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Guide to these notes

These notes are accompanied by exercises. They are of three kinds:

Exercise (level A): An exercise to fill in missing steps in a derivation, or to generalise a formula.
These exercises will be very simple and straightforward. Everyone should attempt them in order to
get a clearer understanding of the notes.

Exercise (level B): An exercise that is somewhat challenging and requires thought and/or calculation.
These are supposed to prepare the student for the kind of questions that could be asked in the exams
or quizzes. In fact, some of the Exercises of level B may actually appear in an exam or quiz of this
course. Everyone is strongly advised to solve these and understand the method properly.

Exercise (level C): These are more mathematical. They are intended for students who like mathe-
matics and want to understand the course material in greater depth. However, everyone need not do
them and questions of this level will not appear in any of the exams/quizzes.

Exercise (level X): This is not really an exercise. It is usually just a comment that challenges you to
think.

Evaluation methods

This course will be evaluated by two quizzes, a mid-semester exam, two more quizzes and a final
exam. The portion for each evaluation consists of all the material that has been taught up to that
time.

The mid-sem and final will count for 30 marks each and will have “subjective” type questions where
the answer has to be derived and written out. Each quiz will count for 10 marks and will be of
“objective” type with multiple-choice answers. The exams and quizzes are intended to be done by
each student individually with no help from anyone else.

There will also be Exercises (for more details, see below) given in the notes or assigned in class.
These can be treated as homework assignments. You are welcome to do them together with others,
though it will be more helpful if you think about them by yourself first. These exercises will not
be collected or graded, but if you have any difficulties or just want your answers checked, you are
welcome to come to our offices in person.

The exams and quizzes are supposed to provide a just and fair ranking of each student’s performance.
If any student uses unfair methods or cheating of any kind, this purpose cannot be fulfilled. Therefore
there will be absolutely no tolerance of cheating in this course and penalties will be imposed on anyone
who is caught. Please note that copying an answer from another person, as well as supplying an
answer to another person, are both forms of cheating and both are equally punishable. refer to the
Section “Evaluation Methods” at the end of these notes, for useful information about quizzes, exams
etc.

One comment about the course

If you rely on memorisation, you will not do well in this course! Our goal is to help you think for
yourself and understand.
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1 Oscillations

1.1 General features, definitions

Oscillations are among the most familiar phenomena seen in daily life:

• Our heartbeat

• Our breathing

• Our voice

• A bouncing ball

• Waves on the seashore

• The pendulum of a clock

• Expansion and contraction of a spring

• The string of a musical instrument

• Vibration of air in a flute

• The buzzing of an insect

• The rotation of the earth on its axis

• The revolution of the earth around the sun

The key property is that these are periodic motions. Such motions have a typical period after which
the system returns to its initial state. The period varies widely across physical systems. For example
our heart is a pump that contracts and expands around 80 times a minute. Therefore its period
(the amount of time for one oscillation) is 1

80
minutes, or 60

80
∼ 0.75 seconds. Our lungs expand and

contract more slowly, around 12− 20 times a minute. So their period is about 3− 5 seconds.

The number of oscillations per unit time is called the frequency. It is the inverse of the period. In
physics we typically denote the period by T or τ (indicating “time”) and the frequency by ν. Thus:

ν =
1

T

A musical string playing the note called “middle C” vibrates around 256 times a second. The highest
frequency that humans can hear is about 22,000 vibrations per second.

The unit of vibration/oscillation per second is the Hertz (Hz) named after the physics Heinrich Hertz.
It also used to be called “cps” for “cycles per second”. One also uses:

KHz (kilo Hertz): 1 KHz = 103 Hz

MHz (mega Hertz): 1 MHz = 106 Hz

GHz (giga Hertz): 1 GHz = 109 Hz

There is another common unit which is closely related. Suppose we have an object moving in a circle.
This may not look like a “vibration” or “oscillation” but in fact it is. The motion is periodic, since
the object keeps returning to the same place. For such objects we use the “angular frequency” ω,
defined as the angle in radians swept out per second. Clearly when the object undergoes one full
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revolution, it sweeps out an angle of 2π. So if it undergoes ν revolutions per second, its angular
frequency will be 2πν. Thus:

ω = 2πν =
2π

T

One interesting feature of oscillations is that one can superpose them and the result is rather com-
plicated. For example, the earth rotates around its axis and revolves around the sun. As a result,
any fixed point of earth executes a rather complicated motion. Superposed oscillations are the basis
of the “spirograph” toy. A more complicated example is a bouncing ball on a merry-go-round. As
viewed from the sun, its motion is a superposition of (i) bouncing off the floor, (ii) rotation of the
merry-go-round, (iii) rotation of the earth on its axis, and (iv) revolution of the earth. The resulting
motion is very complicated and may not appear to be periodic.

Another nice example of superposed oscillations is the sound of a musical instrument. If we play the
note “middle C” on a sitar, a sarod, a veena, a shehnai, a flute, a piano or a guitar, it sounds very
different. The reason is that although the main vibration involved is 256 Hz, there are additional
vibration frequencies that are multiples of this one (e.g. 512 Hz, 1024 Hz). Moreover, vibrations are
induced in the body of the instrument. These depend on the material and its shape and therefore
tend to be very complex. Also, a sitar has “sympathetic” strings that vibrate on their own when
the main string is plucked. All these effects combine to produce the characteristic sound of the
instrument.

A second interesting feature about oscillations is that they typically die down due to an effect called
damping. Every one of the effects described above (including the earth’s rotation around its axis!)
will eventually come to an end unless some energy is supplied to keep it going. If energy is supplied
then of course the vibration/oscillation can be maintained, and even increased.

A third interesting feature about oscillations is the concept of amplitude which tells us how much
oscillation is happening. If you gently hit a note on the piano or bang it hard, you get the same
frequency but in one case the sound is soft and in the other, loud. This is true of any kind of sound.
One may think the rotation of the earth around its own axis has no concept like a period, but imagine
two planets, one much bigger than the other, each rotating around its own axis at the same rate (e.g.
one full turn in 24 hours). We can think of the differing sizes as the analogue of vibration amplitude.

Often the amplitude seems unrelated to the time period. For example, the pendulum of a clock may
swing back and forth in one second, independent of whether it is swinging through a large or small
angle. However, in general the amplitude and period for a pendulum are actually linked. The linkage
is not visible for small amplitudes but becomes significant for large amplitudes. Only very special,
idealised systems have completely de-linking between the amplitude and the period.

A final observation is that if we have a system that is not oscillating, and we couple it to a system
that is oscillating, then the latter system can “induce” or “force” oscillations in the former. Such
forced oscillations will not have the frequency typical of the original system but rather, those of the
forcing system. Something special happens when the two frequencies match: a phenomen called
resonance takes place and the original system will oscillate with increasing amplitude.

This has been a collection of qualitative facts about vibrations without using any mathematics.
From now on our goal will be a precise, quantitative analysis of vibrations. These will justify many
of the above statements that were based purely on observation and common sense. A quantitative
understanding of physical phenomena is the primary goal of physics.
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1.2 Harmonic oscillations in one dimension

1.2.1 General solution

The space in which we live has three dimensions. The possible motions of a point object in three
dimensions are very complicated – it can trace any path through space. But if the object is confined
to move in just one dimension then the motion is simpler. Suppose the single direction is denoted
as the x-axis with −∞ < x < ∞. Oscillatory motion then means that for some time the object is
moving towards larger x, then it reverses and moves towards smaller x, then reverses again. Each
time the direction reverses, the object has to stop for an instant.

