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1 Preamble

Measurement of various atttributes of a system is a fundamental process for all natural
sciences, and most certainly for physics. Now, it turns out that any physical attribute
(position, momentum, energy, voltage, current etc.) of any physical system cannot be
measured to arbitrarily high precision, even in principle. Thus, if you measure a physical
quantity x pertaining to a particular system, and you get a value x0 as a result, then
x0 cannot be regarded as exactly the same as the value of x possessed by the system at
the time of measurement (say xtrue). If we have a reliable estimate of the uncertainty
involved, we can say that xtrue lies in the range,

x0 + δx > xtrue > x0 − δx (1)

where δx is the uncertainty or the error in the measured value.

Before analysing the reasons for these unavoidable uncertainties or errors in the mea-
surements, let us have a word about the kind of physical systems and their physical
attributes we wish to talk about. We shall adopt the following point of view. At every
instant of time, the physical system possesses a unique and definite value for all the phys-
ical attributes which can be measured, independent of whether we actually perform any
measurement or not. These values are also independent of our method of measurement
or the kind of apparatus used. Thus, for example, at every instant of time a material
particle is in a state characterised by definite values of its position, momentum, angular
momentum and so on.

For a given combination of the physical quantity say x, and the system under consid-
eration, we call the definite value of x possessed by the system at a given time to be the
true value of x and denote it by xtrue. Furthermore, these true values of various physical
quantities, pertaining to the classical system, are smooth functions of the given external
conditions and time. Therefore, if the state of the system at any given instant is known
(by measuring the relevant physical quantities) the complete temporal development of the
system can be exactly predicted (both for the future and the past instants). The above
point of view and the corresponding measurements are called classical or deterministic. In
this note we will be concerned with deterministic measurements, unless otherwise stated.
We emphasise that not all physical systems yield to the classical approach. We will touch
upon this point at the end of this note.
Here are a few examples of the physical quantities we are interested in:

1. Universal constants like velocity of light in vacuum, charge of an electron, accelera-
tion due to gravity (we assume that this is constant).

2. Various electrical quantities like voltages, steady currents, capacitance, inductance
and so on.
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3. Equilibrium thermodyanmic quantities like pressure, temperature, volume, entropy,
heat capacities etc.

4. Bulk properties of materials e.g. the resisitivity of highly pure single crystal of
germanium, in a given crystallographic direction, at temperature = 77 ◦K.

We shall give an example of the process which is not deterministic. Suppose a particle,
large enough to be seen by the naked eye, is introduced in a liquid at t = 0. It will suffer
collisions with liquid molecules which are enormous in number, and consequently will
trace a path in the liquid as time passes. Note that it is impossible to account for the
elementary collision events in detail. You can’t do anything more than look at the motion
of the particle itself. In such circumstances, the path traced by the particle is completely
random i.e. by knowing the position of the particle at time t, you cannot predict exactly
its position at a subsequent instant. All that you can do is seek the probabilities for the
various values of the particle’s position at any given time. Obviously, the position of the
particle does not have a definite value at any given time. The motion described above is
called the Brownian motion.

2 Random Errors

The fundamental reason for this uncertainty or error mentioned in the first paragraph is
that any measuring apparatus and associated equipment is made of some material and
that material is at a finite temperature. The atoms and electrons that make up this mate-
rial jostle around in a random manner, and because of this they give rise to a signal that
is essentially indistinguishable from the signal that you are trying to measure.Thus, the
observed value is essentially uncertain, or erroneous, by the value of the above mentioned
‘noise signal’ (The term ‘noise’ means any random i.e. unpredictable process or motion),
which gets added up to the signal due to the system under observation. Since the value
of the noise signal fluctuates randomly in time, so also does the corresponding error in
the observed value. Therefore, it is called a ‘random error’. Ofcourse, if your measured
value has to have any meaning, the magnitude of the physical quantity being measured
must be much greater than the magnitude of the noise signal i.e. the signal to noise ratio
(S/N) must be as high as possible.

It is to be emphasised that the random errors, introduced by the random fluctuations
of atoms comprising the apparatus, are far smaller than many other sources of random
and systematic errors (see article 4) which are more important in practice. These random
fluctuations set up the lowest limit for the detectability of a signal or the highest limit on
the accuracy with which a measurement can be made.

In practice, the random errors can show up in the following (and the only) way. If you
repeat your measurement under identical conditions at various times, the random error
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in the measurement will take a value at random every time you repeat your measure-
ment. Therefore, the observed value, which contains the random error, will also fluctuate
randomly i.e. you cannot predict the observed value at the nth measurement by knowing
any or all the values at the previous measurements. However, the observed values will be
found to lie in a finite range.

3 Aims and Objectives

Before proceeding with our analysis, let us state clearly our aims and objectives. Suppose,
we repeat the measurement of a physical quantity say x, under identical conditions, a large
number of times so that we have a large amount of data revealing the random errors in
our measurements. What do we do with it? Well, concealed in our data is the information
about the true value of x, xtrue i.e. the value of the quantity x possessed by the system
under observation at the time of measurement, and also about the range of the random
errors involved. Thus on the basis of the observed data, we want to find the best estimate
of xtrue (call it xbest) and the best estimate of the amount of uncertainty in the value of
xbest. That is we must be able to write

(measured value of x) = xbest ± δx (2)

δx is the amount of uncertainty in the measurement of x and has the following meaning:
Your apparatus cannot meaningfully differentiate between two values of x say x1 and x2

if |x1 − x2| ≤ δx ∗

Since the observed values fluctuate randomly the best thing we can hope to know is
the probability of occurence of any particular value, relative to that of the others. In
practice, if want to find these probabilities we will have to repeat the measurement, under
identical conditions, infinitely many times. This is clearly an idealization. Thus we are
faced with the following problem: With the finite amount of data (however large) available
to us assuming that it follows a particular probability distribution, how to obtain the best
estimate of the true value of the physical quantity being measured and also of the amount
of this random error. Finally, we would like to test how good was this hypothesis that
our data fits a given probability distribution.

∗Suppose, we make two measurements of the same quantity x at two different times, on the same
physical system to get values x1 and x2 respectively. Then if |x1 − x2| � δx it is overwhelmingly
probable that x1 & x2 are the values possessed by the system at the two times of measurement rather
than x1 & x2 being due to random errors in measurement. If |x1 − x2| ≤ δx we cannot say anything
about x1 & x2 being two values possessed by the system under observation, we say that these values
cannot be resolved with our apparatus.
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4 Random and Systematic Errors

Another point: The limitations of the technique of measurement may also give rise to the
random errors. Imagine yourself measuring the period of a simple pendulum. You would
like to start and stop your stopwatch when the bob is in an extreme position. However,
due to the limitations of your reflexes, in a series of repetitions of the same measurement,
you would start and stop your stopwatch sometimes earlier and sometimes later than the
instant at which the bob reaches its extreme position. This will create a random error in
your measurement.

Random errors are not the only source of errors in a meaurement. There are an-
other kind of errors called the systematic errors. Technically, the systematic errors can
be defined as those, which do not reveal themselves by merely repeating the measurement
under identical conditions. The most fundamental error of this type is the ’least count’ of
your apparatus. Thus, if you measure a length using a ruler having a minimum marking
of 1 mm your measurement will be uncertain by at least ± 0.5 mm and this uncertainty
will persist in all measurements you make with the same ruler. A more serious source
of systematic errors is the miscalibration of the instruments. For example, if your stop
watch runs slow by one in thirty seconds, you will consistently under-estimate the pe-
riod of a simple pendulum in every measurement with the same stop watch. Similarly
a stretched (shrunk) ruler will always under-estimate (over estimate) any length being
measured. Such errors can only be eliminated by careful calibration of all the measuring
apparatus. In what follows we shall assume that all the systematic and human errors
have been reduced so as to be negligible as compared to the required precision. Thus we
are left with only the random errors.

In order to illustrate what has been said upto now, let us take an example. Suppose
you want to measure the width of a slit of a mass spectrograph, approximately 1 mm wide.
If you use a meter scale with least count 1 mm, the minimum error in your measurement
will be ± 0.5 mm i.e. the error is of the order of the slit width. Note that this is the
systematic error. You can improve upon this by using a scale with smaller graduation but
you can’t go beyond an error like 0.2 mm because of the limitations on the resolution of
your eyes. Here you will get random errors due to the process of alignment of the scale
graduations and the edges of the slit. You can do much better by mounting the slit on
a travelling micoscope which can reduce the overall error to ± 0.01 mm. If an accuracy
better than 10−2mm is desired, you can use a laser interferometer (if you can afford it!)
which can give you accuracies like 5×10−8mm. When you reach this kind of an accuracy,
(five parts in 108) the thermal noise of your apparatus (here the laser interferometer)
becomes relevant. Due to the continuous thermal motion of the atoms emitting the laser
radiation, the radiation is spread over a small wavelength interval ∆λ which † will limit

†Apart from the spread due to thermal motion, called Doppler width, there is an inherent width due
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the accuracy with which the given length can be measured. The quantitative relationship
between this accuracy and ∆λ depends on the details of the experiment.‡

5 Histograms (Frequency distributions)

Suppose we have a set of N values of a continuous variable x generated by N repetitions
of the measurement of x (say x1, x2, ..... xN). We divide the range of values into intervals
and count the number of values in each interval.

