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Numerical Methods Lecture5 - Curve Fitting Techniques

Topics
motivation
interpolation
linear regression
higher order polynomial form
exponential form
Curvefitting - motivation
For root finding, we used a given function to identify where it crossed zero
wheredoes f(x) = 0 ??

Q: Where does this given function f(x) come from in the first place?

*  Analytical models of phenomena (e.g. equations from physics)
*  Create an equation from observed data

1) Inter polation (connect the data-dots) Q/Q/O
If dataisreliable, we can plot it and connect the dots
Thisis piece-wise, linear interpolation
This has limited use as a general function f{x)

Sinceitsrealy agroup of small f(x) s, connecting one point to the next
it doesn’'t work very well for datathat has built in random error (scatter)

2) Curvefitting - capturing the trend in the data by assigning a single function across the entire range.
The example below uses a straight line function

fx)=ax+b
for eachline :
00 for entire range
O
Interpolation Curve Fitting

A straight line is described generically by fx)=ax+b

Thegoal isto identify the coefficients‘a and ‘b’ such that f(x) ‘fits’ the data well
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other examples of data sets that we can fit afunction to.
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No. But we're not stuck with just straight line fits. We'll start with straight lines, then expand the concept.

Linear curvefitting (linear regression)
Given the general form of astraight line

f(x) = ax+b

How can we pick the coefficients that best fits the line to the data?

First question: What makes a particular straight linea‘good’ fit?

Why does the blue line appear to usto fit the trend better?

*  Consider the distance between the data and points on the line

e  Add up thelength of all the red and blue verticle lines

* Thisisan expression of the ‘error’ between data and fitted line

e The one line that provides a minimum error is then the ‘ best’

straight line
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Quantifying error in a curve fit
assumptions:

1) positive or negative error have the same value (X y )
(data point is above or below the line) 4y4
2) Weight greater errors more heavily

T (xa,f (X4))

Y (. (60)

we can do both of these things by squaring the distance

denote data values as (X, y) =>>
denote points on the fitted line as (x, f(x))
sum the error at the four data points

err= (d)" = () ~fe)" + 3y =)’

(3= 1)) + (g =)

Our fit isastraight line, so now substitute f(x) = ax + b

# data points # data points

err= S 00 =Y Oy (ax b))
i=1 i=1

The *best’ line has minimum error between line and data points

Thisiscalled the least squar es approach, since we minimize the square of the error.
# data points = n )
minimize err = Z (yl.— (axl. + b))
i=1
time to pull out the calculus... finding the minimum of afunction
1) derivative describes the slope
2) slope = zero isaminimum
==> take the derivative of the error with respect to a and b, set each to zero

n

derr
a =-2 Z xl.(yl.—axl.—b) =0
i=1
3 n
err
7 =—2.Zl(yl.—axl.—b) =0
1 =
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Solvefor the a and b so that the previous two equations both = 0
re-write these two equations

ale.z + bel. = Z(xl.yl.)
ale.+b*n Zyl.

put these into matrix form

noSx H [ s

2
a X.y.
le. le. Z ( lyl)
what’s unknown?
we have the data points (xl., yl.) fori = 1, ..., n, sowehaveal the summation termsin the matrix

so unknows are a and b
Good news, we already know how to solve this problem
remember Gaussian elimination ??

A=l in, X:ﬂ,B: 2 Vi
susd Tl 5o

SO

AX = B

using built in Mathcad matrix inversion, the coefficients @ and b are solved

>> X = Alxp

Note: A, B,and X arenot thesameasa, b, and x

Let’s test this with an example:

i 1 2 3 4 5 6

X 0 0.5 1.0 15 2.0 2.5

y 0 15 3.0 4.5 6.0 7.5

First we find values for all the summation terms
n==~6

2
le. = 7.5, Zyl. = 225, le. = 13.75, le.yi = 41.25
Now plugging into the matrix form gives us:

Numerical Methods Lecture 5 - Curve Fitting Techniques page 92 of 102



CGN 3421 - Computer Methods Gurley

6 75 ||b| - | 225 Note: we are using lez NOT(ZXZ-)2
7.5 13.75) |a|  |41.25

b = inv 6 7.5 |x| 225 or use Gaussian elimination...
a 7.5 13.75] [41.25

Thesolutionis |?| = [V === f(x) = 3x+0
a 3

Thisfits the data exactly. That is, the error is zero. Usually thisis not the outcome. Usually we have data

that does not exactly fit astraight line.