Imagine an idealised point object whose position evolves as a function of time. This is denoted by
x(t). We use the notational conventions:

ẋ =
dx

dt
, ẍ =

d2x

dt2

To find a simple equation we can assume the object experiences a linear restoring force that always
pulls it towards the origin. Thus:

F = mẍ = −kx (1.1)

An object obeying this law is called a simple harmonic oscillator. Here k is the spring constant of
the oscillator.

Some simple properties can be deduced by looking at the equation. When x is positive the force is
along the negative direction, and when x is negative the force is along the positive direction. When
x = 0 there is no force. The above equation can be easily rewritten:

ẍ = −ω2x (1.2)

where ω =
√

k
m

. We have deliberately used the symbol for angular frequency here. Soon we will see

that this is the correct meaning of ω.

Note that the above is a linear equation. If we rescale x by any factor, say x → λx where λ is a
nonzero constant, the equation remains the same. This is special to the harmonic oscillator. More
general oscillators will be nonlinear.

Now we must decide what is the initial condition. A very simple condition is that at t = 0 the object
is at rest at x = 0 (this is written as x(0) = 0, ẋ(0) = 0). Then at this instant, the above equation
reduces to:

F (t = 0) = 0 (1.3)

Since the force is zero, the object will not move. Therefore at any later time the object will simply
remain at x = 0. Clearly this is a very special initial condition and the resulting motion is not
interesting. So let us look at more general initial conditions.

One possibility is that at t = 0 the object is at rest at some point A. Thus x(0) = x0, ẋ(0) = 0.
Another possibility is that at t = 0 the object is at the origin but moving with some velocity v0. Thus
x(0) = 0, ẋ(0) = v0. The most general initial condition is that at t = 0 the position and velocity are
both arbitrary:

x(0) = x0, ẋ(0) = v0

where x0, v0 are arbitrary numbers that can be independently positive, negative or zero. Now let us
consider the following function:

x(t) = A cosωt+B sinωt (1.4)

By differentiating repeatedly we find:

ẋ(t) = −Aω sinωt+Bω cosωt

ẍ(t) = −Aω2 cosωt−Bω2 sinωt
(1.5)
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Comparing Eqs.(1.4) and the second equation in (1.5), we see that ẍ = −ω2x which is the equation
we were trying to solve. Also by putting t = 0 in the previous equations we find:

x(0) = x0 = A, ẋ(0) = v0 = ωB (1.6)

Thus the proposed function indeed solves our force equation as well as the given initial conditions!
In fact this is the most general solution of the above problem. We will not derive this fact, but you
can assume it to be true.

What are the period and frequency of this oscillator? We know that the sin and cos functions have
the following periodicity property:

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ

The period of the oscillator is defined by saying that x(t+T ) = x(t). This will be true if ω(t+T ) =
ωt + 2π. It follows that ω = 2π

T
. This proves that we have given ω the correct interpretation of

angular frequency.

Some books write the motion of the simple harmonic oscillator in one dimension as:

x(t) = C sin(ωt+ α) (1.7)

This looks quite different from Eq.(1.4)! But in fact it is the same, in a different notation. Let us
use the identity:

sin(X + Y ) = sinX cosY + cosX sinY (1.8)

Then we can write the above solution as:

x(t) = (C cosα) sinωt+ (C sinα) cosωt

This is the same as Eq.(1.4) if we identify A = C cosα and B = C sinα. So the two ways of writing
the solution are simply related to each other. The advantage of the second way can be seen if we
plot the function. We see that C is just the maximum amplitude while α, known as the “phase”,
determines where on the graph the particle starts out at t = 0.

Notice that C is completely arbitrary and has no relation to ω. This is the statement that the
amplitude of oscillations has nothing to do with the frequency of oscillations. This property is special
to the harmonic oscillator with F = −kx. If we had started with a different restoring force, we would
have the anharmonic oscillator and such a rule would not be true. We will soon explain this in more
detail.

Exercise (level A): (i) Solve for C and α in terms of A and B. (ii) Sketch the graph of Eq.(1.7) for
yourself by plotting a number of points on it.

Exercise (level C): For those who know complex numbers. Show that

x(t) = Deiωt +D∗e−iωt

is another way to write the solution of the simple harmonic oscillator, where D is a complex constant.
Find the relation between D and A,B in Eq.(1.4).

Exercise (level X): Do you believe the identity Eq.(1.8). If yes, why? Do you really know it is true?
Can you find ways to make it more believable to yourself?

Since the equation F = −kx is linear, we can superpose two different harmonic motions for the same
particle of mass m and spring constant k. Since these constants determine the angular frequency
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ω, this amounts to superposing two different expressions of the form Eq.(1.4). Thus the superposed
motion is given by:

x(t) = A cosωt+B sinωt+ A′ cosωt+B′ sinωt

= (A+ A′) cosωt+ (B +B′) sinωt
(1.9)

It is obvious that the superposition is also a solution of the same form Eq.(1.4) with the constant
coefficients just added. In particular this means physically that the original position of the particle
becomes the sum of the original positions, and the original velocity also becomes the sum of the
original velocities. Things are not this simple if we superpose two motions with different angular
frequencies. We will come back to this case somewhat later.

Exercise (Level B): Consider the above superposition in the amplitude and phase representation
Eq.(1.7). Find the amplitude and phase of the superposed motion as a function of the original
amplitudes and phases.

Exercise (Level B): A particle moving in one dimension is subjected to three harmonic motions of
amplitudes 0.25 mm, 0.20 mm and 0.15 mm respectively. The phase difference between the second
and first motion is 45◦ and between the second and the third, 30◦. Find the amplitude of the resulting
motion, as well as its phase (relative to the first oscillator).

1.2.2 Energy conservation

It is useful to calculate the total energy of the simple harmonic oscillator and explicitly derive the
fact of energy conservation. There is a useful trick to achieve this, which works for very general
systems in one dimension but we will only apply it to the simple harmonic oscillator. Multiply both
sides of the original equation Eq.(1.2) by ẋ to get:

ẋẍ = −ω2xẋ (1.10)

Now, notice that:
d

dt
(x2) = 2xẋ,

d

dt
(ẋ2) = 2ẋẍ (1.11)

Thus our equation becomes:
d

dt
(ẋ2) = −ω2 d

dt
(x2) (1.12)

It follows that:
ẋ2 = −ω2x2 + C (1.13)

where C is an arbitrary constant.

There is a nice physical interpretation for the above equation. By multiplying both sides by 1
2
m and

rearranging, we find:
1

2
mC =

1

2
mẋ2 +

1

2
mω2x2 (1.14)

Now notice that the first term on the RHS is just 1
2
mv2, known as the kinetic energy of the particle.

The equation is telling us that the kinetic energy plus another term 1
2
mω2x2 is a constant. We

interpret this second term as the potential energy and the constant sum as the total energy. Thus we
can write:

E =
1

2
mẋ2 +

1

2
mω2x2 (1.15)

We see that as the kinetic energy increases, the potential energy decreases and vice-versa. The fact
that E is constant is the law of conservation of energy.
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Exercise (level B): A 500 gm cube connected to a light spring for which the force constant is 20 N/m
oscillates on a horizontal, frictionless track. (a) Calculate the total energy of the system and the
maximum speed of the cube if the amplitude of the motion is 3 cm. (b) What is the velocity of the
cube when the displacement is 2 cm? (c) Compute the kinetic and potential energies of the system
when the displacement is 2 cm. (d) At what value of x is the speed of the cube equal to 10 cm/sec?