For example, a set of 10 values (all in same units)

26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4

will give rise to the following table

Intervals(K) 22− 23 23− 24 24− 25 25− 26 26− 27 27− 28
Observations
in an interval (nk) 1 3 1 4 1 0

If a measurement falls exactly on the boundary between two intervals, we can assign
half a measurement to each of the two.

The results such as those in the above table can be plotted in the form of a histogram
as shown in fig. 1. The area of the rectangle drawn above each interval is the same as the
fraction of measurements that fall in the interval. Thus if the width of the kth interval is
∆k then the height fk of the rectangle drawn above the kth interval is given by

fk∆k = fraction of measurements in the kth interval

= nk/N

Note that ∑
k

fk∆k = 1 (3)

Check the above remarks using fig. 1.

Note that you have to choose ∆k such that there are several readings in each of a large
fraction of the number of intervals. If the intervals are made much too wide, then all (or
almost all) the readings will fall in one interval. If the intervals are made too narrow then
few of them will contain more than one reading and the histogram will be a large number

to quantum effects, called the natural line width. However, the Doppler width, whenever present, always
masks the natural line width.

‡See for example, Optical Interferometery, by M.Francon, Academic Press, NY, Chapter 15.
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of narrow rectangles almost all of the same height. When N is small this optimum size of
∆k is relatively large but as N gets larger this optimum size of ∆k gets smaller and smaller.

Out of the set of N values that we have we can construct two parameters which are
of importance to us. First is the mean value of x :

x =
N∑

i=1

xi/N =
∑

k

xkfk∆k (4)

In the latter sum k runs over intervals and xk is the midpoint of the kth interval.
The standard deviation, the measure of deviation from the mean is given by

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

If N is sufficiently large, the factor 1/(N − 1) can be replaced by 1/N . Note that σ 2
x is

the average value of the quantity (x− x)2. The quantity σ 2
x is called the variance and is

denoted by V ar(x).

6 The Limiting Distribution

Almost all the measurements possess the following important property. As the number
of measurements approaches infinity their histogram approaches some definite continuous
curve described by a definite continuous function say p(x). When this happens, the con-
tinuous function p(x) (and the corresponding curve) is called the limiting distribution.
Note that the limiting distribution cannot be exactly produced in practice, because this
would require infinitely many repetitions of the measurement of the quantity x, under
identical conditions. However, there is overwhelming evidence that for almost all mea-
surements there exists a limiting distribution which our histogram approaches more and
more closely as we make more and more repetitions of a measurement.

Since the limiting distribution is a limiting form of the histogram (in the limit N →∞)
the following interpretations are easily understood. p(x)dx = the fraction of measurements

falling between x and x+dx;
∫ b

a
p(x)dx = fraction of measurements falling between x = a

and x = b. If in addition, we impose the requirement (called the normalization condition)
that ∫ ∞

−∞
p(x)dx = 1 (5)

then the function p(x) is called the probability density function with the interpretation

p(x)dx = probability that any one measurement gives a value between x & x + dx∫ b

a

p(x)dx = probability that any one measurement gives a value between x = a & x = b
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Figure 1: The histogram showing the fraction of measurements of x that fall in corre-
sponding intervals for the number of values = (a) 10, (b) 100 and (c) 1000 respectively.
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We have arrived at the following very important conclusion:

If we know (by some means) the normalised limiting distribution p(x) for the measure-
ment of a given quantity x with a given apparatus then we would know the probability
of obtaining a value of x in any interval a < x < b.

If the measurement is very precise (with low overall uncertainty) then all the values
obtained will be very close to the actual value of x (xtrue). Furthermore, if all the errors
are random, after many measurements, there will be as many observations above xtrue as
there are below it.

Under such conditions we expect our limiting distribution p(x) to be

i centered on the actual value of x (x = xtrue)

ii symmetric around x = xtrue i.e.

p(xtrue + x) = p(xtrue − x) for all x

iii sharply peaked at x = xtrue i.e. p(x) rapidly tends to zero as x goes away from
x = xtrue on either side.

The last point does not stop us from integrating p(x) from −∞ to +∞, because p(x)
is a well defined and continuous function of x over the whole range −∞ to +∞. A
problem may arise if x cannot take negative values even in principle (e.g. kinetic energy,
counts from a radioactive source etc.) However, in such cases xtrue is generally found
to be sufficiently away from x = 0 so that p(x) ≈ 0 at x = 0. We can, then formally
extrapolate p(x) upto −∞ because the fictitious contribution to p(x) generated by such an

extrapolation, namely
∫ 0

−∞ p(x)dx is utterly negligible as compared to the total probability∫ ∞
−∞ p(x)dx = 1

7 The True Value Revisted

Let us elaborate on point(i) in the previous article. If we repeat the measurement of
the quantity x under identical conditions, with negligible systematic errors, the resulting
distribution will approximate the limiting distribution p(x). This means that the centre
of this distribution is very close to the centre of p(x) i.e. xtrue. But we can improve upon
our distribution by performing more and more repetitions, each time getting better and
better approximation to p(x). Thus the centre of this distribution will tend to xtrue as
the number of repetitions tends to infinity. Thus, we can identify xtrue as that value to
which one approaches closer and closer as one makes more and more repetitions with
negligible systematic errors. You may see that this identification of the true value was
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really necessary. We had defined xtrue to be the value of the physical quantity x, possessed
by the system under observation at the time of measurement. However, due to the
inevitable random errors, no measurement can exactly determine the true value of any
continuous variable (a length, a time etc.) Thus the very existence of the true value can
be questioned. For most of the physical quantities it is legitimate to assume that the
true values exist and can be realised according to our new identification of the true value.
There are situations, both pertaining to the physical quantities and to the systems under
observation where there is no meaningful analogue of the true value. We shall discuss
these later.

8 Mean and Standard deviation for p(x)

We can easily generalise the definitions of the mean and the variance of x for the limiting
distribution p(x).

We have

x = lim
k→∞

lim
∆k→0

∑
k

xkfk∆k with lim
k→∞

lim
∆k→0

∑
k

fk∆k = 1

giving

x =

∫ ∞

−∞
x p(x)dx (6)

with ∫ ∞

−∞
p(x)dx = 1

Since σ 2
x is the mean of the quantity (x− x)2,

σ 2
x =

∫ ∞

−∞
[(x− x)2 p(x)] dx

and the standard deviation

σx =

[ ∫ ∞

−∞
[(x− x)2 p(x)] dx

] 1
2

(7)

9 The Normal (Gaussian) Distribution

It is worthwhile to ask the following question: Is is possible to predict the form of the
limiting distribution (i.e. of the function p(x)) for a given type of measurement? If this
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can be accomplished we may be able to obtain the best estimate of the true value and also
of the uncertainty contained in the value observed as a result of any single measurement,
on the basis of the observed set of N values.

The answer to the above question is in the affirmative. This can be seen as follows:

Consider the measurement of a quantity x pertaining to a physical system whose true
value exists in the sense defined in article 7 (we call such measurements to be determin-
istic or classical).

For such a measurement, the observed deviation from the true value xtrue is a superpo-
sition of a very large (ideally infinite) number of fluctuations due to random vibrations of
atoms in the apparatus, and many other sources of random errors due to the limitations
of the measurement technique. We further assume that each of these fluctuations is very
small (ideally infinitesimal) in magnitude and all these fluctuations are statistically inde-
pendent i.e. nothing can be inferred about the magnitude of any one of them by using the
knowledge of the magnitude of any other. Thus, the observed limiting distribution is the
probability distribution for the linear superposition of a very large number of statistically
independent fluctuations, the magnitude of every fluctuation being very small. Under
these circumstances the observed limiting distribution is found to have the form which
can be reliably approximated by the normalised Gaussian distribution,

Px,σ(x) = (2πσ2)−
1
2 exp [−(x− x)2/2σ2] (8)

You can check that this distribution is centered at x = x and is symmetric about it.
Thus we identify x to be the true value of x.

The parameter σ is called the width parameter. Larger the σ the larger is the FWHM
and vice-a-versa.

Let us find out the mean value of x viz. x for the Normal distribution.
We have

x =

∫ ∞

−∞
x p(x)dx

= (2πσ2)−
1
2

∫ ∞

−∞
x exp [−(x− x)2/2σ2] dx

Put y = x− x and dy = dx. There is no change in the limits of integration.

x = (2πσ2)−
1
2

( ∫ ∞

−∞
ye−y2/2σ2

dy + x

∫ ∞

−∞
e−y2/2σ2

dy

)
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The first integrand is an odd function integrated over −∞ to ∞ and hence the integral
identically vanishes. The value of the second integral is (2πσ2)

1
2 so that

x = x (9)

Thus, if the limiting distribution is Gaussian then the mean value of x, after infinitely
large number of trials, will be infinitely close to the true value x .

Since the variance σ 2
x is the mean of the quantity (x− x)2 we have

σ 2
x =

∫ ∞

−∞
(x− x)2 Px,σ(x) dx

We leave it to the reader to evaluate this integral. The result is

σ 2
x = σ2

Thus after infinitely large number of repetitions the observed standard deviation σx

will be infinitely close to the width parameter of the Gaussian distribution. Henceforth,
we shall call σ the standard deviation of the Gaussian distribution.

