus unacceptable.
The consideration of the asymptotic behaviours suggests that we should look for general solutions of

the radial equation with R(ρ) in the form:

R(ρ) = L(ρ) ρl e−ρ/2 . (B.22)

On substituting into eqn B.18 we find:

d2L

dρ2
+

(
2l + 2

ρ
− 1

)
dL

dρ
+
λ− l − 1

ρ
L = 0 . (B.23)

We now look for a series solution of the form:

L(ρ) =

∞∑
k=0

akρ
k . (B.24)

Substitution into eqn B.23 yields:

∞∑
k=0

[
k(k − 1)akρ

k−2 +

(
2l + 2

ρ
− 1

)
kakρ

k−1 +
λ− l − 1

ρ
akρ

k

]
= 0 , (B.25)

which can be re-written:
∞∑
k=0

[
(k(k − 1) + 2k(l + 1))akρ

k−2 + (λ− l − 1− k)akρ
k−1
]

= 0 , (B.26)

or alternatively:

∞∑
k=0

[
((k + 1)k + 2(k + 1)(l + 1))ak+1ρ

k−1 + (λ− l − 1− k)akρ
k−1
]

= 0 . (B.27)

This will be satisfied if

((k + 1)k + 2(k + 1)(l + 1))ak+1 + (λ− l − 1− k)ak = 0 , (B.28)

which implies:
ak+1

ak
=

−λ+ l + 1 + k

(k + 1)(k + 2l + 2)
. (B.29)

At large k we have:
ak+1

ak
∼ 1

k
. (B.30)

Now the series expansion of eρ is

eρ = 1 + ρ+
ρ2

2!
+ · · · ρ

k

k!
+ · · · , (B.31)

which has the same limit for ak+1/ak. With R(ρ) given by eqn B.22, we would then have a dependence
of e+ρ · e−ρ/2 = e+ρ/2, which is unacceptable. We therefore conclude that the series expansion must
terminate for some value of k. Let nr be the value of k for which the series terminates. It then follows
that anr+1 = 0, which implies:

−λ+ l + 1 + nr = 0 , nr ≥ 0 , (B.32)

or
λ = l + 1 + nr . (B.33)

We now introduce the principal quantum number n according to:

n = nr + l + 1 . (B.34)

It follows that:
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1. n is an integer,

2. n ≥ l + 1,

3. λ = n .

The first two points establish the general rules for the quantum numbers n and l. The third one fixes the
energy. On inserting λ = n into eqn B.19 and remembering that E is negative, we find:

En = − me4

(4πε0)22~2

Z2

n2
. (B.35)

This is the usual Bohr result. The wave functions are of the form given in eqn B.22:

R(ρ) = ρl L(ρ) e−ρ/2 . (B.36)

The polynomial series L(ρ) that satisfies eqn B.23 is known as an associated Laguerre function. On
substituting for ρ from eqn B.17 with |E| given by eqn B.35, we then obtain:

R(r) = normalization constant× Laguerre polynomial in r × rle−r/a (B.37)

as before (cf. eqn 2.43), with

a =

(
~2

2m|E|

)1/2

=
4πε0~2

me2

n

Z
≡ n

Z
aH , (B.38)

where aH is the Bohr radius of hydrogen.



Appendix C

Helium energy integrals

The concept of exchange integrals was introduced in § 6.4 in the discussion of the energy levels of helium
in Chapter 6. Our task here is to evaluate the three terms that appear in the gross structure energy E:

E = E1 + E2 + E12 , (C.1)

where the energies are defined in eqns 6.13 and 6.14.
We restrict ourselves to configurations of the type (1s,nl), since these are the ones that give rise to

the excited states that are observed in the optical spectra. From eqn 6.4 we see that spatial part of the
wave function is given by:

Ψ(r1, r2) =
1√
2

(
u1s(r1)unl(r2)± unl(r1)u1s(r2)

)
where we take the + sign for singlets with S = 0 and the − sign for triplets with S = 1.