Exercise (level B): Find the energy in terms of the coefficients A and B in Eq.(1.4) and also in terms
of C and α in Eq.(1.7). Does the energy depend on the phase α? What is the physical reason?

Exercise (level C): Rewrite the above equation as:∫
dx√

2E
m
− ω2x2

=

∫
dt (1.16)

Impose suitable limits of integration and integrate to find x(t). Verify that your solution is of the
form in Eq.(1.4).

1.2.3 Superposition of different frequencies

In a previous section we considered superposing two harmonic oscillators with the same frequencies
but possibly different amplitudes and phases. The result was again a harmonic oscillator of the same
frequency, with its amplitude and phase determined by those of its components.

Now we will consider the superposition of two harmonic oscillators with different frequencies. Such
superpositions occur in many different contexts in nature. As a physical example we can imagine
two different musical strings tuned to different frequencies.

Let us start by considering two oscillators with unit amplitude and zero phase, but distinct frequen-
cies:

x1(t) = sinω1t, x2(t) = sinω2t (1.17)

Obviously the superposition is:

x(t) = x1(t) + x2(t) = sinω1t+ sinω2t (1.18)

We can use the trigonometric formula1:

sin a+ sin b = 2 cos
a− b

2
sin

a+ b

2
(1.19)

to rewrite the superposed oscillation as:

x(t) = 2 cos
(ω1 − ω2)t

2
sin

(ω1 + ω2)t

2
(1.20)

It is very illuminating to plot such a superposition. First we plot the case of ω1 = 256 Hz, ω2 = 75 Hz:

1You can easily derive this formula using the representation of sine and cosine in terms of exponentials.
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0.05 0.10 0.15 0.20
t

-1.0

-0.5

0.5

1.0

Sin w1 t, Sin w2 t, w1 = 256 Hz, w2 = 75 Hz

0.05 0.10 0.15 0.20
t

-2

-1

1

2

Sin w1 t + Sin w2 t, w1 = 256 Hz, w2 = 75 Hz

Clearly the sum is not a simple harmonic motion! In fact it shows features of two types of oscillations,
one faster and another slower. From the figure, it is not even obvious that the resulting motion is
periodic. We must think clearly what “periodic” means – it means that there is a finite portion of
the graph (not a sinusoidal curve, but some more complicated one) which repeats indefinitely. The
alternative is that the motion might never repeat.

We can derive the mathematical condition for the motion to repeat. This simply says that:

sinω1(t+ T ) + sinω2(t+ T ) = sinω1t+ sinω2t

Since we have two different frequencies ω1 and ω2, it is no longer true that T = 2π
ω

. So what is T?
Let us denote by T1, T2 the periods of the individual oscillators. The full motion will be periodic
only if both oscillators return to the same state at the same time. The first one returns after every
lapse of T1 seconds, so in general:

sinω1(t+ n1T1) = sinω1t

for any integer n1. Similarly the second returns after a lapse of n2T2 seconds for any integer n2. For
both to return together, we must have:

n1T1 = n2T2
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for some integers n1, n2. This is not always possible. For example if T1 =
√

2 and T2 =
√

3 seconds,
then there are no integers n1, n2 such that the above equation is satisfied. The exact condition is
found by rewriting the above equation as:

n1

n2

=
T2

T1

=
ω1

ω2

Since we know the frequencies of the two oscillators, the RHS is given to us. If it is a rational
number then integers n1, n2 can be found to satisfy the equation. In this case the two periods are
said to be commensurable. Otherwise such integers cannot be found and then the oscillators are
incommensurable.

An interesting phenomenon emerges if we consider a closer pair of frequencies, ω1 = 256 Hz, ω2 =
250 Hz. For this particular example, Eq.(1.20) is:

x(t) = 2(cos 3 t)(sin 253 t) (1.21)

0.05 0.10 0.15 0.20
t

-1.0

-0.5

0.5

1.0

Sin w1 t, Sin w2 t, w1 = 256 Hz, w2 = 250 Hz

First we look at the plot of the sum. This appears to show a slightly decreasing amplitude as t varies
from 0 to 0.2. We can see this more clearly if we expand the range of t to cover 0 to 2.75.

0.05 0.10 0.15 0.20
t

-2

-1

1

2

Sin w1 t + Sin w2 t, w1 = 256 Hz, w2 = 250 Hz
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0.5 1.0 1.5 2.0 2.5
t

-2

-1

1

2

Sin w1 t + Sin w2 t, w1 = 256 Hz, w2 = 250 Hz

Now we see that there is a “fast” oscillation of angular frequency 253 Hz multiplied by a “slow”
one of angular frequency 3 Hz. The fast frequency is the average of the two original frequencies. It
appears to have a varying amplitude, which is the slowly varying “envelope” of the shown curve.
Inside the envelope, rapid oscillations take place.

When the oscillation corresponds to a musical sound, the human ear hears a note of the fast frequency
that seems to swell and disappear periodically. These are called “beats”. Notice that even though
the envelope has a frequency ω1−ω2

2
, the recurrence rate of beats is twice that, namely ω1 − ω2. This

is clear from the figure. By the time the envelope completes a full sine wave, there are two beats
contained in it.

We can see this in the above example. The the beat frequency is (ω1−ω2)
2

= 3 Hz, but from what
we said above, the recurrence rate should corresponds to double this frequency, namely 6 Hz. This
frequency corresponds to a period of T = 2π/6 which is roughly 1 second. And indeed, as we see in
the figure, the duration of a beat is roughly 1 second.

Another interesting point to note is that:

(ω1 + ω2)/2

(ω1 − ω2)/2
=

253

3
∼ 84

Thus during one cycle of the envelope, there should be 84 fast oscillations. Since one cycle of the
envelope is 2 beats, there must be roughly 42 oscillations inside a beat. One can count this number
on the figure.

Above, we looked at a simple example where two harmonic oscillations were superposed with the
same amplitude and phase. Let us try to see what happens if we vary one of these. First, we vary
the phase. Thus, we consider the sum of two oscillations:

x(t) = sin(256 t) + sin(250t+ 1.5)

In this case, the sum of the two oscillations is given by the following figure:
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Sin w1 t + Sin (w2 t + 1.5), w1 = 256 Hz, w2 = 250 Hz

Comparing to the previous one, we see that the phase shift has only shifted the entire figure by the
corresponding amount. But the structure of beats remains the same.

Next we may try to vary the amplitude. So consider the sum of two oscillations:

x(t) = sin(256 t) + 1.5 sin(250t)

The second oscillation has a different amplitude from the first. This time the graph looks as follows:

0.5 1.0 1.5 2.0 2.5
t

-2

-1

1

2

Sin w1 t + 1.5 Sin w2 t, w1 = 256 Hz, w2 = 250 Hz

Although there are still beats, the amplitude never dies down completely to 0. This is obvious since
a larger amplitude can never be completely cancelled by a smaller one.

Exercise (level B): Consider the superposition of two one-dimensional oscillators of frequencies ω1 =
200 Hz and ω2 = 75 Hz and unit amplitude. What is the period of the combined motion? Suppose
the frequency of the second oscillator is changed to 74 Hz, what is the period now?
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1.3 Harmonic oscillator in two and three dimensions

1.3.1 Isotropic case

A two-dimensional isotropic harmonic oscillator satisfies the equation:

~F = −k~x

where both sides are two-component vectors. “Isotropic” means “same in all directions”. This is the
case because the spring constant is the same for motion in the x and y directions. In fact the above
equation can be written, in components, as:

Fx = −kx, Fy = −ky

The general solution is clearly:

x(t) = C sin(ωt+ α), y(t) = D sin(ωt+ β),

It is easy, but not necessarily useful, to write down a general solution for the trajectory. We have:

ωt = sin−1
( x
C

)
− α, ωt = sin−1

( y
D

)
− β

Equating the two gives:

sin−1
( x
C

)
− sin−1

( y
D

)
− α + β = 0

In principle this provides the orbit followed by the oscillator. However it is not very illuminating to
express it in this form. Instead, we first look at some simple cases.