10 Interpretation of σ as the Measure of Uncertainty

It is quite legitimate to think of σ as the measure of uncertainty contained in the result
of a single measurement of x. If you look at the curve of Px,σ(x) for a given σ you will
notice that the probability of the values of x such that

|x− x| > σ

falls off to zero quite rapidly i.e. the larger part (68%,see below) of the total area under
the curve for Px,σ(x) lies over the interval x − σ to x + σ. This area is nothing else but
the probability that any one measurement will produce a value between x− σ and x + σ:

P (x− σ ≤ x ≤ x + σ) =

∫ x+σ

x−σ

Px,σ(x) dx

In fact if t is a real variable one can calculate

P (x− tσ ≤ x ≤ x + tσ) =

∫ x+tσ

x−tσ

Px,σ(x) dx

=

∫ x+tσ

x−tσ

(2πσ2)−
1
2 exp [−(x− x)2/2σ2] dx
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Put z = (x− x)/σ so that

P (x within tσ) =
1√
2π

∫ t

−t

e−z2/2 dz (10)

This is the well known error function erf(t). In particular for t = 1, we get p (x within
σ) = 68%

We can interpret our result in the following manner. If the limiting distribution is
Gaussian with the standard deviation σ then we can say with 68% confidence that the
result of a single measurement will lie within x ± σ where x is the true value of x. This
means that we can be 68% confident that the maximum uncertainty involved in a single
measurement is ±σ i.e. if x0 is the observed value,

x0 − σ ≤ xtrue = x ≤ x0 + σ (11)

Another interpretation is that if the value of the standard deviation of the limiting gaus-
sian distribution is known then out of any number of repetitions 68% will give a value
lying between x± σ.

11 Evaluation of the Best Estimate for x & σ

You may feel that our problem is now solved because if the limiting distribution is Gaus-
sian then the value of the parameter x is infinitely close to the true value of x and the
value of the parameter σ gives us the estimate (with corresponding confidence limits) of
the uncertainty in a single measurement. How do we determine the values of x & σ?
Note that these values will be determined by the given combination of the apparatus, the
system under measurement and other external conditions. If this combination is changed
the value of x & σ will, in general, change. Given a combination of the apparatus and the
system under measurement, the only way to obtain the values of x & σ pertaining to the
corresponding Gaussian distribution is to repeat the measurements, under identical con-
ditions infinite number of times, generating infinite amount of the observed data. Thus,
the problem now is to obtain the best estimates of the quantities x & σ using the finite
amount of data we have.

Suppose we have the set of values x1, x2, ... xi... xN produced by N repetitions. We
want to construct an expression for the probability of obtaining this set of values in N
measurements, say P (x1, x2, ... xi... xN). Now all these N measurements are statistically
independent because the probabilities of various values of x in one measurement are not
affected by any other measurement. This statistical independence ensures that

P (x1, x2, .... xi..... xN) = P (x1) P (x2).... P (xi)..... P (xN) (12)
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Since the probabilities of various values of x in any single measurement are normally
distributed,

P (xi) ∝
1

σ
exp [−(xi − x)2/2σ2] i = 1, 2, ......N

Px,σ(x1, x2, .... xi..... xN) ∝ 1

σN
exp

[
−

∑
(xi − x)2/2σ2

]
(13)

Note that here the set {xi} is known and the values of the parameters x & σ are not
known. We want to obtain the best estimates of x & σ. We do this by using the principle
of maximum likelihood, which can be stated as follows.

Given x1, x2, .... xN , the best estimates for x & σ are those values, for which the
probability Px,σ(x1, x2, .... xN) is maximum. Obviously this means that the best estimate
of x is that value for which

N∑
i=1

(xi − x)2 is minimum

Differentiate with reference to x and set the derivative equal to zero. This gives

N∑
i=1

(xi − x) = 0

or

x =
N∑

i=1

xi/N = x (14)

Thus the mean of the N observations (x1, x2, .... xN) is the best estimate of x i.e. the true
value of x that you can construct on the basis of these N observations. Of course, larger
the number of observations (N) better is the ‘best estimate’ x of the true value x. The
same is true for the best estimate of σ defined below.

To obtain the best estimate of the standard deviation of the limiting Gaussian dis-
tribution, on the basis of N observed values (x1, x2, ... xi... xN), we have to differentiate
Px,σ(x1, x2, .... xi..... xN) with reference to σ and equate the derivative to zero. This is
slightly more complicated but straight forward and we leave the details to you. We find
the following expression for the best estimate of σ

σx =

√√√√ 1

N

N∑
i=1

(xi − x)2 (15)

13



The true value x is unknown and therefore has to be replaced by its best estimate x.
Thus,

σx =

√√√√ 1

N

N∑
i=1

(xi − x)2 (16)

Now, the sum (xi − x)2 is a minimum when x = x as we have already seen. Thus by
replacing x by x as above, we have consistently underestimated the width σ. As a result
it turns out that the best appoximation for σ is not eqn. 16 itself, but is obtained by

multiplying it by the factor
√

N
N−1

. Thus we finally obtain the best estimate for the

width parameter to be

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (17)

12 Two Important Questions

Let us pause and review a little. First, if the measurement of the quantity x is classical
or deterministic and is subject only to the random errors (i.e. all systematic errors are
negligible) then the corresponding limiting distribution is, to a very good approximation,
the Normal distribution, centered at the true value of x = x and with width σ. The width
is the 68% confidence limit, i.e. there is a 68% probability that any measurement will fall
within a distance σ from the true value x. In practice neither x nor σ is known. What
is known are our N measured values x1, x2, .... xN where N is as large as our time and
patience allow us to make it. Based on these N values, our best estimate of the true value
x is x =

∑
xi/N and our best estimate of the width σ is the standard deviation calculated

from the set of values {xi} (eqn. 17)

Two important questions arise:

i What confidence do we have in our best estimate of the true value (x = x) cal-
culated from a single set of measured values (x1, x2, .... xN) ? That is, can we estimate
the probability that the value of x, calculated from a single set of values {xi} will fall
within some distance, say σx from the true value x ? In particular we want to find out
σx for which the above mentioned probability is 68% (68% confidence limit).

It is obvious that σx so defined, is the correct estimate of the uncertainty in our
measurement, because it is the amount by which the best estimate of the true value is
uncertain.

ii We have asserted that, under stipulated conditions, the limiting distribution is,
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to a good approximation, Gaussian. Now the question is: How good is this approxima-
tion? Since all that we have is the observed set of N values, the correct question to be
asked is: If we try to fit our observed data (i.e. the observed frequency distribution or
the histogram) to the Normal distribution then how good would be this fit? We want to
establish a quantitative measure for this ‘goodness of fit’.

13 How to Report your Results

Before trying to answer any of the above questions let us state something which is re-
ally obvious, but has to be explicitly stated. On the basis of the N observed values
(x1, x2, .... xN) how will you report your results in the form

(value of x) = xbest ± δx ?

We already know that for given {xi}

xbest = x =
∑

xi/N

δx must be the uncertainty in x i.e. σx as defined above.
Thus we have

(value of x) = x± σx (18)

Now, suppose, you make N measurements of g, the acceleration due to gravity, on the
basis of which you get these two values

g = 9.82 m/sec2 σg = ±0.05 m/sec2

Note that, it is meaningless to report the result of a single measurement as

g = 9.81268712 m/sec2

This can be written

g = 9.81 + 0.00268712 m/sec2

The second number on the RHS is less than σg and therefore could be replaced by
any other number less than σg because your apparatus is not capable of differentiating
between two values of g which differ by an amount less than σg. Thus, if you want to find
out g from the measured values of the period and length of a simple pendulum, do not
blindly copy down the 8 digit number displayed on your pocket calculator.

We make the above argument more rigorous in Appendix
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14 The Propagation of Errors

The above example, of the determination of g using simple pendulum, opens up an in-
teresting question. We have to measure the length and the period of the pendulum and
then determine g through the relation

g = 2π

√
l

T 2

Thus g is not directly measured but is calculated from the values of two independently
measured quantities, namely, the length and the period of the pendulum. These two
measurements will have their own uncertainties, σl & σT . The question is, what is the
consequent uncertainty in g?

Stated in more general terms, it means: Consider a set of physical quantities which
can be directly measured. Let these quantities be denoted as x, y, z, .... Let the limiting
distribution fo each of these be normal, centered around the true value X,Y, Z, .... and the
width parameters be σx, σy, σz, .... These σ s can be regarded as the measures of uncer-
tainties for x, y, z, .... Let q(x, y, z, ....) be a continuous function of x, y, z, .... The problem
is to find out the probability distribution for the values of q and the uncertainty involved.

Assume that σx, σy, σz, .... are fairly small so that the measured values of x, y, z, .... are
always close to their true values X, Y, Z, .... In this case, the Taylor series expansion of
g(x, y, z, ....) around X,Y, Z, .... can be expressed only in the first order terms in x, y, z, ....
Therefore

q(x, y, z, ....) = q(X, Y, Z, ....) +
(∂q

∂x

)
X,Y,Z,..

(x−X) +
(∂q

∂y

)
X,Y,Z,..

(y − Y ) +

+
(∂q

∂z

)
X,Y,Z,..