We first tackle E1, with Ĥ1 defined in eqn 6.10:

E1 =

∫∫
Ψ∗ Ĥ1 Ψ d3r1d3r2

=
1

2

∫∫ (
u∗1s(r1)u∗nl(r2)± u∗nl(r1)u∗1s(r2)

)
Ĥ1

(
u∗1s(r1)u∗nl(r2)± u∗nl(r1)u∗1s(r2)

)
d3r1 d3r2 ,

where the + sign applies for singlet states and the − sign for triplets. This splits into four integrals:

E1 =
1

2

∫∫
u∗1s(r1)u∗nl(r2)Ĥ1u1s(r1)unl(r2)d3r1d3r2

+
1

2

∫∫
u∗nl(r1)u∗1s(r2)Ĥ1unl(r1)u1s(r2)d3r1d3r2

±1

2

∫∫
u∗1s(r1)u∗nl(r2)Ĥ1unl(r1)u1s(r2) d3r1d3r2

±1

2

∫∫
u∗nl(r1)u∗1s(r2)Ĥ1u1s(r1)unl(r2)d3r1d3r2 .

We now use the fact that unl(r1) is an eigenstate of Ĥ1:

Ĥ1 unl(r1) = Enl unl(r1) ,

and that Ĥ1 has no effect on r2, to obtain:

E1 =
1

2
E1s

∫
u∗1s(r1)u1s(r1)d3r1

∫
u∗nl(r2)unl(r2)d3r2

+
1

2
Enl

∫
u∗nl(r1)unl(r1)d3r1

∫
u∗1s(r2)u1s(r2)d3r2

±1

2
Enl

∫
u∗1s(r1)unl(r1) d3r1

∫
u∗nl(r2)u1s(r2)d3r2

±1

2
E1s

∫
u∗nl(r1)u1s(r1)d3r1

∫
u∗1s(r2)unl(r2)d3r2

=
1

2
E1s +

1

2
Enl + 0 + 0 .
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The integrals in the first two terms are unity because the unl wave functions are normalized, while the
last two terms are zero by orthogonality.

The evaluation of E2 follows a similar procedure:

E2 =

∫∫
Ψ∗Ĥ2Ψd3r1d3r2 ,

= +
1

2

∫∫
u∗1s(r1)u∗nl(r2)Ĥ2u1s(r1)unl(r2)d3r1d3r2

+
1

2

∫∫
u∗nl(r1)u∗1s(r2)Ĥ2unl(r1)u1s(r2)d3r1d3r2

±1

2

∫∫
u∗1s(r1)u∗nl(r2)Ĥ2unl(r1)u1s(r2)d3r1d3r2

±1

2

∫∫
u∗nl(r1)u∗1s(r2)Ĥ2unl(r1)u1s(r2)d3r1d3r2

= +
1

2
Enl +

1

2
E1s + 0 + 0 .

Finally, we have to evaluate the Coulomb repulsion term, with Ĥ12 defined in eqn 6.11:

E12 =

∫∫
Ψ∗ Ĥ12 Ψ d3r1d3r2

=

∫∫
Ψ∗

e2

4πε0r12
Ψ d3r1d3r2

=
1

2

∫∫ (
u∗1s(r1)u∗nl(r2)± u∗nl(r1)u∗1s(r2)

) e2

4πε0r12(
u∗1s(r1)u∗nl(r2)± u∗nl(r1)u∗1s(r2)

)
d3r1 d3r2 ,

where again the + sign applies for singlet states and the − sign for triplets. The four terms are:

E12 = +
1

2

e2

4πε0

∫∫
u∗1s(r1)u∗nl(r2)

1

r12
u1s(r1)unl(r2)d3r1d3r2

+
1

2

e2

4πε0

∫∫
u∗nl(r1)u∗1s(r2)

1

r12
unl(r1)u1s(r2)d3r1d3r2

±1

2

e2

4πε0

∫∫
u∗1s(r1)u∗nl(r2)

1

r12
unl(r1)u1s(r2)d3r1d3r2

±1

2

e2

4πε0

∫∫
u∗nl(r1)u∗1s(r2)

1

r12
u1s(r1)unl(r2)d3r1d3r2

= +
D

2
+
D

2
± J

2
± J

2
,

where D and J are given by eqns 6.18 and 6.19 respectively.
The total energy is thus given by

E = E1s + Enl +D ± J
= −4RH − 4RH/n

2 +D ± J ,

where the + sign applies to singlets and the − sign to triplets. (cf eqn 6.20 with n1 = 1 and n2 = n.)



