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+ lon-atom collisions
+ Energy loss in matter
+ Applications
+ Atmospheric Science
+ Astrophysics
+ Material science
+ Medicine

+ Geology
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lon-atom collisions — Basics

+ Coulomb repulsion/attraction (electrons/nucleus) ‘
+ Scattering/deflection of the projectile (Rutherford)

+ Net energy conserved, but the projectile itself may gain or
loose energy
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| lon-atom collisions — Basics
|

+ lon impact on an atom leads ®
to many processes

+ |onisation

¢ EXC'tatl on projectile ion

+ Electron loss tareet ato -
rget atom
+ Electron capture - ; - =

excitation ionization electron capture
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( Energy Loss in matter

Electronic stopping dominates Muclear stopping dominates
i~ N,

vacuum | solid material

Sputtered ion

N
y

Concentratd on__

Depth

+ Energy loss occurs due to

+ Interaction of projectile electrons with target electrons
+ Interaction of the nuclei (coulomb repulsion)
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( Energy Loss in matter

+ Loss pattern depends on the projectile charge, mass and velocity

for fast ions of charge ze, dE A5 72
mass m and velocity v — = —NB
incident on a medium of dx mv

number density N and - 2mv° 1%
average atomic number Z B = Z[In( T )=In(1-=)-

+ As the ion passes through the medium loss continues to rise

(mainly 1/v? factor), eventually slowing down and capturing
electrons until it is neutralised (z = 0).

+ Several low energy electrons are formed at the 'tail’

+ It is this (final) slowing down is the key to many applications
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Energy Loss : photons and electrons

X-rays (20MeV)
Electrons and photons -

behave differently to ions.

The energy loss patterns of
photons, electrons and
protons are different and are
the key to their usefulness in
various applications

Energy Loss

Electrons
il 4 MeV Protons
5 150 MeV

Depth in water [cm]
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( Applications

+ Material Processing

+ Semiconductor Industry, IC fabrication
+ Doping/Material modifications

+ Maedical Applications
+ Tumor therapy

+ Geology/Archaeology

+ Accelerator Mass Spectrometry
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Material Processing




( Material Processing

+ Doping done commonly by CVD, MBE, IB

+ lon bombardment invented in 1954, commercial application
iIn 1970

+ Doping concentration 10**-10*cm=3

+ Beam spots 10 ym, currents 10 pA lons: usually Al* P* As*
In* B*, energy 100 keV to MeV

+ Precise control needed since slight doping variation leads to
huge changes in semiconductor properties

.+ High process repeatability

+ |ICs solely possible due to IB technique!
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. Material Processing

¢ lon-beam milling uses a focused beam "*%, € omhsss,

{Gm'“%
o0

of MeV protons or ions to pattern
materials at nanodimensions.

+ lons travel in an almost straight path,
so fabrication of 3-D, high aspect ratio
structures possible with accuracy

+ Negligible secondary electrons effects,
especially with proton beams

+ Due to the Bragg peak, increased
localized damage at the end of range

+ lons are stopped in the solid, so
substitution defects can be created
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Tumor Therapy

+ Traditional tumor therapy
+ Chemo
+ Radiation (x-ray)
+ Disadvantage
+ Large dose required for deep-seated tumors

+ Undesired, heavy damage along the access path
+ Straggling/scattering leads to widespread loss of healthy tissue
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(Tumor Therapy using ion beams

+ Depth profiling possible

135 MeV/u
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+ Very little damage 1 “C

195 MeV/u

to healthy tissue on the
path
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+ Buildup of secondary
fragments is localised

330 MeV/u

+ Dose tall is short
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+ Lateral dose Is small
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Tumor Therapy using ion beams

+ Therapy using ion beams
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+ Very low straggling compared to x-rays
+ Very high damage at specific depth at low doses

Well-controlled tissue
destruction in the case of
lon therapy, as compared
to gamma rays

Low survival probability
even at low dose for ions
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Tumor Therapy using ion beams

+ Disadvantages ‘
+ Needs high energy beams

+ Needs energy tuning
+ Elaborate accelerator facility

¢ Successes

+ High individual success rates
+ Dedicated medical accelerators in Europe, US, Japan

Rev. Mod. Phys. 82, 383—-425 (2010)
Heavy-ion tumor therapy : Physical and radiobiological benefits

Dieter Schardt, Thilo Elsasser, Daniela Schulz-Ertner
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Accelerator Mass Spectrometry




(AMS : Background

+ Radiocarbon dating

+ Determine the amount of radiocarbon in a sample by [3
counting and from the count rate estimate the age of the
sample based on known *“C half life.

+ Abundance of **C (relative to **C) is negligible and half-life is
long

+ Makes counting tedious and inefficient
+ Better Method (Muller 1977)

+ Separate **C from “C by based on velocity filtering of
accelerated (high energy) ion beams

+ normal mass spectrometers not suitable due to molecular
Isobaric background
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AMS : Principle

+ Create ions of samples (usually mix of species)
+ Accelerate them to (several) MeV

+ Separate atomic (ionic) species after acceleration by a
combination of m/q separation using an Analysing Magnet,
velocity filtering by means of a Wien filter (crossed E, B) fields
and Energy telescope (energy loss in a gas cell)

+ The two "tricks" that make AMS work are the molecular
dissociation process that occurs in the accelerator and the
charge detection at the end.

+ Can even separate isobars due to difference in atomic
numbers, even though the masses are identical (eg *°Cl, 3¢S)
based on the Bragg Curve
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AMS : Technique
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(AMS : Technique
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A typical AMS for geology applications
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AMS : Abundance Sensitivity

+ Strength: power to separate a
rare isotope from an abundant
neighboring mass ("abundance
sensitivity", e.g. **C from 2C).

+ Permits detection of naturally
occurring, long-lived radio-
Isotopes such as °Be, *°Cl, #°Al
and “C. Their typical isotopic
abundance ranges from 1072
to 1075,

AMS can outperform the
competing technique of decay
counting for all isotopes where
the half-life is long enough.
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AMS : isobar separation

AE (+V) Er (+V)
Incident A
particle | -~ - Vd
| &0 550 A7 f

Recall: Energy loss is a — § i
function of both z and m / L
especially at the tail of Silicon ~ Lcathode (-v)
the Stopping curve :J'I:::::w Isobutane filled chamber

3.2 amoles 14C

Hence isobars can be
separated in an energy
loss (E-AE) detector
(also called an energy
telescope)
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AMS : Uses

+ Dating and Tracers ‘

+ Determination of **C concentration

+ 2°Be, %°Al, and **Cl are used for surface exposure dating in
geology/meteor studies.

+ 3H,C,3*Cl, and **°l are used as hydrological tracers.
+ Medical Applications

+ “Ca has been used to measure bone resorption
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Summary

+ Fundamental research in lon-Atom collisions have played a
significant role in shaping today's applications

+ Material processing
+ Medical Applications
+ Geology
+ Other Atomic Molecular Physics Applications

+ Lasers, Optical communication
+ Semiconductors and other wonder materials

| + Various analytical/diagnostic techniques, forensics,
security . . .

+ Cannot afford to ignore this important branch of fundamental
research!
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