(z − Z) + · · ·

Note that q(X, Y, Z, ....) and the partial derivatives evaluated at X,Y, Z, .... are constants.
One can verify in general that the probability distribution of the above linear combination
of the variables x, y, z, .... (which are individually distributed normally) is again a normal
distribution with width parameter

σq =

√(∂q

∂x

∣∣∣
X,Y,Z,..

σx

)2

+
(∂q

∂y

∣∣∣
X,Y,Z,..

σy

)2

+
(∂q

∂z

∣∣∣
X,Y,Z,..

σz

)2

+ · · · (19)

Obviously, σq is the required measure of the uncertainty involved in the value of q. The
distribution is centered at q(X, Y, Z, ....) Hence the probability that any value of q will lie
within q(X, Y, Z, ....)± σq is 68% (see article 10)
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Eqn. 19 is called the formula for the propagation of errors.

Two simple illustrations:

1. q(x, y) = x + y, q is centered around X + Y

σq =
√

σ 2
x + σ 2

y (20)

This is generally referred to as addition in quadrature.

2. q(x, y) = xy, q is centered around XY

σq =
√

Y 2 σ 2
x + X2 σ 2

y

= XY

√(σx

X

)2

+
(σy

Y

)2

(21)

(value of q) = XY ±XY

√(σx

X

)2

+
(σy

Y

)2

= XY

[
1±

√(σx

X

)2

+
(σy

Y

)2
]

In practice X, Y, σx, σy are to be replaced by their best estimates.

We call σx/x & σy/y the fractional uncertainties in x & y.

15 Standard Deviation of the Mean (SDOM)

We now try to answer the first question raised in the article 12. It is necessary to know
the reliability of the average of the N measurements. To do this, we must know the
probability distribution of x. We construct many sets of measurements under identical
conditions each containing N values.
For each set we construct

x =
x1 + x2 + x3 + .....xN

N

Now we can regard x1, x2 etc. as variables spanning all the first, second etc. values in each
set. Each one of these variables x1, x2 etc. is normally distributed. x can be looked upon
as a function of these variables x1, x2, .... etc. Hence we can apply the considerations of
the article 14. Each of the variables is identically distributed with the same centre x and
s.d. σx. Therefore the distribution of x would be centered at

x + x + x + .....N times

N
= x
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The s.d of x will be according to the formula 19

σx =

√( ∂x

∂x1

σx1

)2

+
( ∂x

∂x2

σx2

)2

+ ....... +
( ∂x

∂xN

σxN

)2

Since

σx1 = σx2 = · · ·σxN
= σx &

∂x

∂x1

=
∂x

∂x2

= · · · ∂x

∂xN

=
1

N

We have

σx =
σx√
N

(22)

Thus x is found to be normally distributed, centered around the true value x and
width σx = σx/

√
N

Hence, by applying the same considerations as in article 10, we can say with 68%
confidence that a value of x computed from a single set of N observations will lie between
x ± σx i.e. x ± σx/

√
N . Note that σx as defined above is the width parameter of the

probability distribution of x. The best estimate of σx on the basis of a set of N repetitions
is

σx =
1√
N

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (best estimate)

Henceforth, by σx we will understand the best estimate defined above. Thus, from a set
of N repetitions for a physical quantity x we can report the value of x as

(value of x) = x ± σx

which is the same as eqn. 18. We call σx to be the uncertainty in the mean, or the stan-
dard deviation of the mean (SDOM).

The factor 1/
√

N in σx gives an obvious way to improve the precision of our measure-
ment. As we increase N the σx gets reduced by the factor 1/

√
N . Thus the uncertainty

in our best estimate, x, gets reduced as we increase N . The probability distribution for
x gets more and more peaked at the true value x.

Unfortunately, the factor
√

N grows rather slowly as we increase N . Thus, if we wish
to improve our precision by a factor of 10, just by increasing the number of repetitions
N , we will have to increase N by a factor of 100 which is utterly impracticable. Fur-
thermore, we are neglecting systematic errors which are not reduced by increasing the
number of repetitions. Thus in practice, if you want to increase your precision apprecia-
bly, you will probably do better if you improve your technique (i.e. reduce the systematic
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errors still further with the same method of measurement, or employ a totally different
method of measurement which is more precise) than to rely merely on increased number
of repetitions.

16 Confidence

In many situations we would like to compare the results of our measurement with some
known, expected answer. For example, in an experiment to check conservation of mo-
mentum we may measure initial and final (total) momenta p & p′ and would compare
(within uncertainties) the value of p−p′ with the expected answer, zero. Any experiment
where one measures a quantity for which an accurate accepted value is known (like g, the
acceleration due to gravity) is also of this type.

We expect that if our measurement was precise enough, the observed value should lie
close to the expected value. The question is: What is the maximum amount of discrep-
ancy that can be tolerated between the observed and the expected value? Or, when can
you say that the agreement between the observed and the expected value is satisfactory?

Let x be such a quantity and on the basis of N repetitions, the observed value of x is

(value of x) = x ± σx

Let xexp be the expected value of x. We define the discrepancy to be | x − xexp |. We
assume that our measurement was governed by a normal distribution. We make two
working hypotheses for this distribution.

1. The distribution is centered on xexp i.e. xexp is the true value of x, and in our
measurement, all systematic errors were negligible.

2. The width parameter of the distribution is equal to σx (which is actually the best
estimate of the width parameter). This approximation is reasonable if N is large.

We now want to decide whether our value x obtained is reasonable assuming our hy-
potheses to be correct (i.e. if the discrepancy | x− xexp | is acceptable). If the answer is
yes, we take our hypotheses to be correct; if the answer is no, then we doubt our hypothe-
ses, and we must examine the possibilities of mistake in the measurement or calculations,
undetected systematic errors, and the correctness of the expected answer, xexp.

In the light of the discussion in the article 10 it is obvious that the discrepancy
| x− xexp | is acceptable if

| x− xexp | ≤ σx (23)
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Thus we draw a line of demarcation at σx. Note that this line of demarcation is not a
rigid one and, it depends on the particular situation. People relax it upto almost 2σx

i.e. in certain situations a discrepancy

| x− xexp | ≤ 2σx

is also acceptable.

It is convenient to express these inequalities in terms of probabilities. To do this, we
define a parameter t through the equation

tσx = | x− xexp | (24)

We now ask for the probability of finding a value of x which differs from xexp by tσx or
more. This is

P (outside tσx) = 1− P (within tσx)

The probability on the RHS is just the normal error integral (see article 10) which is tab-
ulated. Now, suppose P (outside tσx) ≥ 32%, i.e. P (within tσx) ≤ 68%. From article 10
this means that

tσx = | x− xexp | ≤ σx

Thus the condition 23 is equivalent to

P (outside tσx) ≥ 32%

Or in other words the discrepancy is acceptable if the above condition is satisfied.

In most of the above cases people agree to accept the discrepancy if

P (outside tσx) > 5%

or equivalently
| x− xexp | < 1.96 σx

We say that the discrepancy is acceptable within the 5% level of confidence.

17 The Weighted Average

Suppose that two laboratories A & B measure the same physical quantity x pertaining
to similar physical systems (see example 4 in article 1). For the value of x they report

xA ± σA (Lab A)

xB ± σB (Lab B)
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Note that the two sets of repetitions, one at lab A and the other at lab B may not be
under identical conditions. Infact the two labs might have employed entirely different
methods of measurement. Thus, the sources of random errors at two places are not in
general identical. Consequently, their precisions will differ and in general

σA 6= σB

The question is how to combine these two results to obtain a single best estimate of the
true value of x. Obviously, we cannot just take the union of the two sets of repetitions,
one at each lab and compute x & σx

Assuming normal distribution for both the measurements we can write down expres-
sions which are proportional to the probabilities of lab A obtaining the value xA and lab
B the value xB.

Px(xA) ∝ 1

σA

exp [−(xA − x)2/2σ 2
A ]

Px(xB) ∝ 1

σB

exp [−(xB − x)2/2σ 2
B ]

where x is the unknown true value of x.
Since the two measurements are independent, the probability of lab A finding the value
xA and lab B the value xB is

Px(xA, xB) = Px(xA) Px(xB) ∝ 1

(σAσB)
exp (−χ2/2)

where

χ2 =
(xA − x

σA

)2

+
(xB − x

σB

)2

Now, our principle of maximum likelihood asserts that the best estimate of the true value,
x, is that value for which Px(xA, xB) is maximum, i.e. for which χ2 is minimum.

Differentiating χ2 w.r.t to x and equating to zero we have

xA − x

σ 2
A

+
xB − x

σ 2
B

= 0

The solution of this eqn for x is the required best estimate

xbest =
xA

σ 2
A

+
xB

σ 2
B

/
(1/σ 2

A + 1/σ 2
A ) (25)

Putting wA = 1/σ 2
A & wB = 1/σ 2

B

xbest =
wAxA + wBxB

wA + wB

(26)
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We call wA & wB the weights and xbest the weighted average of xA & xB.

Generalising, suppose we have n separate measurements of the same quantity x

x1 ± σ1, x2 ± σ2, ..... xn ± σn

with their corresponding uncertainties σ1, σ2, ..... σn, then the best estimate of the true
value of x is

xbest =
n∑
i

wi xi

/ n∑
i

wi (27)

where

wi = 1/σ 2
i i = 1, 2, .... n (28)

are the weights.