Appendix D

Perturbation theory of the Stark
effect

This appendix gives an explanation of the quadratic and linear Stark shifts by perturbation theory. The
basic phenomena were described in § 8.4.1 of Chapter 8. We focus specifically on the quadratic shift in
an alkali atom, and the linear shift in hydrogen.

D.1 Quadratic Stark shifts

The energy shift caused by the quadratic Stark effect can be evaluated by applying perturbation theory.
The perturbation to the energy of the electrons by a field Eis of the form:

H ′ = −
∑
i

(−eri) · E ,

= eE
∑
i

zi , (D.1)

where the field is assumed to point in the +z direction. This is just the sum of the interaction energies of
the electron dipoles with he electric field. In principle, the sum is over all the electrons, but in practice,
we need only consider the valence electrons, because the electrons in closed shells are very strongly bound
to the nucleus and are therefore very hard to perturb. In writing eqn D.1, we take, as always, ri to be
the relative displacement of the electron with respect to the nucleus.

For simplicity, we shall just consider the case of alkali atoms which possess only one valence electron.
In this case, the perturbation to the valence electron caused by the field reduces to:

H ′ = eEz . (D.2)

The first-order energy shift is given by:

∆E = 〈ψ|H ′|ψ〉 = eE〈ψ|z|ψ〉 , (D.3)

where

〈ψ|z|ψ〉 =

∫∫∫
all space

ψ∗z ψ d3r . (D.4)

Now unperturbed atomic states have definite parities. (See discussion in Section 3.4.) The product
ψ∗ψ = |ψ2| is therefore an even function, while z is an odd function. It is therefore apparent that

〈ψ|z|ψ〉 =

∫∫∫
all space

(even function) × (odd function) d3r = 0 .

The first-order energy shift is therefore zero, which explain why the energy shift is quadratic in the field,
rather than linear.

The quadratic energy shift can be calculated by second-order perturbation theory. In general, the
energy shift of the ith state predicted by second-order perturbation theory is given by:

∆Ei =
∑
j 6=i

|〈ψi|H ′|ψj〉|2

Ei − Ej
, (D.5)
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where the summation runs over all the other states of the system, and Ei and Ej are the unperturbed
energies of the states. The condition of validity is that the magnitude of the perturbation, namely
|〈ψi|H ′|ψj〉|, should be small compared to the unperturbed energy splittings. For the Stark shift of the
valence electron of an alkali atom, this becomes:

∆Ei = e2E2
∑
j 6=i

|〈ψi|z|ψj〉|2

Ei − Ej
. (D.6)

We see immediately that the shift is expected to quadratic in the field, which is indeed the case for most
atoms.

As a specific example, we consider sodium, which has a single valence electron in the 3s shell. We
first consider the ground state 3s 2S1/2 term. The summation in eqn D.6 runs over all the excited states
of sodium, namely the 3p, 3d, 4s, 4p, . . . states. Now in order that the matrix element 〈ψi|z|ψj〉 should
be non-zero, it is apparent that the states i and j must opposite parities. In this case, we would have:

〈ψi|z|ψj〉 =

∫∫∫
all space

(even/odd parity) × (odd parity) × (odd/even parity) d3r 6= 0 ,

since the integrand is an even function. On the other hand, if the states have the same parities, we have:

〈ψi|z|ψj〉 =

∫∫∫
all space

(even/odd parity) × (odd parity) × (even/odd parity) d3r = 0 ,

since the integrand is an odd function. Since the parity varies as (−1)l, the s and d states do not
contribute to the Stark shift of the 3s state, and the summation in eqn D.6 is only over the p and f
excited states. Owing to the energy difference factor in the denominator, the largest perturbation to the
3s state will arise from the first excited state, namely the 3p state. Since this lies above the 3s state, the
energy difference in the denominator is negative, and the energy shift is therefore negative. Indeed, it is
apparent that the quadratic Stark shift of the ground state of an atom will always be negative, since the
denominator will be negative for all the available states of the system. This implies that the Stark effect
will always correspond to a red shift for the ground state level.

