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Outline

 Ion-atom collisions

 Energy loss in matter

 Applications

 Atmospheric Science

 Astrophysics

 Material science

 Medicine

 Geology
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 Coulomb repulsion/attraction (electrons/nucleus)

 Scattering/deflection of the projectile (Rutherford)

 Net energy conserved, but the projectile itself may gain or 
loose energy

Ion-atom collisions – Basics
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 Ion impact on an atom leads 
to many processes

 Ionisation

 Excitation

 Electron loss

 Electron capture

Ion-atom collisions – Basics
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 Energy loss occurs due to

 Interaction of projectile electrons with target electrons

 interaction of the nuclei (coulomb repulsion)

Energy Loss in matter
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 Loss pattern depends on the projectile charge, mass and velocity

Energy Loss in matter
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for fast ions of charge ze, 
mass m and velocity v 
incident on a medium of 
number density N and 
average atomic number Z 
 

 As the ion passes through the medium loss continues to rise 
(mainly 1/v2 factor), eventually slowing down and capturing 
electrons until it is neutralised (z = 0).

 Several low energy electrons are formed at the 'tail'

 It is this (final) slowing down is the key to many applications
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Energy Loss : photons and electrons
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Electrons and photons 
behave differently to ions.

The energy loss patterns of 
photons, electrons and 
protons are different and are 
the key to their usefulness in 
various applications
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 Material Processing

 Semiconductor Industry, IC fabrication

 Doping/Material modifications

 Medical Applications

 Tumor therapy

 Geology/Archaeology

 Accelerator Mass Spectrometry

Applications
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Material Processing
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Material Processing

 Doping done commonly by CVD, MBE, IB

 Ion bombardment invented in 1954, commercial application 
in 1970

 Doping concentration 1014 –1015 cm–3

 Beam spots 10 μm, currents 10 μA Ions: usually Al+ P+ As+ 
In+ B+, energy 100 keV to  MeV

 Precise control needed since slight doping variation leads to 
huge changes in semiconductor properties

 High process repeatability

 ICs solely possible due to IB technique!
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Material Processing
 Ion-beam milling uses a focused beam 

of MeV protons or ions to pattern 
materials at nanodimensions.

 Ions travel in an almost straight path, 
so fabrication of 3-D, high aspect ratio 
structures possible with accuracy

 Negligible secondary electrons effects, 
especially with proton beams

 Due to the Bragg peak, increased 
localized damage at the end of range

 Ions are stopped in the solid, so 
substitution defects can be created
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Tumor Therapy
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Tumor Therapy

 Traditional tumor therapy

 Chemo

 Radiation (x-ray)

 Disadvantage

 Large dose required for deep-seated tumors

 Undesired, heavy damage along the access path

 Straggling/scattering leads to widespread loss of healthy tissue
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 Depth profiling possible

 Very little damage
to healthy tissue on the 
path

 Buildup of secondary 
fragments is localised

 Dose tail is short

 Lateral dose is small

Tumor Therapy using ion beams
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Tumor Therapy using ion beams
 Therapy using ion beams

 Very low straggling compared to x-rays

 Very high damage at specific depth at low doses

Well-controlled tissue 
destruction in the case of 
ion therapy, as compared 
to gamma rays

Low survival probability 
even at low dose for ions
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Tumor Therapy using ion beams

 Disadvantages

 Needs high energy beams

 Needs energy tuning

 Elaborate accelerator facility

 Successes

 High individual success rates

 Dedicated medical accelerators in Europe, US, Japan

Rev. Mod. Phys. 82, 383–425 (2010) 

Heavy-ion tumor therapy : Physical and radiobiological benefits

Dieter Schardt, Thilo Elsässer, Daniela Schulz-Ertner
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Accelerator Mass Spectrometry
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AMS : Background

 Radiocarbon dating

 Determine the amount of radiocarbon in a sample by β 
counting and from the count rate estimate the age of the 
sample based on known 14C half life.

 Abundance of 14C (relative to 12C) is negligible and half-life is 
long

 Makes counting tedious and inefficient

 Better Method (Muller 1977)

 Separate 14C from 12C by based on velocity filtering of 
accelerated (high energy) ion beams

 normal mass spectrometers not suitable due to molecular 
isobaric background
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AMS : Principle

 Create ions of samples (usually mix of species)

 Accelerate them to (several) MeV

 Separate atomic (ionic) species after acceleration by a 
combination of m/q separation using an Analysing Magnet, 
velocity filtering by means of a Wien filter (crossed E, B) fields 
and Energy telescope (energy loss in a gas cell)

 The two "tricks" that make AMS work are the molecular 
dissociation process that occurs in the accelerator and the 
charge detection at the end. 

 Can even separate isobars due to difference in atomic 
numbers, even though the masses are identical (eg 36Cl, 36S) 
based on the Bragg Curve
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AMS : Technique
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AMS : Technique

A typical AMS for geology applications
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AMS : Abundance Sensitivity

 Strength: power to separate a 
rare isotope from an abundant 
neighboring mass ("abundance 
sensitivity", e.g. 14C from 12C).

 Permits detection of naturally 
occurring, long-lived radio-
isotopes such as 10Be, 36Cl, 26Al 
and 14C. Their typical isotopic 
abundance ranges from 10−12 
to 10−18.

 AMS can outperform the 
competing technique of decay 
counting for all isotopes where 
the half-life is long enough.
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AMS : isobar separation

Recall: Energy loss is a 
function of both z and m
especially at the tail of 
the stopping curve

Hence isobars can be 
separated in an energy 
loss (E-ΔE) detector 
(also called an energy 
telescope) 
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AMS : Uses

 Dating and Tracers

 Determination of 14C concentration

 26Be, 26Al, and 36Cl are used for surface exposure dating in 
geology/meteor studies.

  3H,14C,36Cl, and 129I are used as hydrological tracers.

 Medical Applications

 41Ca has been used to measure bone resorption
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Summary

 Fundamental research in Ion-Atom collisions have played a 
significant role in shaping today's applications

 Material processing

 Medical Applications

 Geology

 Other Atomic Molecular Physics Applications

 Lasers, Optical communication

 Semiconductors and other wonder materials

 Various analytical/diagnostic techniques, forensics,
security . . .

 Cannot afford to ignore this important branch of fundamental 
research!