Since xbest in eqn. 27 is a simple function of x1, x2, ..... xn, each of which is normally
distributed, we can apply the considerations of article 14 to find out the uncertainty in
xbest of eqn. 27

σbest =
( n∑

i

wi

)−1/2

(29)

18 Rejection of Data (Chauvenet’s criterion)

Suppose we repeat the measurement of the quantity x, N times to get a set of values
x1, x2, ..... xN . Let x & σx be the mean and standard deviation computed from this set
of values. We assume that these values are distributed normally with the centre and the
width given by x & σx respectively, given above. Suppose there is a particular value xi

such that | xi − x | is very large so that xi is highly improbable and we want to reject it.
We say that a value so improbable must be the result of some mistake in that particular
measurement and so it should be dropped. We now want to establish a quantitative cri-
terion for rejecting such data values.

We first calculate

ti =
| xi − x |

σx

the number of standard deviations by which xi differs from x. Next we find the probability
P (outside tiσx ) that a legitimate measurement will differ from x by ti or more standard
deviations.

P (outside tiσx ) = 1− P (outside tiσx )
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where RHS is tabulated.

Finally we multiply by N , the total number of repetitions, to arrive at

n (worse than xi ) = N P (outside tiσx)

This n is the number of measurements expected to be at least as bad as xi.
Now the Chauvenet’s criterion states that the concerned observation should be rejected

if
n < 1/2

and be accepted otherwise.

After rejecting any measurements that fail Chauvenet’s criterion, one recalculates
x & σx from the remaining data. The resulting value of σx will be smaller than the
original one and it may happen that, with the new σx, some more measurements will fail
Chauvenet’s criterion. However, it is generally agreed that Chauvenet’s criterion should
not be applied a second time using the recalculated values of x & σx.

19 The Poisson process

Upto now we have dealt with only the deterministic measurements. In this article we
want to study a special case of measurements where the process under observation is
itself random i.e. probabilistic. We have seen one example of such a process in article 1
namely the Brownian motion. Here we consider a particular experiment namely, counting
the number of particles emitted by a radioactive source over a finite interval of time using
a Geiger counter.

Consider a radioactive source containing a large number (∼ 1020) of parent nuclei,
which decay to their daughter nuclei by emitting an electron or a positron. For a given
radioactive nucleus, the process of emission is random i.e. the time at which this nucleus
will disintegrate cannot be predicted (we shall not go into the reasons for this). Thus,
one has to ask for the probability that a given single nucleus will decay in unit time.
Since all the parent nuclei in the source are identical, this probability is the same for
every nucleus. If we now multiply p by the total number of parent nuclei in the source
we get the expected average rate of emission from the source, which we denote by λ. We
assume that the time for which we count the emitted particles is negligible as compared
to the half life of the source. Therefore depletion in the number of parent nuclei over the
time of measurement is negligible. Hence, λ is independent of time over the period of
measurement.

Suppose we start our counter at t = 0 with all the registers equal to zero. Then after
a time t the reading on the counter shows the number of particles counted in time t, say
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x(t). Since individual disintegrations are random in time, the values taken by x(t) are
also random. Noting that x(t) is the quantity that is being measured we must ask for
the probabilities for x(t) taking various positive integer values (Note: x(t) can take only
positive integral values). Thus, we want to find the probabilities

P (x(t) = n) n = 0, 1, 2, ....

Note that these probabilities will be a function of time. We denote by Pn(t) the proba-
bility that n particles are counted in time t (i.e.Pn(t) = P (x(t) = n)).

Also note that x(t) is not a simple function of time. If we plug in a particular value
of t in x(t) we get a random variable and not a fixed number. Thus with t = 10 seconds,
x(10seconds) is the number of counts recorded upto 10 seconds, which is a random variable
and can take any positive integer value. Thus x(t) represents a random (or stochastic)
process which evolves in time.

We say that a single elementary event has occured at time t if a new particle emitted
by the source is recorded by the counter i.e. the number of counts is increased by one at
that time. Thus Pn(t) is the probability of n events in time t. Henceforth, we shall talk
in terms of these events. We also treat λ to be the expected average counting rate.

We now make the following assumptions regarding the process.

1. The expected average counting rate is independent of time. Thus the expected
number of counts after any time t is given by λt.

2. No two or more events can occur at the same instant of time (i.e. simultaneously).

3. Let k1 & k2 denote the number of elementary events and ta & tb be any two non-
overlapping time intervals then

P (k1 in ta & k2 in tb) = P (k1 in ta) P (k2 in tb) (30)

i.e. the two events in the brackets on the RHS of the above equation are statistically
independent.

Consider a time interval of length ∆t immediately after a time t. We ask for the
probability that at least one elementary event ocurs in this interval. By assumption (3),
this probability is independent of t, or of the number of events (say n) which occured
upto t. Thus the only quantity on which this probability can depend is the length of the
interval ∆t. It must also depend (parametrically) on a characteristic of your radioactive
source, which is independent of time. Otherwise this probability will depend only on ∆t
irrespective of the source. The only characteristic of the source which is independent of
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time (by assumption (1)) is λ. Therefore, this probability is a function of ∆t & λ, say
w(∆t, λ). This can be written as

w(∆t, λ) = w1 + w2 + w3 + ..... =
∞∑
1

wn(∆t, λ) (31)

where wn is the probability that exactly n events will occur in ∆t.

In terms of probabilities, our assumption (2) means that the probabilities wn with
n > 1 vanish much faster than ∆t itself as ∆t → 0. Mathematically we say that

wn = O(∆t) n > 1 (32)

where O(∆t) is a function such that

lim
∆t→0

O(∆t)

∆t
= 0

Thus if we choose t to be sufficiently short we can neglect w2, w3..... occuring on the RHS
of eqn. 31 as compared to w1. Thus we have

w(∆t, λ) = w1(∆t, λ) (33)

where w1(∆t, λ) is a function of ∆t & λ which goes to zero as ∆t → 0 not faster than ∆t
itself. The most general expression satisfying this condition is λ∆t i.e. w1 is proportional
to ∆t with proportionality constant λ. Thus we have, the probability that exactly one
event will occur in ∆t is equal to λ∆t, provided ∆t is sufficiently short. As we shall see
later ∆t must be short enough to satisfy λ∆t � 1.

The probability that no event takes place in ∆t is obviously given by (1−λ∆t) under
the approximation 33. Denote this by w0.

Now we ask for the probability that n events will occur in time t + ∆t i.e. Pn(t + ∆t,
with n > 0. If this is short enough, there are only two ways in which n events could be
recorded upto t + ∆t.

i n − 1 events were recorded upto time t and one event was recorded in the interval
∆t after time t.

ii n events were recorded upto time t and no event was recorded in the interval ∆t
after time t.

Therefore we have

Pn(t + ∆t) = Pn−1(t).w1 + Pn(t)w0

= Pn−1(t) λ∆t + Pn(t) (1− λ∆t) (34)
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It follows immediately from this equation that

dPn(t)

dt
= lim

∆t→0

Pn(t + ∆t) − Pn(t)

∆t
= λ[Pn−1(t) − Pn(t)] n > 0 (35)

For the case n = 0 the first alternative above is to be dropped. Hence for P0(t) we have

dP0(t)

dt
= − λP0(t) n = 0 (36)

Since at t = 0 the Geiger counter read zero the initial condition is

P0(0) = 1 (37)

The set of differential equations (35) and (36) together with the initial condition (37) are
sufficient to determine the probability distribution Pn(t). Thus we can solve the equation
for n = 0 (eqn. 36) immediately to give, using eqn. 37

P0(t) = e−λt

Substituting this in eqn. 35 with n = 1 and solving gives

P1(t) = λt e−λt

Substituting P1(t) into eqn. 35 with n = 2 we get

P2(t) =
(λt)2

2!
e−λt

Repeating this procedure for successive Pn(t) we get

Pn(t) = e−λt (λt)n/n! n = 0, 1, 2.... (38)

This probability distribution, which depends on the parameter λt is called the Poisson
distribution.

Now the only missing link is how to find λt from the number of recorded events in
time t , which is the only information you have. Since λ is the average rate of counting,
λt may be found by recording the counts over time t many number of times and finding
the average number of counts. We shall justify this procedure.

Suppose we repeatedly record the counts over a fixed period of time, say t. Let the
number of repetitions be N . Let n be the number of counts recorded. Let,

N0 : No. of experiments with n = 0

N1 : ” n = 1

N2 : ” n = 2
...

Nk : ” n = k
...
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We have N = N0 + N1 + N2 + ....... + Nk + ......
Let T be the total number of counts recorded in N experiments

T = 0.N0 + 1.N1 + 2.N2 + ...... + k.Nk + ...... (39)

Now if our N is sufficiently large, then the probability that k counts will be recorded in
any given experiment is very close to Nk/N . Thus

Pk(t) = Nk/N

Nk = N Pk(t) k = 0, 1, 2.....

substituting this in eqn. 39 we have

T = N [P1(t) + 2P2(t) + 3P3(t) + ...... + kPk(t) + .....]

= N
[
λ te−λt + 2

(λt)2

2!
e−λt + ...... + k

(λt)k

k!
e−λt + .....

]
= Nλ te−λt

[
1 +

(λt)

1!
+ ...... +

(λt)k−1

(k − 1)!
+ .....

]
= Nλ te−λt. eλt = Nλ t

∴ λt = T/N (40)

which was the result to be proved.