Here's an example with some ‘noisy’ data

x=[0 5 1 15 2 25], y =[-0.4326 -0.1656 3.1253 4.7877 4.8535 8.6909]
6 7.5 ||b| _ |20.8593 b| _ inv 6 7.5 |%(20.8593 b| _ |-0.975
7.5 13.75] |a 41.6584 a 7.5 13.75| |41.6584 a 3.561
10 T T T T T T
soour fitis  f(x) = 3.561 x—0.975 &
E.
Here'saplot of the data and the curve fit: il /
o o
Fl
-]
ab
_l,.-"
0 =1
n/
So...what do we do when a straight line is not )
suitable for the data set? Ak : T : - - - -
Profit

/

paid labor hours

Straight line will not predict diminishing returns that data shows
Curvefitting - higher order polynomials
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We started the linear curve fit by choosing a generic form of the straight line  f(x) =ax +b
Thisisjust one kind of function. There are an infinite number of generic forms we could choose from for
almost any shape we want. Let’s start with a ssmple extension to the linear regression concept

recall the examples of sampled data

gel ghtegf o Oxygen in :
ropp o soil ©
object o o oo g
o ©oo
o® ©
© ©o o
O O
time temperature
pore 5 Profit o
pressure o o o o
00 & On O 5 00
08 O OO )
O
Ooo © o
i O
soil depth paid labor hours

Is a straight line suitable for each of these cases ? Top left and bottom right don’t look linear in trend, so
why fit a straight line? No reason to, let’s consider other options. There are lots of functions with lots of
different shapes that depend on coefficients. We can choose a form based on experience and trial/error.
Let's develop a few options for non-linear curve fitting. We'll start with a simple extension to linear
regression...higher order polynomials

Polynomial Curve Fitting

Consider the general form for a polynomial of order j

: J
2 3 k
f(x) = ag+ax+a,x” +azx +...+ajx] = ay+ Z apx (1)
Just as was the case for linear regression, we ask:

How can we pick the coefficients that best fits the curve to the
data? We can use the same idea:

The curve that gives minimum error between data y and the fit

f(x) is*best’
Quantify the error for these two second order curves... .
* Add upthelength of all the red and blue verticle lines
=

e pick curve with minimum total error

Error - L east squares approach
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The general expression for any error using the least squares approach is

err =3 (d) = (b ~flx )"+ 0y =) + (3= feg)) 4 0y ~fxy))” @)

where we want to minimize this error. Now substitute the form of our eqg. (1)

: J
2 3 k
f(x) = ag+a|X+a,x +azx +...+ajx] = ay+ Z ax

k=1
into the general least squares error eq. (2)
n . 2
2 3
err =% %i_ %10 +a X+ ayx; Fazx + o+ ajxim (3

i=1
where: n - # of datapointsgiven, i - the current data point being summed, ; - the polynomial order
re-writing eg. (3)
OO J O

err = .- (&, + a,x 1] (4)
2 FitHor 2 W
i=1 k=1

find thebest [ine = minimize the error (squared distance) between line and data points

Find the set of coefficients a,, a, so we can minimize eq. (4)

CALCULUSTIME
To minimize eq. (4), take the derivative with respect to each coefficient ag, a; k =1,..,J seteachto

Z€Eero
ngoQ J
aa_errz_z Z 3, — Ly + Z akxk%=0
a
0 = I
n J
Oerr 0 O
o0, - 22 BitHot 2 =t
1 i=1 k=1
ng o0 J
aa_errz_z Z Ej}l—D20+ Z akx%xz—o
a
2 e
0O O J
derr _ _, Z . — Loty + z akx%xlzo
an’ P
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re-writethese j + 1 equations, and put into matrix form
2 o .

n le. le. in a, Zyl
2 3 g+l > ()
le. le. in Z ; a, )

2 3 4 J*2|ay] = Z%i yg
le. le. le. Z ; | |

PR TASES sl b s

where al summations aboveareover i = 1,...,n

what's unknown?

we have the data points (xl., yl.) fori = 1,..,n

wewant a, a, k=1,..]J

We already know how to solve this problem. Remember Gaussian elimination ??