If C = D = 1 and α = β = 0 then we have:

x(t) = sinωt, y(t) = sinωt

It follows that x(t) = y(t). Thus the path traced by the oscillator is a straight line at 45◦ to the x
and y axes. Even though it is allowed to move in two dimensions, in this special case it just moves
back and forth in one (slanted) direction.

Another special case is:
x(t) = sinωt, y(t) = cosωt

It is easy to see that x2 + y2 = 1. Thus the path of the oscillator is a unit circle in two dimensions.
We can easily check what is the direction in which it traces this circle. At t = 0 the object is at
x = 0, y = 1 which is the top of the circle. After a little time, one sees from the functional form that
x has increased while y has decreased. Thus the particle follows a clockwise trajectory.

To get additional insight into the general structure, let us generalise a little more. Suppose we repeat
the previous cases but with different amplitudes:

x(t) = sinωt, y(t) = C sinωt

This time the relation is y(t) = Cx(t). This is still a straight line, but with a slope C instead of 1.
Thus if C > 1 it will be steeper than 45◦ while if C < 1 then it will have a smaller angle.

Similarly, consider
x(t) = sinωt, y(t) = C cosωt

The relation between x and y is now:

x2 +
y2

C2
= 1

This is the equation of an ellipse.
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Let us now leave the amplitudes equal but consider several different phases. Thus:

x(t) = sinωt, y(t) = sin(ωt+ α) (1.22)

Above we have discussed the cases α = 0 and α = π
2
. Suppose now that α = π

4
. Then:

y(t) = sin(ωt+
π

4
) =

1√
2

(
sinωt+ cosωt

)
Eliminating sinωt between these equations, we get:

cosωt =
√

2y − x

Since we also have sinωt = x, we can square both equations and sum them, using sin2 ωt+cos2 ωt = 1,
to get:

x2 + (
√

2y − x)2 = 1

which simplifies to:
2x2 + 2y2 − 2

√
2xy = 1

Cancelling a factor of 2, we have:

x2 + y2 −
√

2xy =
1

2

We can simplify this by defining new coordinates:

x′ =
1√
2

(x+ y), y′ =
1√
2

(x− y)

Then it is easy to show that the above equation reduces to:(
1− 1√

2

)
x′2 +

(
1 +

1√
2

)
y′2 = 1

This is an ellipse whose axes are oriented along the diagonal to the original x, y coordinate system.

We see that upon varying the relative phase between y and x, the combination describes: (i) a
straight line (for α = 0), (ii) an ellipse (for α = π

4
, (iii) a circle (for α = π

2
). Continuing in this way,

one can get a picture of the trajectory as the phase varies from 0 to 2π.

Exercise (level A): Find the trajectory for phase differences 3π
4
, π, 5π

4
, 3π

2
, 7π

4
and 2π. It is not necessary

to repeat the calculation in each case! Simple trigonometric identities will reduce all of these to the
cases we have already considered, upto some signs. Consider also the phase π

3
, and see if this helps

you understand the overall picture better.

Exercise (level A): For each of the above trajectories, mark an arrow to show the direction (clockwise
or counter-clockwise) of the particle’s motion.

Exercise (level B): Find the equation satisfied by x and y (after eliminating t) for an arbitrary phase
α in Eq.(1.22). Do not use inverse trigonometric functions. You should be able to find a quadratic
equation in x and y.

Exercise (level C): Find a rotation that takes you from the equation in the previous exercise to the
standard form of an ellipse.

Now let us briefly discuss the isotropic oscillator in 3 dimensions. We can imagine a point mass, free
of gravitational force, attached to a central point by a spring. To specify its motion we need to choose
six parameters – these can be the initial position (three components) and the initial velocity (three
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more components), or equivalently the amplitudes and phases of the three independent oscillators.
Thus:

x(t) = C sin(ωt+ α)

y(t) = D sin(ωt+ β)

z(t) = E sin(ωt+ γ)

(1.23)

From this formula it seems that harmonic motion in three dimensions can be extremely complicated.
However there is an important simplifying feature. It is a theorem that any motion under a central
force takes place in a plane. To prove this, assume a general central force:

~F = f(~x)
~x

|~x| (1.24)

In our case, f(~x) = −k|~x|. But we will prove the theorem for any central force. We start by
constructing the angular momentum vector:

~L = m~x× ~̇x (1.25)

The right hand side seems to depend on time, since both ~x and ~̇x are functions of time. However, we
can easily show that the angular momentum is conserved (independent of time). First, observe that:

d~L

dt
= m

d

dt

(
~x× ~̇x

)
= m(~̇x× ~̇x+ ~x× ~̈x) (1.26)

The first term on the RHS is clearly zero. For the second term, we use:

~̈x =
~F

m
= − f(~x)

m|~x |~x

This shows that ~̈x is parallel to ~x , therefore ~x × ~̈x = 0. Thus we have proved that d~L
dt

= 0.

Since ~L is conserved, it remains fixed in magnitude and direction for all time. And from its definition,
we easily see that ~L · ~x = 0. Thus, as the particle moves, its position vector remains permanently
perpendicular to the fixed vector ~L . This is the statement that it moves in a plane.

Knowing that the particle will move in a plane, we can reduce the three-dimensional harmonic
oscillator to a two-dimensional one (lying in that plane). Therefore simple harmonic motion in three
dimensions is no more complicated than in two dimensions.

1.3.2 Anisotropic case

We now consider the anisotropic harmonic oscillator in two dimensions. This object has the force
law:

Fx = −k1x, Fy = −k2y (1.27)

where the spring constants are different: k1 6= k2. Defining

ω1 =

√
k1

m
, ω2 =

√
k2

m

we find the solution to be:
x(t) = sinω1t, y(t) = C sin(ω2t+ α) (1.28)

Here we have scaled both the axis so that the amplitude along x is unity. Also we have chosen the
initial time t = 0 such that the phase in the x-oscillator is zero. Thus, the solution depends on two
frequencies ω1, ω2 and two arbitrary constants C, α.
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Perhaps surprisingly, the resulting motion is extremely complicated and varies significantly as we
vary the frequencies, relative amplitude and relative phase. The resulting trajectories in two di-
mensions are called “Lissajous figures”. One can view them on http://lissajousfigure.netne.net. or
http://demonstrations.wolfram.com/LissajousFigures.

Some features of this combined motion are as follows. The shape of the figure depends on the ratio
ω2

ω1
as well as the phase difference. Changing the relative amplitude only distorts the figure but does

not change its basic form. First consider α = 0 and ω2

ω1
= 1

2
, 1

3
, 1

4
. The resulting figures are as follows:

Exercise (level A): Try to understand each of the above trajectories by imagining a particle with the
given frequency ratio and tracing out its path by hand. Can you see why the case of 1

3
looks like an

open orbit? What will happen to that case if we change the phase slightly? What if we change it all
the way to α = π

2
?