20 Some Properties of the Poisson Distribution

We formally write our Poisson distribution as

P (n, µ) =
µn

n!
e−µ (41)

In this notation our Pn(t) will read P (n, λt).

Let us calculate the average value of n say n

n =
∞∑

n=0

n P (n, µ) =
∞∑

n=0

n e−µ µn

n!

= µe−µ

∞∑
n=1

µn−1

(n− 1)!
= µe−µ. eµ = µ (42)
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n is nothing else but the average number of events over a large number of repetitions of
the underlying experiment. This justifies eqn. 41. We can easily show that P (n, µ) is
normalised i.e.

∞∑
n=0

n P (n, µ) = 1 (43)

Let us calculate
σ 2

n = (n− n)2 = n2 − (n)2

We already know (n)2 = µ2

Similar calculation gives

n2 = µ2 + µ

∴ σ 2
n = µ

or σn =
√

µ (44)

Thus, the Poisson distribution with mean count µ has a standard deviation
√

µ.

If we carry out our counting procedure once, say for time t, and get a reading n, then
using the principle of maximum likelihood it is easily seen that our best estimate for the
expected mean count µ(= λt) is µbest = n. From eqn. 44 it follows that our best estimate
for the standard deviation is just

√
n. Thus if we make a single counting experiment for a

time t and get the result n, then our answer for the expected average count for that time
interval (µ = λt) is

n±
√

n (45)

In other words µ(= λt) is expected to lie in the interval n±
√

n on the basis of a single
measurement. In this sense

√
n is the uncertainty in µ(= λt). If we would count for a

longer time, we would get a large value of n which would mean a longer uncertainty
√

n.
However, the fractional uncertainty which is

Fractional uncertainty =

√
n

n
=

1√
n

(46)

would decrease if we counted for a longer time.

We can make µ(= λt) larger and larger by counting for larger and larger time and/or
by increasing the strength of the source. In this case n � 1, (minimum increment in n
is unity), and can be treated as a continuous variable. It can further be proved that as
µ(= λt) → ∞ the Poisson distribution P (n, µ) assumes a form of a Gaussian or Normal
distribution with the same mean and variance, where n is a continuous, rather than a
discrete variable (see Appendix.). Symbolically,

P (n, µ) ≈ Px,σ(n) (µ large) (47)
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where x = µ & σ =
√

µ

The approximation 47 is called the Gaussian approximation to the Poisson distribution.
This is an excellent approximation provided µ is large (in practice µ > 20).

You should note very clearly, the difference between the notions of the Poisson process
and the Poisson distribution. The Poisson process is a sequence of events occuring at
random in time, satisfying certain assumptions. This is described by a random function
like x(t). The Poisson distribution is given by eqn. 41 which gives the probabilities for
various values of a single random variable. Thus, Pn(t) is the Poisson distribution for the
random variable which gets generated when we plug in a particular value of t in x(t).

21 Examples

The two most common examples of the Poisson process are counting the disintegrations
of radioactive nuclei and counting the arrival of cosmic ray particles.

A very important example of the Poisson distribution is an experiment to study an
expected limiting distribution, like the Normal distribution. The Normal distribution
Px,σ(x) tells us how many measurements of a quantity x are expected to fall in the in-
terval from x = a & x = b. In practice, the observed number is seldom exactly the
expected number. Thus we can treat the observed number of measurements lying be-
tween x = a & x = b as a random variable and ask for its probability distribution.§ This
probability distribution is Poisson, provided the interval (a, b) is not too large. Thus if
the expected number of measurements is n, then the observed number can be expected
to differ from n by a number of order

√
n.

An enormous number of stochastic processes in real life can be approximated by the
Poisson process. You can discuss this point with your instructor.

22 The χ2 test for the Goodness of fit

We shall now try to answer the second question posed in article 12. Let us restate the
problem as follows:

Suppose we make N identical and independent repetitions of a measurement of a
physical quantity x, giving us a set of N values. Our conjecture is that these values are

§The corresponding experiment is as follows: In a set of N repetitions, we count the number of results
falling in the interval a ≤ x ≤ b, say ν. If we repeat this procedure many times over, we shall get a set of
values for ν. This experiment is analogous to counting the particles emitted by a radioactive source for
a fixed interval of time.
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distributed according to a certain probability distribution, say Gaussian (whatever is said
below is true for any probability distribution provided it has a smooth enough p.d.f.). We
are obviously assuming that x is a continuous variable.

We make the following hypothesis.

The observed values of x are distributed according to the Gaussian distribution Px,σ(x)
where

x = x =
N∑

i=1

xi/N & σ = σbest =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (48)

We want to make a quantitative criterion to test whether our hypothesis is true or
false. To do this, we will have to compare the probability that a measurement will result
in a value lying in an interval a < x < b with the observed frequency of occurence of
values between a < x < b. Alternatively, after dividing the whole range of values of x
into n intervals of width say σ or its multiples, we can compare the expected number of
occurences in the kth interval ak < x < ak+1, say Ek,

Ek = N P (x within kth interval)

= N

∫ ak+1

ak

Px,σ(x) dx k = 1, 2, 3, .....n

with the observed number of values lying in the kth interval, say Ok(k = 1, 2, .....n).

We can construct the number

Ok − Ek k = 1, 2, ....n

If our hypothesis is true, we expect this number to be small for all k. The question is:
when can we say that this number is small enough for our hypothesis to be true? To
answer this question we must decide how large we would expect (Ok − Ek) to be if our
hypothesis was true. From what has been said in the last section 21, it follows that for
every k, Ok obeys the Poisson distribution with mean Ek and standard deviation

√
Ek

Thus the two numbers to be compared are the deviation (Ok−Ek) and the expected size
of its fluctuation

√
Ek.

These considerations lead us to consider the ratio

Ok − Ek√
Ek

k = 1, 2, 3, .....n (49)
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Now we can say that if our hypothesis is true, this number must be of the order of
unity for most of the n intervals. However, the above expression can have both positive
and negative values for any given k so that it is difficult to construct a single criterion,
involving all the n intervals, to test our hypothesis. Hence, it is natural to square the
number in eqn. 49 for each k and then sum over all the intervals k = 1, 2.....n. This defines
a number called Chi-squared,

χ2 =
n∑

k=1

(Ok − Ek)
2

Ek

(50)

In general, the individual terms in the sum (eqn. 50) are expected to be of the order of
unity (if our hypothesis is true) and there are n terms in the sum. Therefore if

χ2 ≤ n (51)

(i.e. χ2 is of the order of n or less) the observed and the expected distributions agree about
as well as could be expected. Thus in this case our hypothesis will be true. Otherwise
(i.e. when χ2 � n) the hypothesis will be false and cannot be accepted.

23 The Lorentzian distribution; an example

We have already mentioned that the definition of χ2 and its utility to test whether the
observed data follows a particular distribution, is independent of the form of this distri-
bution. Thus the χ2 test is applicable even when the expected distribution is Poisson or
Binomial, for example. In many atomic and nuclear experiments the expected distribution
of the measured variable x (actually an energy) is the Lorentzian distribution,

p(x) =
1

(x− x)2 + γ2
(52)

where x & γ are constants. Since any probability distribution is normalised, we have

P (a < x < b) =

∫ b

a

p(x) dx

so that, for the kth interval running from x = ak to x = ak+1, the expected number of
values in the kth interval, after N repetitions, is

Ek = N P (ak < x < ak+1)

= N

∫ ak+1

ak

p(x) dx (53)
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where p(x) is given by eqn. 52. Once the Ek’s hace been found, the χ2 can be defined in
exactly the same way and the criterion 51 also remains the same.

When the measured variable x is a discrete variable, having finite range, we need not
divide the range of x into intervals to find the Ek’s. We can find the expected number
of occurences for every value of x separately. In practice, it is found more convenient to
divide the range of x into intervals, even if x is discrete.

24 The General Definition of χ2

The χ2 test has much wider applications than the one being considered here. In all cases
χ2 is the sum of squares with the general form

χ2 =
n∑
1

(
Observed value− Expected value

Standard deviation

)2

(54)

Also, χ2 is an indicator of the agreement between the observed and the expected values
of some variable. If the agreement is good χ2 ≤ n and if it is bad χ2 � n.

We can only use χ2 to test this agreement if we know the expected values and the
standard deviation and can therefore calculate (54). In our case, namely, a test of a
distribution, these are known accurately enough, with Ek given by the distribution and
the standard deviation given by

√
Ek. Another situation where χ2 test can be applied is

the measurement of two variables x & y where y is expected to be some definite function
of x.

y = f(x) (55)

(like y = A + Bx). Suppose, we have N measured pairs (xi, yi) where xi have negligible
uncertainty and yi have known uncertainties σi. Here the expected values of yi are f(xi)
and we can test how well y fits the function f(x) by calculating

χ2 =
N∑
1

(
yi − f(xi)

σi

)2

(56)

Again the agreement is satisfactory if χ2 ≤ N and unsatisfactory if χ2 � N . Thus if
χ2 ≤ N , the hypothesis y = f(x) is accepted, not otherwise.