There is no easy way to calculate the size of the energy shift, but we can give a rough order of
magnitude estimate. If we neglect the contributions of the even parity excited states above the 3p state,
the energy shift will be given by:

∆E3s ≈ −e2E2 |〈ψ3s|z|ψ3p〉|2

E3p − E3s
.

The expectation value of z over the atom must be smaller than a, where a is the atomic radius of sodium,
namely 0.18 nm. Hence with E3p − E3s = 2.1 eV, we then have:

∆E3s . −
e2a2

E3p − E3s
E2 .

On introducing the atomic polarizability defined in eqn 8.29, we then find that α3s . 3.2×10−20 eV m2 V−2.
This predicts a shift of . −1 × 10−5 eV (−0.08 cm−1) in a field of 2.5 × 107 V/m, which compares rea-
sonably well with the experimental value of −0.6× 10−5 eV (−0.05 cm−1).

The order of magnitude calculation given above can also provide a useful estimation of the field
strength at which the second-order perturbation approximation breaks down. This will occur when the
magnitude of the perturbation become comparable to the unperturbed energy splitting, that is when:

eE|〈ψ3s|z|ψ3p〉| ∼ (E3p − E3s) .

On setting |〈ψ3s|z|ψ3p〉| = a as before, we find E ∼ 1010 V/m, which is an extremely large field. The
second-order perturbation approach will therefore be a good approximation in most practical situations.

Now consider the Stark shift of the 3p state. The 3p state has odd parity, and so the non-zero
contributions in eqn D.6 will now arise from the even parity ns and nd states:

∆E3p = e2E2

(
|〈ψ3p|z|ψ3s〉|2

E3p − E3s
+
|〈ψ3p|z|ψ3d〉|2

E3p − E3d
+
|〈ψ3p|z|ψ4s〉|2

E3p − E4s
+ · · ·

)
.

The first term gives a positive shift, while all subsequent terms are negative. Therefore, it is not imme-
diately obvious that the Stark shift of excited states like the 3p state will be negative. However, since
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the energy difference of the excited states tends to get smaller as we go up the ladder of levels, it will
generally be the case that the negative terms dominate, and we have a red shift as for the ground state.
Moreover, the red shift is generally expected to be larger than that of the ground state for the same
reason (i.e. the smaller denominator). In the case of the 3p state of sodium, the largest contribution
comes from the 3d state which lies 1.51 eV above the 3p state, even though the 4s state is closer (relative
energy +1.09 eV). This is because of the smaller value of the matrix element for the s states.

D.2 Linear Stark effect

The second-order energy shift given by eqn D.6 diverges if an atom possesses degenerate states with
opposite parities. This is the case for the l states of hydrogen with the same n. A new approach to
calculate the Stark shift must then be taken based on degenerate perturbation theory.

Consider first the 1s ground state of hydrogen. This level is unique, and hence the second-order
perturbation approach is valid. A small quadratic red-shift therefore occurs, as discussed in the previous
sub-section.

Now consider the n = 2 shell, which has four levels, namely the m = 0 level from the 2s term, and
the m = −1, 0, and +1 levels of the 2p term. In the absence of an applied field, these four levels are
degenerate. If the atom is in the n = 2 shell, it is equally likely to be in any of the four degenerate levels.
We must therefore write its wave function as:

ψn=2 =

4∑
i=1

ciψi , (D.7)

where the subscript i identifies the quantum numbers {n, l,m}, that is:

ψ1 ≡ ψ2,0,0 ; ψ2 ≡ ψ2,1,−1 ; ψ3 ≡ ψ2,1,0 ; ψ4 ≡ ψ2,1,+1 .

The first-order energy shift from eqn D.3 becomes:

∆E = eE
∑
i,j

cicj〈ψi|z|ψj〉 . (D.8)

Unlike the case of the ground state, we can see from parity arguments that some of the matrix elements
are non-zero. For example, ψ1 has even parity, but ψ3 has odd parity. We therefore have:

〈ψ1|z|ψ3〉 =

∫∫∫
all space

ψ∗1 z ψ3 d3r ,

=

∫∫∫
all space

(even parity) × (odd parity) × (odd parity) d3r ,

6= 0 .