Lissajous figures change dramatically even for slightly varying frequency ratios. For example if ω2

ω1
= 1

then we get a straight line/ellipse/circle (depending on the phase difference). However if this ratio
is 9

10
then we get the following figures:

The first one is at α = 0 and the second, at α = π
2
. What has happened in the second picture is that

the paths are superimposed over themselves so we see fewer lines. This can happen upon varying
the phase, as we already saw in the Exercise above.

Another interesting example is when the ratio ω2

ω1
= 0.906175 (a randomly chosen decimal with many

terms). This is extremely close to 0.9, yet the result at α = 0 is very different from the first diagram
above, and looks like:
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We see that it is the commensurability of frequencies that is important in determining how much of
the square gets filled by the particle’s trajectory.

Recall that in our first example above, we had ω2

ω1
= 9

10
. Inspecting the first figure, we see that there

are 9 turning points along the x-axis at y = ±1, and 10 turning points along the y axis at x = ±1
(counting the corners in both cases). Let’s try to derive this result in a more general situation. We
write:

ω2

ω1

=
n2

n1

for some integers n1, n2 with no common factors. If the periods are T1, T2 then let

T = n1T1 = n2T2

Clearly this is the period of the 2d oscillator (just as it was when we considered superpositions in
1d), because after this time one of the oscillators has completed n1 full oscillations and the other has
completed n2 oscillations, so both are back at their starting point.

Let us work at phase α = 0. During the time T , the x oscillator has reversed itself n1 times at each
end x = ±1 and the y oscillator has reversed itself n2 times at each end y = ±1. Thus we expect
to see n1 turning points on the boundaries at x = ±1 and n2 turning points on the boundaries at
y = ±1. Looking back at our example, we had n1 = 10 and n2 = 9, which agrees with our prediction.

1.4 Damped harmonic oscillator

Let us return to one dimension. What is the force law when a damping force acts on an object? We
expect it to be proportional to the velocity since this will have the effect of slowing down a moving
particle. Thus, we write:

F = −kx− rẋ (1.29)

where r > 0 is the damping constant. Thus we want to solve the equation:

mẍ+ rẋ+ kx = 0

Let us rewrite it as:
ẍ+ 2λẋ+ ω2x (1.30)

where we have defined λ = r
2m

and, as usual, ω =
√

k
m

.

In Physics, it is useful to understand the dimensions of each constant. In the equation ẍ = −ω2x, we
know that x has dimensions of length and d/dt has dimensions of 1/time. Thus ẍ has dimensions of
length/(time)2. It follows that ω has dimensions of 1/time, which is what we expect for a frequency.
Next examine the term proportional to λẋ. This too must have the same dimension, length/(time)2.
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For this, λ must have dimensions of 1/time. Thus λ and ω have the same dimensions, so they can be
compared with each other. We will see shortly that the behaviour of a damped harmonic oscillator
depends on whether λ > ω, λ = ω or λ < ω.

First recall that the undamped harmonic oscillator is just the same as the equation above, but
without the damping term – i.e., with λ = 0. The resulting equation was solved by functions sinωt
and cosωt. Let us now try to re-obtain that solution in a useful way. This will help us eventually
solve the damped equation.

It is well-known that sin and cos functions can be expressed in terms of exponentials:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ
2i

Also we know how to differentiate an exponential:

d

dθ

(
eaθ
)

= a
(
eaθ
)

Let us now solve the undamped oscillator equation:

ẍ+ ω2x = 0

We insert a trial solution Ceat, where a is a constant to be determined while C is an arbitrary
constant. Then we find:

a2 + ω2 = 0

Since ω is a given real number, the second term is positive. If a is real then the first term will also
be positive. In that case, the sum can never vanish. So instead, a has to be an imaginary number:

a = ±iω

Since a2 = −ω2, the above equation is satisfied. In this way we find the general solution:

x(t) = Ceiωt + C∗e−iωt (1.31)

and it is easy to check that this is the same as an arbitrary linear combination of sinωt and cosωt
with real coefficients.

Exercise (level A): Decompose the constant C as well as the complex exponentials in Eq.(1.31) into
real and imaginary parts, and show that Eq.(1.31) is the same as the original solution Eq.(1.4) of
the simple harmonic oscillator.

Now we want to apply the same method to the damped equation. So we insert x = Ceat into
Eq.(1.30). This leads to:

a2 + 2λa+ ω2 = 0

This is a quadratic equation whose solution is:

a = −λ±
√
λ2 − ω2 (1.32)

As promised earlier, we see that there are three types of solution:

(i) If λ > ω then there are two distinct real values for a and both are negative,
(ii) If λ = ω there is a single, real, negative value for a,
(iii) If λ < ω, there are two distinct complex values for a which are complex-conjugate of each other.

We now examine each of these cases in turn.
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(i) This case is called overdamped. If the two solutions in Eq.(1.32) are denoted −a1,−a2 (where
both a1 and a2 are positive real numbers and a1 > a2) then the motion is given by:

x(t) = Ae−a1t +Be−a2t (1.33)

In this case, the particle rapidly slows down and comes to rest. Let us plot this for a concrete case.
Suppose the frequency ω = 77 Hz and the damping frequency is λ = 85 Hz. Then a1 = 121 Hz and
a2 = 49 Hz. We see that there are two possible damped motions, one faster and the other slower.
This is shown in the following plot:

0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.2

0.4

0.6

0.8

1.0
Exp[-49 t], Exp[-121 t]

As usual, the initial conditions will determine which one (or both) of the terms plays a role. We
have:

x(0) = x0 = A+B, ẋ(0) = v0 = −(a1A+ a2B)

By a suitable choice of x0 and v0, one can select A and B. We are free to choose the initial conditions
such that B = 0 in Eq(1.33), then only the faster damping will take place. Or we can choose them
such that A = 0, then only the slower damping will occur. If both terms are present, the slower
damping will dominate. We can see this by writing:

x(t) = e−a2t
(
Ae−(a1−a2)t +B

)
In a very short time, the A term reduces to zero relative to the B term.

Exercise (level A): Consider the overdamped oscillator with A = B = 1. Suppose a1 = 400 Hz and
a2 = 300 Hz. In how much time will the faster damping fall to 1

e
of the total? How much time will

it take to go below 1% of the total?

(ii) This is called critically damped. In this case the solution reduces to:

x(t) = Ae−ωt

This is puzzling, since a second-order differential equation is supposed to have two solutions. The
answer is that there is a second solution which goes like te−ωt. Let us verify it. The function and its
first and second derivatives are:

x(t) = te−ωt

ẋ(t) = (1− ωt)e−ωt
x(t) = (ω2t− 2ω)e−ωt

(1.34)

Next, set λ = ω in Eq.(1.30) and insert the above results into it. We find that the equation is
satisfied. Thus the general solution in the critically damped case is:

x(t) = (A+Bt)e−ωt (1.35)

We can see the two terms in the following plot:
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Exercise (level A): Decompose the constant C as well as the complex exponentials in Eq.(1.31) into
real and imaginary parts, and show that Eq.(1.31) is the same as the original solution Eq.(1.4) of
the simple harmonic oscillator.

Exercise (level B): It is easy to see that if a critically damped oscillator starts at x0 = 0, its motion
is of the form x(t) = te−ωt without the other term. In how much time does this system reach its
maximum displacement?

(iii) Finally we turn to the case λ < ω which is called underdamped. In this case,
√
λ2 − ω2 is

imaginary. Let us denote this by iω′. Then the motion is given by:

x(t) = Ae(−λ+iω′)t +Be(−λ−iω′)t

= e−λt(Aeiω
′t +Be−iω

′t)
(1.36)

Both A and B can be complex numbers, but we must have B = A∗ for the above expression to be
real.