_ , = B _ | _
n le. le. in aq Zyl
Zx. sz Zx3 Zx/:Jrl a, Z(Xiyi)
fo fo fo fol:”’ X=ay B = Z%?y’g

_in in}l ZX;+2 ZX]l:+j_ i _Z%{yg_

where al summations above areover i = 1, ..., n datapoints

Note: No matter what the order j, we aways get equations LINEAR with respect to the coefficients.
This means we can use the following solution method

AX =B

using built in Mathcad matrix inversion, the coefficients @ and b are solved

>> X = Alxp
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Example #1.:

Fit a second order polynomial to the following data

Gurley

i 1

2

3

X 0

0.5

1.0

15

2.0

2.5

y 0

0.25

1.0

2.25

4.0

6.25

Sincetheorderis2(j = 2), the matrix formto solveis

Now plug in the given data.

n le. lez
S5 YN v
Sy S|

2 Vi
- le.yi

2
2 %Y

Before we go on...what answers do you expect for the coefficients after looking at the data?

n==~6

le. =17.5,

le.z ~ 1375,

fo _ 28.125

Zx? _ 61.1875
6 75 1375
75 1375 28.125

13.75 28.125 61.1875

al -

Sy, = 1375

le.yl. = 28.125

2

le.yi = 61.1875

13.75
28.125
61.1875

2 2
Note: we are using le. , NOT (le.) . There'sabig difference

using the inversion method

al -

inv 75

6

7.5
13.75 28.125

13.75

*k

13.75 28.125 61.1875
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or use Gaussian elimination gives us the solution to the coefficients

a 0 ,

a;| = |o| == f(x) = 04+ 0*x+ 1*x
1

4

T_his_fitsthe dataexactly. That is, f(x) =y sincey = x"2

Example #2: uncertain data
Now we'll try some ‘noisy’ data

x=[0 .0 1 15 2 25]
y =[0.0674 -0.9156 1.6253 3.0377 3.3535 7.9409]
The resulting system to solveis:

L
“0 6 75 1375 | |15.1093 f
aj| =invi 75 1375 28.125|"|32.2834 i
a, 13.75 28.125 61.1875| | 71.276 i
- - X
“|  |-0.1812 1
giving: |a,| = |-0.3221 34 =g
a, 1.3537 95 @ @5 1 15 3

So our fitted second order function is:

f(x) = — 0.1812 — 0.3221x% + 1.3537%x°

Example #3 : data with three different fits

In this example, we're not sure which order will fit
well, so we try three different polynomial orders
Note: Linear regression, or first order curve fitting is
just the general polynomial form we just saw, where
weusej=1,

data
imear &

Zrd order il
&th ordear Bt

. 2nd and 6th order look similar, but 6th has a
‘squiggle to it. We may not want that...

o) 5
C

-
l‘]‘!I
ad
.
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Overfit / Underfit - picking an inappropriate order

Overfit - over-doing the requirement for the fit to ‘match’ the data trend (order too high)

Polynomials become more ‘squiggly’ as their order increases. A ‘squiggly’ appearance comes from
inflectionsin function

Consideration #1.: i
3rd order - 1 inflection point al
4th order - 2 inflection points
nth order - n-2 inflection points &
Consideration #2: 1 L

1 Y ol 1st
2 data points - linear touches each point i 4 = Jnd
3 data points - second order touches each point . — 4th
n data points - n-1 order polynomial will touch each point

SO: Picking an order too high will overfit data

General rule: pick apolynomial form at least severa orders lower than the number of data points.
Start with linear and add order until trends are matched.