This implies that we can observe a linear shift of the levels with the field. It turns out that 〈ψ1|z|ψ3〉 is
the only non-zero matrix element. This is because the perturbation H ′ = eEz commutes with L̂z, and so
the only non-zero matrix elements are those between states with the same m value but opposite parity,
that is, between the two m = 0 levels derived from the 2s and 2p states.

It can easily be evaluated from the hydrogenic wave functions of the n = 2 levels given in Tables 2.2
and 2.3 that:

〈ψ1|z|ψ3〉 = −3a0 ,

where a0 is the Bohr radius of hydrogen. We then deduce that the field splits the n = 2 shell into a
triplet, with energies of −3ea0E , 0, and +3ea0E with respect to the unperturbed level. As expected, the
splitting is linear in the field.
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Appendix E

Interaction with narrow-band
radiation

The Einstein B coefficients were introduced in Chapter 9 to consider the interaction of atoms with broad-
band radiation, such as black-body radiation, as illustrated in Fig. E.1(a). In this situation, the spectral
energy density u(ν) varies much more slowly with frequency ν than the atomic lineshape function g(ν),
and may effectively be taken as constant over the line width of the transition. In a laser, by contrast,
the spectral width of the radiation inside the cavity is frequently much narrower than the width of the
atomic transition, as illustrated in Fig. E.1(b).

Th absorption and stimulated emission transition rates for the case of narrow-band radiation, as
shown in Fig. E.1(b), can be calculated as follows. The spectral line-shape function g(ν)dν gives the
probability that a particular atom will absorb or emit in the spectral range ν → ν + dν. Hence the
number of atoms in the lower level per unit volume that can absorb radiation in this frequency range is
N1g(ν)dν. From the definition of the Einstein B12 coefficient given in eqn 9.7, the absorption rate in this
frequency range is therefore:

dW12 = B12N1g(ν)dν u(ν) . (E.1)

The total absorption rate is thus:

W12 =

∫ ∞
0

B12N1g(ν)u(ν) dν . (E.2)

Since the spectral energy density of the radiation inside the laser cavity is much narrower than the width
of the atomic transition, we can write it as:

u(ν) = uνδ(ν − νlaser) , (E.3)

where uν is the total energy density of the beam (cf eqn 9.20) and δ(ν) is the Dirac delta function. The
Dirac delta function δ(x − x0) takes the value of 0 at all values of x apart from x0, and is normalized
such that

∫∞
0
δ(x − x0)dx = 1. It can be thought of as the limit of a top-hat function of width ∆ and

g(n)

u(n)

Frequency

(a) (b)

g(n)

Frequencyn0n0

u(n)

nlaser

g(n)

u(n)

Frequency

(a) (b)

g(n)

Frequencyn0n0

u(n)

nlaser

Figure E.1: Interaction of an atomic transition with: (a) broad-band radiation, and (b)
narrow-band radiation. Note that the spectral energy densities and the atomic line-shape
functions are not drawn on the same vertical scales.

141



142 APPENDIX E. INTERACTION WITH NARROW-BAND RADIATION

height 1/∆ centred at x0 in the limit where ∆→ 0. It is easy to show that∫ ∞
0

f(x)δ(x− x0) dx = f(x0) .

On inserting eqn E.3 into E.2, we obtain:

W12 =

∫ ∞
0

B12N1g(ν)uνδ(ν − νlaser) dν .

= B12N1g(νlaser)uν . (E.4)

The argument for the stimulated emission rate follows similarly, and leads to:

W21 = B21N2g(νlaser)uν . (E.5)



Appendix F

Mathematics of mode-locking

The electric field of the light emitted by a multi-mode laser is given by:

E(t) =
∑
m

Em exp(iωmt+ ϕm) , (F.1)

where the sum is over all the longitudinal modes that are oscillating. ωm is the angular frequency of the
mth mode (= mπc/L, for n = 1), and ϕm is its optical phase. In multi-mode operation all the phases
of the modes are random, and not much can be done with the summation. However, in a mode-locked
laser, all the phases are the same (call it ϕ0 ) because they have been locked together. This allows us to
evaluate the summation.