The expression in brackets is one way of writing the motion of the undamped simple harmonic
oscillator. To see this, note that:

eiωt = cosωt+ i sinωt

It follows that:

Aeiω
′t +Be−iω

′t = A(cosω′t+ i sinω′t) +B(cosω′t− i sinω′t)

= (A+B) cosω′t+ i(A−B) sinω′t

= A′ cosω′t+B′ sinω′t

(1.37)

where A′ = A+B,

The two key physical features of the underdamped oscillator are: (i) it oscillates with a modified
frequency ω′ =

√
ω2 − λ2, (ii) its amplitude is modulated by a decreasing exponential. The period

of oscillation is given as usual by:

T ′ =
2π

ω′

but since ω′ < ω the period is larger than that of the undamped oscillator: T ′ > T .

The exponential decay of amplitude also has a rate, governed by the constant λ, which as we have
seen has dimensions of 1/(time). The time period:

τ =
1

λ
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is called the relaxation time. If we divide the amplitude after a lapse of this time by the amplitude
at the beginning, we find:

e−λ(t+τ)

e−λt
= e−λτ =

1

e

Thus the relaxation time is the time taken for the amplitude to fall to 1
e

of its original value.

Since damped systems eventually come to rest, their energy is not conserved but rather, decreases
with time. To find the rate of decrease of energy, note that the energy at any given time is proportional
to the square of the overall amplitude. Therefore the time taken for the energy to decay to 1/e of its
original value is 1

2λ
= τ

2
. In fact we can write:

E(t) = E0 e
−2λt

Now during the time τ
2
, the system undergoes τ

2T ′ oscillations. Using the relations above, this number
can be written as:

τ

2T ′
=

ω′

4πλ
So this number represents the number of oscillations undergone by the system while its energy decays
to 1

e
of its original value. Engineers like to instead talk about the number of radians swept out by the

system during this time. Since each oscillation corresponds to 2π radians, the corresponding number
is ω′

2λ
.

For a damped oscillator, we define the “Q-factor” or “quality factor” by:

Q =
ω

2λ
=

√
km

r
(1.38)

where in the second expression we have used the constants m, k, r that appear in the original force
equation – these are the mass, spring constant and damping constant.

The Q-factor is essentially the ratio of the natural frequency to the constant λ associated to damping.
Thus an underdamped oscillator has Q > 1

2
, a critically damped one has Q = 1

2
and an overdamped

one has Q < 1
2
. Note that for very light damping, we can also write Q ∼ ω′

2λ
in terms of the frequency

of the damped oscillator. This is because with light damping, ω′ ∼ ω.

Exercise (level B): For a normal (undamped) harmonic oscillator whose amplitude is C, we know that
the total energy is E0 = 1

2
mω2C2 (see the Exercise after Eq.(1.15)). Now consider the underdamped

oscillator, for which we have seen that the energy at any instant is E = E0e
−2λt. Show that the

energy lost per cycle of the system is 2λET ′. Show that for light damping, this can also be written
in terms of the Q-factor defined above, as ∼ 2πE

Q
. It follows that:

Energy stored in the system

Energy lost per cycle
∼ Q

2π

Finally let us describe a nice physical example of a damped oscillator. Suppose an room is equipped
with a door closer. This is a spring which pulls the door so that it shuts by itself. However if this
spring is undamped, the door will simply slam into the wall at full speed (an oscillator has maximum
speed as it passes through the origin). To avoid this result we introduce a damping force into the
spring by, for example, immersing it in a viscous liquid. If the spring is underdamped the door will
still slam into the wall (perhaps a bit more slowly than before). As we increase the damping, we
will reach a value at which the door just closes smoothly. That means it attains zero velocity by
the time it reaches the origin. This is a critically damped door closer. If we increase the damping
further the door will still close smoothly. However it will take longer and longer to do close, which is
not convenient. Therefore a critically damped door closer is ideal. Note that we can achieve critical
damping in two different ways: by varying the spring constant, or by varying the damping constant.
Only the ratio of the two appears in the Q-factor.
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1.5 Forced oscillator and resonance

In this section we discuss the harmonic oscillator when perturbed by an external force that is also of
sinusoidal form. The external force is taken to have an amplitude F0 and an angular frequency ωE.
Then we have:

F = −kx+ F0 cosωEt (1.39)

After rearranging and dividing by the mass m as usual, we find:

ẍ+ ω2x− F0

m
cosωEt = 0 (1.40)

Before trying to solve this, let us describe our qualitative expectations for small and large values of
the driving frequency ωE. We should restrict these predictions to very early times, because with an
external force the amplitude is able to increase without limit. So we will consider situations where
this has not yet happened.

If the frequency is very low, thus ωE � ω, and if the strength of the driving force is also large, then
we expect the system to oscillate slowly at the driving frequency. In this situation the acceleration
would be very small so we can neglect the first term of the above equation and find:

x(t) ∼ F0

mω2
cosωEt (1.41)

We can estimate the error we made by neglecting the acceleration term ẍ in the differential equation.

For the above solution, this term is equal in magnitude to
F0ω2

E

mω2 cosωEt. Compare this to the other

two terms, which are both of the order of F0

m
cosωEt. We see that the neglected term is

ω2
E

ω2 times
the terms we are keeping, and this is a small quantity in this approximation. In this approximation
where the acceleration is neglected, we say the reponse is controlled by the stiffness of the spring.

Suppose now that the driving frequency is very high, ωE � ω. Then we can neglect the second term
ω2x in the equation which is the spring term. To see how this works, first note that upon neglecting
the spring term one has the solution:

x(t) ∼ − F0

mω2
E

cosωEt (1.42)

Then the first and third terms are of order F0

m
cosωEt, while the middle term is of order F0ω2

mω2
E

cosωEt.

This is negligible as long as ω
ωE
� 1. In this case, where the stiffness is neglected but acceleration

is important, we say the response is controlled by inertia. Notice something that we did not point
out earlier: in a harmonic oscillator, the acceleration is always out of phase with the motion. This is
simply the minus sign in ẍ = −ω2x. So in the rapidly driven case, the particle moves at the driving
frequency but out of phase with it.

Exercise (level A): Carefully verify the statements in the last few paragraphs showing that the
neglected term in the given limits is genuinely small. This justifies the approximations made.

In the above discussion we found that a driven oscillator moves at the frequency ωE of the driving
force both for small ωE and for large ωE. Could it be true that it does this for all values of ωE? To
find out, let us insert a trial solution:

x(t) = CE cosωEt (1.43)

into the full equation Eq.(1.40). We find:

−CEω2
E cosωEt+ CEω

2 cosωEt−
F0

m
cosωEt = 0 (1.44)
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from which we have:

CE =
F0/m

ω2 − ω2
E

(1.45)

In the limits ωE � ω, ωE � ω we see that this perfectly reproduces Eqs.(1.41) and (1.42) respectively.
In the latter case we even get the negative sign (out of phase behaviour) that we already discussed!

If the driving frequency ωE is exactly equal to the natural frequency ω then the amplitude appears to
diverge. What does this mean? Another interesting feature is that as ωE crosses from being greater
to being smaller than ω, the minus sign appears.