25 Degrees of Freedom and Reduced χ2

Through the hypothesis made in article 22 we have imposed two external conditions on
the limiting distribution obeyed by the observed data namely x = x & σ = σbest. It is
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easy to see that if these external conditions are to be true, all of the N values in the set
cannot be independent of each other. Once any N − 2 values are realised the remaining
two values are fixed in terms of these N − 2 values (through eqn. 48) by the requirement
that the two external conditions (or constraints) be satisfied. We say that the number of
degrees of freedom for the problem is N − 2.

We shall adopt the following working definition for the number of degrees of freedom:
The number of degrees of freedom d in a statistical calculation is defined as the number
of observed data minus the number of parameters computed from the data and used in
the calculation (which is the same as the number of constraints).

For the problem of the χ2 test, the number of observed data are the number of obser-
vations Ok in n intervals, k = 1, 2, .....n. Thus the number of observed data is just n, the
number of intervals. Therefore for the problem at hand,

d = n− c (57)

where n is the number of intervals and c is the number of parameters that had to be cal-
culated from the data in order to compute the expected numbers Ek (i.e. c is the number
of constraints).

In the χ2 test considered here the number of constraints is three. They are given by
the equations

x = x =
N∑

i=1

xi/N

σ = σbest =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

N =
n∑

k=1

Ok

Thus the number of degrees of freedom

d = n− 3 (58)

where n is the number of intervals.

Now, it can be shown (though we shall not do so here) that the expected value of
χ2 is precisely d, the number of degrees of freedom. This means that if we could repeat
the whole set of N measurements infinitely many times and compute χ2 each time, then
the average of these values of χ2 is d. Thus, even for a single measurement, it is more
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appropriate to compare the value of χ2 with d, rather than with n, so as to accept or
reject our hypothesis.

A slightly more convenient procedure is to introduce a reduced χ squared, denoted by
χ̃ 2 and defined as

χ̃ 2 = χ2/d (59)

Since the expected value of χ2 is d,

(expected value of χ̃ 2) = 1 (60)

Thus our test can be stated as follows:

If χ̃ 2 ≤ 1 (61)

we accept the hypothesis that our data was governed by the expected distribution, and if

χ̃ 2 � 1 (62)

the hypothesis is rejected.

26 The probabilities for χ2

Now we want to make our χ2 test more quantitative. Suppose on the basis of N measure-
ments we compute reduced chi squared, say χ̃ 2 = 1.80. Now the question is: Is a value
χ̃ 2 = 1.80 sufficiently larger than one to rule out the expected Gaussian distribution or
not?

To answer this question, we first suppose that our hypothesis is true i.e. our measure-
ments were governed by the expected distribution (a Gaussian in this example). With
this assumption, one can calculate the probability of obtaining a value of χ̃ 2 ≥ 1.80. This
probability turns out to be

P (χ̃ 2 ≥ 1.80) ≈ 18% (63)

Now we have to decide whether this probability is unreasonably small (so that if our
hypothesis is true, it is extrememly unlikely to obtain a value of χ̃ 2 ≥ 1.80) and therefore
our hypothesis has to be rejected. The question of drawing this line of demarcation at a
value, say a, such that P (χ̃ 2 ≥ 1.80) ≥ a implies the acceptance and P (χ̃ 2 ≥ 1.80) < a
implies the rejection of our hypothesis, does not have a unique answer. Rather, it is dic-
tated by the nature of the problem at hand. However the value a = 5% is generally
accepted.
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Summarising, we first compute the value χ̃ 2 = χ̃ 2
0 on the basis of the set of N

observed values. Then assuming our hypothesis that the observed data are governed by
the expected probability distribution to be true, we find out P (χ̃ 2 ≥ χ̃ 2

0 ).

If P (χ̃ 2 ≥ χ̃ 2
0 ) ≥ 5% (64)

we accept the hypothesis, otherwise reject it. Some people choose to relax this condition
to

P (χ̃ 2 ≥ χ̃ 2
0 ) ≥ 1% (65)

In the first case we say that the hypothesis is rejected at 5% significance level and in the
second case at 1% significance level.

The calculation of the probabilities P (χ̃ 2 ≥ χ̃ 2
0 ) is beyond the scope of this note.

However, these probabilities are tabulated. It turns out that the probability of getting
any particular value of χ̃ 2 depends on the number of degrees of freedom. Thus we could
write the probability of interest as Pd(χ̃

2 ≥ χ̃ 2
0 ) to emphasise its dependence on d.

The ususal calculation of Pd(χ̃
2 ≥ χ̃ 2

0 ) treats the observed numbers Ok as continuous
variables, distributed according to the Gaussian distribution around mean Ek and with
standard deviation

√
Ek. This is obviously the Gaussian approximation to the Poisson

distribution which is justified if all the numbers (Ok & Ek) are reasonably large (� 1).
Under these conditions the tabulated probabilities Pd(χ̃

2 ≥ χ̃ 2
0 ) can safely be used. This

means that the intervals must be so chosen that the expected number of counts in each
interval is reasonably large (at least 5 or so). For the same reason, the number of intervals
should not be too small to contradict the assumption that Ok is continuous.

27 Limitations of the classical approach

We want to build an argument to show that the classical approach or the deterministic
type of measurements, with which we have been basically concerned in this note, are a
kind of approximation. In th classical situation, every system is in a definite state of
motion and the corresponding values of the physical quanitites (the true values) can be
approached continually as we repeat their measurements more and more number of times,
with negligible systematic errors.

Whenever a measurement of any variable is performed, the system concerned is al-
lowed to interact with the apparatus, and the resulting change in the state of the apparatus
(e.g. change in the pointer of an ammeter) is related to the value of that variable at that
time. As a result of this interaction, the state of the system under observation must also
change. Therefore the result of our measurement is uncertain by the amount by which
the value of the variable being measured is changed, due to the process of measurement
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itself. It is easily seen that it is impossible to quantify this uncertainty. The only way
to do so is to try to measure the change due to the interaction of the system and the
apparatus. This you can do only by making the first apparatus and the system interact
with some other apparatus which will introduce its own uncertainty.

The only way out is to ask whether you can neglect this uncertainty altogether
i.e. whether this uncertainty is utterly negligible compared to all the other random and
systematic errors. For those situations in which this is true, the classical approach is valid.

It is found that, as the rest mass of the system under observation gets smaller and
smaller (i.e. comparable to that of an atom, electron etc.) the uncertainty due to the pro-
cess of measurement itself cannot be neglected. In such situations the classical approach
fails completely and a qualitatively new theory is required to deal with these measure-
ments and with the states of motion of such systems. This theory is quantum mechanics
and the corresponding systems are called the quantum systems. The subject of quantum
theory of measurement is very deep and totally out of the scope of this note.
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Appendix I

In order to clarify the concepts regarding the inherent random errors due to the thermal
noise of the apparatus, we consider the following problem. ¶

Suppose you want to measure a mechanical motion that you know is oscillating at a
single frequency. The question is: What is the smallest vibration amplitude that can, in
principle, be measured?

Figure 2:

As a model for a detector we note that if you hang a weight on a spring and then
move the upper end of the spring up and down, the amplitude of the weight will be much
larger than the driving amplitude if you are at the resonant frequency of the mass and
spring assembly. It is essentially a mechanical amplifier and serves as a good candidate
for a sensitive detector (fig. 2)

The equation of motion is

mẍ = −K(x− y)−Dẋ (I.1)

where the overdot denotes time differentiation. We have assumed that the damping term,
Dẋ, depends only on the motion of the mass (such as the air resistance). Another term,
Dẏ, could be added and would take into account the losses in the spring but it would
clutter up the following analysis without adding anything essential to it.
Suppose y(t) = y0 eiωt. Let x(t) = x0 eiωt, then

(−ω2m + iωd + K)x0 = K y0

¶In this Appendix, we have reproduced, (almost verbatim) a part of the article ‘The Theoretical Limit
for the Detectability of a signal’ by D.M. Zipoy in the ‘Methods of Experimental physics’, Volume 8.
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or x0 =
K y0

K −mω2 + iωD
(I.2)

This is a maximum when ω2 = K/m ≡ ω2
0 (for D small)

x0max ≈
mω2

0

iω0D
y0 ≡ −iQy0 where Q ≡ mω0

D
(I.3)

In order to make x0 large we want to make Q (the ‘Quality’ factor) large, that is, we want
a large mass and low damping. Even at this point there are limits to how big Q can be.
The mass has to be small enough so that it does not cause the support to come crashing
down. It is conceivable that the damping D could be made exceedingly small by putting
everything in a vacuum and perhaps cooling it to a very low temperature at which point
the internal losses in the spring tend to become small. From a practical point of view
there is a limit to how large you want Q to be. It is determined by your lifetime as an
upper limit (we presume). The reason for this limit is the following. At some time or
other the detector has to be constructed, hooked onto the support, and released. it takes
a while before the oscillation of the mass builds up to its steady state amplitude, x0; how
long will this take? You can easily verify that the characteristic expoential buildup time
is 2Q/ω0. Now if the period of oscillation is 1sec and Q = 107, then the buildup time is
about a month and so you would have to wait a few months after you released the mass
before you could make a measurement.

Let us now go on to the main point of this problem. What is the thermal noise asso-
ciated with this device?