We assume that all the modes have approximately equal amplitudes E0. The output field of the
mode-locked laser is then given by:

E(t) = E0eiϕ0

∑
m

eiωmt . (F.2)

Let us suppose that there are N modes oscillating, and the frequency of the middle mode is ω0. This
gives the field as :

E(t) = E0eiϕ0

m′=+(N−1)/2∑
m′=−(N−1)/2

exp (i(ω0 +m′πc/L)t) ,

= E0eiϕ0eiω0t

m′=+(N−1)/2∑
m′=−(N−1)/2

exp

(
i
m′πc

L
t

)
.

(F.3)

This type of summation is frequently found in the theory of diffraction gratings. It can be evaluated by
standard techniques.1 We are actually interested in the time dependence of the output power, which is
given by:

P (t) ∝ E(t)E(t)∗ . (F.4)

The final answer is:

P (t) ∝ sin2(Nπct/2L)

sin2(πct/2L)
. (F.5)

This function has big peaks whenever t = integer× 2L/c and is small at all other times. Thus the output
consists of pulses separated in time by 2L/c. The duration of the pulse is approximately given by the time
for the numerator to go to zero after one of the major peaks. This time is 2L/Nc. The frequency band
width ∆ν is equal to the (number of modes oscillating)× (spacing between modes), i.e. ∆ν ∼ N × c/2L.
Thus ∆t∆ν ∼ 1 as expected from the uncertainty principle given in eqn 10.7.

1Remember that eab = (ea)b, and that
∑n−1
j=0 r

j = (1− rn)/(1− r).
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Appendix G

Frequency conversion by nonlinear
optics

It was discovered very early on in the history of lasers that certain crystals could double the frequency
of laser light, as shown in Fig. G.1(a). This effect, which is know as frequency doubling, works by
combining two photons at frequency ω to produce a single photon at frequency 2ω, as shown in Fig. G.1(b).
It occurs when a nonlinear crystal is driven by the intense light field produced by a powerful laser.
The crystal must be non-centro-symmetric: i.e., belong to a crystal class that does not have inversion
symmetry. Beta-barium borate (BBO), potassium dihydrogen phosphate (KDP) and lithium niobate are
well-known examples of such crystals.

Frequency doubling is a specific example of a more general effect called nonlinear frequency mixing.
In nonlinear frequency mixing, the nonlinear crystal is driven by two intense waves at angular frequencies
ω1 and ω2, and a third wave is generated at the sum of their frequencies, as shown in Fig G.1(c):

ω3 = ω1 + ω2 . (G.1)

Frequency doubling corresponds to the case where ω1 = ω2. The condition in eqn G.1 is equivalent to
energy conservation in the photon conversion process. The photon momentum must also be conserved,
as shown in Fig. G.1(d), which requires that:

k3 = k1 + k2 , (G.2)

where k3, k1 and k2 are the respective wave vectors inside the crystal. This condition is called phase
matching, and is, in general, very hard to satisfy. Nonlinear frequency mixing therefore only works
efficiently for the very specific wavelengths that satisfy the phase-matching condition. These wavelengths
are selected by the orientation of the crystal.

The nonlinear process works equally well in reverse, and a single “pump” photon can be split into
two photons of lower frequency called the “signal” and “idler” photons subject to energy conservation:

ωp = ωs + ωi . (G.3)

This process is called parametric down conversion and is illustrated in Fig. G.1(e). Note that there
is an infinite number of combinations of signal and idler frequencies that can satisfy eqn G.3, and the
actual frequencies that are produced are determined by the phase-matching condition. Down conversion
is a convenient way to generate tuneable radiation from a fixed-frequency laser, and is now widely used
to extend the range of frequencies available from lasers.

It should be pointed out that the frequency conversion processes that are considered in this appendix
are examples of phenomena that are well-known in classical nonlinear optics. The description in terms of
photons is helpful, but not necessary: all of the effects can have classical explanations. Quantum effects
do show up when these nonlinear processes are considered at the single-photon level, but this is not the
regime that is being considered when the driving field is an intense laser beam.
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Figure G.1: (a) and (b): frequency doubling. (c) Sum frequency mixing. (d) Phase matching.
(e) Parametric down conversion. The subscripts p, s, and i stand, respectively, for “pump”,
“signal” and “idler”.