Before addressing both these questions, let us highlight a puzzle. The solution Eq.(1.43), together
with the constant specified in Eq.(1.45), seems to be completely determined – it has no free parame-
ters. This should not be the case. We have mentioned a few times that the solution of a second-order
differential equation should have two free parameters, but so far we have not even found one free
parameter! Another way of seeing this problem is that our trial solution does not satisfy arbitrary
initial conditions. Specifically at t = 0 we find x(0) = CE with CE given by Eq.(1.45). Also the
initial velocity is ẋ(0) = 0. This is incompatible with, for example, the initial condition x(0) = 0
and non-zero initial velocity. That seems very strange.

The resolution is simple. Suppose we add to our trial solution Eq.(1.43) an arbitrary solution of the
unforced system. Then the total is:

x(t) = x1(t) + x2(t) = CE cosωEt+ C cos(ωt+ α) (1.46)

The first term x1 has a fixed amplitude given by Eq.(1.45) and the fixed frequency of the driving
force. It has no arbitrary constants. However the second term x2 has an arbitrary amplitude C and
an arbitrary phase α, and it carries the natural frequency of the oscillator. We have chosen x1 so that
it satisfies the inhomogeneous (forced) equation, while x2 is the general solution of the homogeneous
(unforced) equation. Inserting this sum into the equation we have:

(ẍ1 + ẍ2) + ω2(x1 + x2)− F0

m
cosωEt =

(
ẍ1 + ω2x1 −

F0

m
cosωEt

)
+ (ẍ2 + ω2x2) = 0 (1.47)

The first bracket vanishes because x1 is a solution of the full (inhomogeneous) equation, while the
second term vanishes because x2 satisfies the corresponding homogeneous equation. Thus the equa-
tion is satisfied. The full solution has two arbitrary constants, so we now have the most general
solution of the forced oscillator.

With the general solution there is no longer a problem in satisfying any arbitrary initial conditions.
Suppose x(0) = x0 and ẋ0(0) = v0. From the general solution we find:

CE + C cosα = x0, −ωC sinα = v0 (1.48)

We can solve these two equations to determine C, α in terms of x0, v0:

C =

√
(x0 − CE)2 +

(v0

ω

)2

, α = tan−1

(
v0

ω(CE − x0)

)
(1.49)

Exercise (Level A): Verify the above equation. Also check that if we send the driving force to zero by
taking F0 = 0, the above equations are precisely the ones that determine the amplitude and phase
of a simple harmonic oscillator in terms of the initial position and velocity.

Exercise (level A): Suppose we want to perform an experiment that displays only the CE cosωEt
behaviour of the forced oscillator. What initial conditions on position and velocity should we choose
so that the other term (C cosωt) vanishes?
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Exercise (level A): Suppose we take an oscillator at rest at the equilibrium position, and apply a
sinusoidal force to it. Find the solution with these initial conditions. Expand it around t = 0 upto
quadratic order in t and show that the particle just behaves as if it has experienced a constant force
in this period.

Exercise (Level B): Consider the general solution Eq.(1.46) of the forced harmonic oscillator and find
its behaviour in the limits ωE � ω and ω � ωE.

Exercise (Level C): Look up the mathematical theorem that for a linear inhomogeneous differential
equation, the most general solution is the sum of (i) any particular solution of the equation, and (ii)
the general solution of the corresponding homogeneous equation. Verify that the solution Eq.(1.46)
for the forced oscillator is an example of this theorem.

We still need to understand the behaviour when ωE is close to ω. In this limit CE diverges. This
means that the component of the oscillator’s motion which has the driving frequency develops a
huge amplitude. Such behaviour suggests we have neglected some physical aspect of the system, and
indeed it is due to our neglect of damping. Hence we re-introduce this in the next subsection.

Exercise (level B): A mass of 4 kg is suspended from a spring that has a force constant of 200 N/m.
The system is undamped and is subjected to a harmonic force with a frequency of 10 Hz, which
results in a forced-motion amplitude of 2 cm. Determine the maximum value of the force.

1.6 Forced harmonic oscillator with damping

Now we consider the equation:

ẍ+ 2λẋ+ ω2x− F0

m
cosωEt = 0 (1.50)

As before, we only need to find one particular solution for the forced equation. Then we can add a
general solution to the un-forced equation to get the complete solution.The latter is something we
have already done when we studied the damped oscillator. So let us focus on finding a particular
solution when there is both forcing and damping.

If we insert x(t) = CE cosωEt as we did in the undamped case, this time we don’t get a solution.
This is because the forcing term is proportional to ẋ which behaves as sinωEt. It turns out that if
we generalise the particular solution to x(t) = CE cos(ωEt + αE) then we will find a solution to the
equation that determines both CE and αE. However the mathematics becomes very tedious and is
left as an exercise. Instead, we resort to the exponential method, which involves complex numbers.
Let us think of the above equation as:

ẍ+ 2λẋ+ ω2x =
F0

m
Re
(
eiωEt

)
(1.51)

Here we used the fact that

cos θ =
eiθ + e−iθ

2
= Re

(
eiθ
)

and Re is the instruction to take the real part. Now we similarly insert:

x(t) = CERe
(
ei(ωEt+αE)

)
Since both sides of the above equation have the Re instruction, we can temporarily drop it and
impose it at the very end. Then we have:[

CE(ω2 − ω2
E) + 2iλCEωE

]
eiωEteiαE =

F0

m
eiωEt (1.52)
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Now we can cancel out the factor eiωEt from both sides, and also divide both sides by eiαE , to get:[
CE(ω2 − ω2

E) + 2iλCEωE

]
=
F0

m
e−iαE =

F0

m

(
cosαE − i sinαE

)
(1.53)

Equating the real and imaginary parts on both sides, we have two equations:

CE(ω2 − ω2
E) =

F0

m
cosαE

2λCEωE = −F0

m
sinαE

(1.54)

These two equations determine CE and αE. First, square both equations and add them to get:

C2
E

[
(ω2 − ω2

E)2 + (2λωE)2
]

=

(
F0

m

)2

(1.55)

Hence:

CE =
F0/m√

(ω2 − ω2
E)2 + (2λωE)2

(1.56)

Comparing this with Eq.(1.45), we see that the above equation reduces to it when λ = 0. However
when λ 6= 0, i.e. in the presence of damping, there is no longer a divergence when ωE = ω. Instead,
at least for small damping, there will be a smooth peak when ω = ωE. Finally, we have:

αE = − tan−1 2λωE
ω2 − ω2

E

(1.57)

We see that the phase is fixed by a combination of the damping frequency, the driving frequence
and the natural frequency. It is nonzero as long as there is damping. Note that this phase is not
a free parameter (nor is the amplitude). This is because we are looking at a particular solution
in the presence of forcing. The general solution will have additional terms (which we have already
studied, and whose nature depends on whether the oscillator is underdamped, critically damped or
overdamped). These terms, corresponding to the general solution of the homogeneous equation, have
an arbitrary amplitude and phase as always. These provide the two parameters to be fixed by initial
conditions.

To conclude, we have shown that a particular solution for a damped, forced oscillator is given by:

x(t) = CE cos(ωEt+ αE) (1.58)

with CE, αE given above.

A comment on the phase: only for those interested. This is not mandatory for everyone. Note that
αE is equivalent to αE + 2π, since cos(θ + 2π) = cos θ. Hence we need to fix a convention for αE. A
standard choice is −π < 0 ≤ π. Now there is an apparent subtlety in calculating αE for the present
problem. We determined it via the equation:

tanαE = − 2λωE
ω2 − ω2

E

But tan(αE + π) = tanαE, so this equation can only determine αE upto the addition of a multiple
of π, rather than 2π. However we can get more information directly from Eq.(1.54). Once we
choose λ, ω, ωE, CE to be all positive numbers, then we see that sinαE is always negative. That fixes
−π < αE ≤ 0. Next we check the sign of cosαE and narrow down the range of αE, always remaining
within the above region. For ωE < ω, cosαE is positive which tells us that −π

2
< αE ≤ 0. On the

other hand for ωE > ω, cosαE is negative and this means that −π < αE ≤ −π
2
. It follows that as

ωE varies from 0 to∞, the phase decreases monotonically from 0 to −π. This is shown in the figure.
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At resonance, the phase is −π
2
. Note that once we chose −π < αE ≤ π and also choose fixed signs

for all the parameters, everything is precisely determined with no further assumptions.