Underfit - If the order istoo low to capture obvious trends in the data

Profit

/

paid labor hours

Straight line will not predict
diminishing returns that data shows

General rule: View datafirst, then select an order that reflects inflections, etc.
For the example above:
1) Obviously nonlinear, so order > 1

2) No inflcetion points observed as obvious, so order < 3 is recommended
=====> |'d use 2nd order for this data
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Curvefitting - Other nonlinear fits (exponential)

Q: Will apolynomial of any order necessarily fit any set of data?
A: Nope, lots of phenomena don’t follow a polynomial form. They may be, for example, exponential

Example : Data(x,y) follows exponential form

The next line references a separate worksheet with a function inside called
Create_Vector. | can use the function here as long as | reference the worksheet first

[+] Reference:C:\Mine\Mathcad\Tutorials\MyFunctions.mcd

X := Create Vector (-2,4,.25) Y ;= 1.6exp(1.3 X)

f2:=regress(X,Y,2) f3:=regress(X,Y,3)
fit2(x) := interp(f2, X, Y, %) fit3(x) = interp(f3, X,Y,X) i:=-2,-19..4
300 T

200

100

0
| | |
-2 0 2 4
+++ data
— 2nd order
— 3rd order

Note that neither 2nd nor 3rd order fit really describes the data well, but higher order will only get more
‘squiggly’

We created this sample of data using an exponentia function. Why not create a general form of the expo-
nential function, and use the error minimization concept to identify its coefficients. That is, let’s replace

k
ax

1

2 3 ]
the polynomial equation f(x) = ag+a|X+a,x +azx +..+ ajx] = ap+

™M~

k

A
With a general exponential equation f(x) = Ce * = Cexp(Ax)
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where we will seek C and A such that this equation fits the data as best it can.
Again with theerror:  solve for the coefficients C, A such that the error is minimized:

minimize err = Z (yl-—(CeXp(z‘\X)))2
i=1

Problem: When we take partial derivatives with respect to err and set to zero, we get two NONL I N-
EAR equations with respect to C, A

So what? We can’t use Gaussian Elimination or the inverse function anymore.
Those methods are for LINEAR equations only...

Now what?

Solution #1: Nonlinear equation solving methods

Remember we used Newton Raphson to solve a single nonlinear equation? (root finding)
We can use Newton Raphson to solve a system of nonlinear equations.

|s there another way? For the exponential form, yesthereis

Solution #2: Linearization:
Let’s seeif we can do some algebra and change of variables to re-cast thisas alinear problem...
Given: pair of data (x,y)

A
Find: afunction to fit data of the general exponential formy = Ce *

A
1) Take logarithm of both sides to get rid of the exponential In(y) = In(Ce x) = Ax + In(C)

2) Introduce the following change of variables: ¥ = In(y), X =x, B = In(C)
Nowwehave: Y = AX+ B whichisaLINEAR equation
The original data pointsin the x — y plane get mapped into the X — Y plane.

Thisiscalled datalinearization. The dataistransformedas.  (x, y) O (X, Y) = (x, In(y))

n X
Now we use the method for solving afirst order linear curve fit Z 5 {B} = ZY
ZX ZX A ZXY
for A and B, whereabove Y = In(y),and X = x

B
Finally, we operateon B = In(C) tosolve C = e
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A
And we now have the coefficientsfor y = Ce *
Example: repeat previous example, add exponential fit

X := Create Vector (-2,4,.25) Y := 1.6-exp(1.3- X)

f2 .= regress (X,Y,2) f3 := regress (X,Y,3)

fit2(x) := interp (f2, X,Y.,x)  fit3(x) == interp (3, X,Y,X)

ADDING NEW STUFF FOR EXP FIT

Y2 = In(Y) fexp == regress (X,Y2,1)  coeff := submatrix (fexp,4,5,1,1)
300
200
A =13
o0 C=16
0
| I '
+++ data
— 2nd order
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