The source of noise arises from the equipartition theorem of statistical mechanics, that
innocuous theorem you heard in your elementary physics course and promptly forgot. It is
used as follows. You know each atom in the mass, spring and support has 1/2kT of energy
in each degree of freedom. That is, they are twitching around such that they have 1/2kT
of energy in the “x component” of kinetic energy, etc. This concept can be generalised
to say that each normal mode of a system constitutes a degree of freedom (actually two
degrees of freedom, one for the kinetic and one for the potential energy of the mode of
vibration). Remember that there are two ways (at least) of describing the motion of a
blob of material; either in terms of the position of each atom as a function of time or
by giving the amplitude and phases of all the possible normal modes of vibration. This
latter description is most useful for our purposes because it enables us to immediately
write down the mean square fluctuation in position of the mass m. (The lowest mode
of this system is just what is usually thought of as the reasonant mode; there are other
modes which involve transverse and longitudinal vibrations of the spring, for instance).
In all there are 6N modes of the system (where N is the number of atoms of the mass,
spring, and support). We will only be concerned with the ususal mode since the others
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are ususally at a different enough frequency that they can be discriminated against. We
have

1

2
K <x2 >N =

1

2
kT or <x2 >N =

kT

mω2
0

(I.4)

The signal to noise ratio is:〈 S

N

〉
=

1/2 |x0|2

<x2 >N

=
mω2

0 Q2

2kT
y2

0 (I.5)

For a numerical example, suppose we are interested in a frequency of 1Hz. Let m =
10 g, ω0 = 2π, Q = 100 (a reasonable value), T = 300 ◦K, then S/N ≈ 1010Y0. So with
the above detector we could measure vibration amplitudes of about 10−10cm. This could
be improved by increasing m and Q and decreasing the temperature.
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Appendix II

We try to answer the following question: Having measured a quantity x with estimated
error ∆x (as in eqn. 18), upto how many decimals should the value of x be reported?

While writing the numeric value of the quantity x, we may do the following spurious
variations.

1. We may, if possible, add zeroes (as many as we please) just after the decimal point
and multiply the number by a suitable power of 10, thus spuriously changing the
number of decimals.

2. We also might add as many trailing zeroes as we please (after the last non-zero
decimal)

It is important to note that in both the above cases it is possible to get rid of these zeroes
once and for all by multiplying by a suitable power of ten, if necessary. These zeroes do
not convey any new information.

There is a third case also. Suppose the value of x is a five digit number (the integral
part has 5 digits) but the last digit is unknown or ambiguous. In order to ensure that
the number has five digits we put a zero in the fifth place. This zero cannot be dropped
but it need not be counted as significant. In order to make the above points precise, we
define what are called the signifcant figures.

Definition: A significant figure is any one of the digits 1, 2−−−9; and 0 is a significant
figure except when it is used to fix the decimal point or to fill the places of unknown or
discarded digits.
Examples:

1. 0.00263 : significant figures are 2, 6, 3 and hence the number of significant figures is
3.

2. 3809 : significant figures are 3, 8, 0, 9 and hence the number of significant figures is
4.

Count the number of significant figures in the following numbers.

4.63× 104, 4.630× 104, 4.6300× 104

The question stated above can also be read as: Upto how many significant figures should
the value of x be reported?
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The Absolute and Relative errors

Definition: The absolute error of a number, a measurement or a computation is the
absolute difference between the true value of the quantity and its approximate value as
given, or obtained by measurement or computation i.e.

Absolute error EA = | xtrue − xobserved |

The relative error is the absolute error divided by the true value of the quantity.

ER = EA/xtrue

Remarks:

1. Note that the error ∆x in x, expressed as in eqn. 18 is the absolute error in x.

2. Relative errors are independent of the unit of measurement whereas the absolute
errors are expressed in terms of the unit used.

3. If the value of a quantity is correct upto n significant figures it is obvious that its
absolute error cannot be greater than half a unit in the nth place. For example,
if the value of the quantity is 4.629 and is correct to four significant figures, its
absolute error is not greater than 0.001× 1

2
= 0.0005.

4. The true index of the accuracy of a measurement or of a computation is the rel-
ative error. For example, if the width of a 1 mm slit is measured to the nearest
thousandth of an mm, the result is less accurate than the measurement of the
earth-moon distance to the nearest kilometer. For although the absolute errors in
two measurements are 5× 10−4 mm and 5× 105 mm respectively, the relative errors
are (5× 10−4 mm/1 mm) = 5× 10−4 and (1 km/384400 km) ≈ 2.6× 10−6. Hence in
the measurement of the slit we make an error of one part in 2000 while in the case of
the earth-moon distance measurement we make an error of one part in 384400. The
latter measurement is clearly more accurate even if its absolute error is 109 times
that of the former!

As a result of our measurements we get the estimates for the true value of the quantity
being measured and the absolute error (random + systematic) involved. From these we
can calculate the relative error. While reporting the value of the quantity, we want it to
be consistent with the relative error, i.e. the value should contain the correct number of
significant figures so that the value does not look more accurate than that is permitted
by the relative error. If the value reported contains n significant figures and is consistent
with the corresponding relative error then we say that the value is correct upto n signif-
icant figures. Thus in order to answer the question we have asked, we must establish a
quantitative relationship between the relative error and the number of significant figures
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allowed by this error. In what follows, we state two theorems (without proof) which do
exactly this job.

Theorem I
If the first significant figure of the number (standing for the value to be reported) is

k and if the number is correct to n significant figures, then the relative error is less than
1/(k × 10n−1)

Examples:

1. Let the number 864.32 be correct upto five significant figures. Then k = 8, n = 5
and EA ≤ 0.01× 1

2
= 0.005. One can easily verify that the relative error

ER <
1

8× 104

2. let the number 369230 be correct upto five significant figures. Then k = 3, n = 5
and EA ≤ 10× 1

2
= 5. Again one can see that

ER <
1

3× 104

3. Let the number 0.0800 be correct upto three significant figures. Show that the above
theorem applies here.

Actually our problem is converse to the theorem stated. We want to find the number
of correct figures corresponding to a given relative error. We cannot use the converse
of theorem I because that is not true. In order to solve our problem we state the next
theorem.

Theorem II
If the relative error in an approximate value is less than 1/((k+1)×10n−1), the value is

correct to n significant figures or atleast is in error by less than a unit in the nth significant
figure.

Corollary 1: If ER < 1/(2(k+1)×10n−1) then the given value is correct to n significant
figures.

Corollary 2: Since k may have any value from 1 to 9, it is evident that k + 1 may
have any value from 2 to 10. Hence the upper and lower limits of the fraction
1/(2(k+1)×10n−1) are 1/(4×10n−1) and 1/(2×10n) respectively. We can therefore
assert that:

If the relative error of any value is not greater than 1/(2× 10n), the value is certainly
correct upto n significant figures.

Theorem II (with corollaries 1 & 2) clinches the issue.
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Appendix III

Continuous Approximation to the Poisson Process

The Poisson distribution (eqn. 41) gives us probabilities for the various values taken by
a discrete varaible (say number of counts in time t). As the mean of the distribution
gets larger and larger the minimum increment in the value of the discrete variable can
be taken to be infinitesimal and the discrete variable can be approximated by a contin-
uous variable. In our problem, this means that, instead of asking for the probabilities
Pn(t), n = 0, 1, 2...., we now ask for the probabilities P (x, t) 0 ≤ x ≤ ∞, where x is a
continuous real variable.

At the end of the article 20, we have said that, in the aove approximation, P (x, t) is
the p.d.f of the normal distribution. Let us now try to see how this happens.

We go back to the counting process under study. The rate equation for the probability
Pn(t), eqn. 35, now becomes

∂P (x, t)

∂t
= λ P (x− 1, t) − λP (x, t) (III.1)

If we now expand the first term in the R.H.S. of eqn. III.1 in a Taylor series about p(x, t)
we get

∂P (x, t)

∂t
= λ

[
P (x, t)− ∂P (x, t)

∂x
+

1

2

∂2P (x, t)

∂x2

]
− λP (x, t)

Retaining only the terms of second order yields the equation

∂P

∂t
= − λ

∂P

∂x
+

1

2
λ

∂2P

∂x2
(III.2)

Eqn. III.2 is called the diffusion type equation. we shall not attempt to solve it here. The
solution is

P (x, t) = (2π λt)−
1
2 exp

(
− (x− λt)2

2λt

)
(III.3)

You should check whether eqn. III.3 is really a solution of (III.2). We can easily recognise
(III.3) to be the normal p.d.f with mean and variance µ = λt.

Note that the p.d.f. given by eqn. III.3 will assign non-zero probabilities to the negative
values of x which is unacceptable (why?). If the mean is large and positive, however, the
probability that x takes a negative value is negligible. (Sketch the p.d.f. to understand
this).
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There are, again, a large number of books dealing with stochastic processes in
general, and the Poisson process in particular. Most of the commonly cited books
are a difficult reading. A fairly complete and readable account of the Poisson process
is given in

13. The Elements of Stochastic Processes
N.T.J. Bailey, John Wiley & Sons, 1964.

14. Probability, Random Variables, & Stochastic processes
A. Papoulis, McGraw-Hill, 1984.

The problem discussed in Appendix Appendix II comes under the general circle of
numerical analysis. Again the number of books are large. Following are two of the
standard references.

15. Numerical Mathematical Analysis
J.B. Scarborough, Oxford & IBM Publishing Co. (VII edition), 1971.

16. Introduction to Numerical Analysis (2nd edition)
F.B. Hildebrand, McGraw-Hill, 1974.
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