The fact that sinαE is negative also resolves the question of the sign of power input to the system,
as we will see in a later subsection.

For the general solution we simply have to add the two-parameter solution of the unforced, damped
oscillator to this. However, now there is a new feature. We know that an unforced, damped oscillator
decays after a long enough time and comes to rest (regardless of whether it is underdamped or
overdamped). In contrast, the particular solution above persists for all time, as one can see from the
function. It follows that the late-time behaviour of the forced, damped oscillator is given completely
by the above expression, without any other term. The terms we would have added, which exist only
for a short period of time, are called transients. So the general behaviour of a forced, damped system
is that initially there are two types of oscillations (one at the forcing frequency and one at the natural
frequency) but after some time the latter die out and the system oscillates at precisely the forcing
frequency as in Eq.(1.58). Thus, this solution is called the steady state solution.

Let us try to sketch the amplitude CE as a function of ωE in Eq.(1.56). Physically, this means we are
varying the driving frequency for fixed natural frequency and damping. To make this easier, let us
re-define y = mω2CE

F0
. Next, define ωE

ω
= x and recall that ω

2λ
= Q, the Q-factor. Then the equation

becomes:

y =
1√

(1− x2)2 + x2

Q2

This can be sketched on the x− y plane, varying Q across some different values. Recall that Q < 1
2

is the overdamped case and Q > 1
2

is overdamped. So it is reasonable to choose, say, Q = 1
4
, 1

2
, 1, 2

to get a sample of the possible behaviours. The answer looks like this:

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

y
Plot of amplitude against driving frequency forQ = 1 /4, 1 /2, 1, 2

Notice that for the underdamped case the figure has a turning point, at least for large Q. This is a
sign of resonance.

Alternatively, we can rewrite the above equation as a function of z = ω
ωE

. In this case we are
varying the natural frequency, for fixed damping and fixed driving frequency. This time we will

define w =
mω2

ECE

F0
and a = 2λ

ωE
. The function is then:

w =
1√

(1− z2)2 + a2

This function always has a peak at z = 1, i.e. when the natural frequency equals the driving
frequency.
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Plot of amplitude against natural frequency fora = 0.35, 1 /2, 1, 1.4

exercise teaches us the lesson that physical information depends very much on what we keep fixed
and what we vary! But in any case, for very large Q-factor (very low damping) there is not much
difference between the two cases, and we find an extremely sharp resonance at ω = ωE.

So far we were only discussing the amplitude. Now we return to the phase. The goal is clear. If we
use the x variable with ω fixed, then we have:

α = − tan−1 1

Q

x

1− x2

We have already determined the phase conventions as x varies from 0 to ∞. Let us see how this
looks for different values of Q.

0.5 1.0 1.5 2.0
x

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

alpha
Phase variationwithdriving frequency forQ = 1 /4, 1, 4, 20

We see that as Q becomes large (less damping), the jump from αE = 0 to αE = −π becomes more
sudden at resonance. Damping smoothens this transition.

A simple example of a forced damped oscillator is a simple pendulum whose point of support executes
simple harmonic motion. The motion of the point of support provides the driving force. To create
such an object experimentally, we need a motor that vibrates a block in harmonic motion, then we
suspend the pendulum from the block. But there is a simpler way. Suppose we take an extremely
heavy pendulum bob. This will oscillate in simple harmonic motion like any pendulum. But now we
suspend a much lighter bob from the heavy one. For the light bob, the point of suspension is the
heavy bob. The only concern could be that the motion of the light bob influences that of the heavier
one, but precisely because it is light, we don’t expect this. So such an apparatus can experimentally
realise a forced oscillator.
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Exercise (level A): In the three plots above, make sure you understand which colour corresponds to
which value of Q or a.

Exercise (level B): Instead of using complex exponentials, try to solve Eq.(1.50) by inserting cos(ωEt+
αE) as a trial solution. Show that this leads to:

CE(ω2 − ω2
E) cos(ωEt+ αE)− 2λωECE sin(ωEt+ αE)− F0

m
cosωEt = 0

Expanding the cos and sin functions, convert this to:[
CE(ω2 − ω2

E) cosαE − 2λωECE sinαE −
F0

m

]
cosωEt

=

[
CE(ω2 − ω2

E) sinαE + 2λωECE cosαE

]
sinωEt (1.59)

Since sin and cos cannot be equal for all values of the argument, the cofficients on both sides must
vanish. Use this to solve for CE, αE and check that you get the same answers as we got using complex
exponentials.

1.7 Power absorbed by a forced oscillator

Consider first the forced, undamped oscillator moving according to:

x(t) = CE cosωEt

The instantaneous power input is given by the force times the velocity:

P = Fv

Now F = F0 cosωEt and v = ẋ = −ωECE sinωEt. Hence,

P = −ωECEF0 sinωEt cosωEt = −1

2
ωECEF0 sin 2ωEt

If we look at the function sin 2ωEt, it is positive for 0 < t ≤ π
2ωE

and then turns negative. But this
is just a quarter-cycle. Thus power if fed into the system for a quarter-cycle, then taken out for a
quarter-cycle and so on. The average power input over a cycle is zero (in fact it is zero even over a
half-cycle).

With damping, things are different. Now we have x = CE cos(ωEt+ αE) and the phase shift αE will
make all the difference. One has:

P = −ωECEF0 cosωEt sin(ωEt+ αE) (1.60)

But sin(ωEt + αE) = sinωEt cosαE + cosωEt sinαE. Inserting this into the above, we have to
average two terms: one proportional to sinωEt cosωEt which, as we have seen, is zero, and the other
proportional to cos2 ωEt. Now this function is always positive (because it is a square) so its average
can never be zero! Indeed, over a full cycle the average of cos2 ωEt is 1

2
(see the Exercise below).

Thus the average power input during a cycle is:

P̄ = −1

2
ωECEF0 sinαE (1.61)

From Eq.(1.54) one sees that sinαE is negative, therefore the power input is positive as it should
be. Since the amplitude CE becomes maximum at resonance (assuming the underdamped case), the
power input is also maximal at resonance.

29



1.8 Electrical circuit as an oscillator

One of the most fascinating aspects of nature is that the concepts of harmonic oscillation, damping,
forcing and resonance are universal – they occur in widely different contexts but follow the same
basic equations and principles. Here we will discuss how these concepts apply to an electrical circuit.

Let us start with the simplest case: an LC circuit. This consists of an inductance coil and a capacitor
connected in series. We know that if I is the current in the circuit and VL is the voltage across the
coil, then

VL = L
dI

dt

Recall that current is the rate of flow of charge, which we can write as I = dq
dt

. Thus we can write
the above equation as:

VL = L
d2q

dt2
= Lq̈

We also know that if a voltage is applied across a capacitor of capacitance C, then:

VC =
q

C

where q is the charge stored in the capacitor.

We can relate these two by the fact that if no external voltage is applied, the total voltage drop
across the entire circuit is zero: VL + VC = 0. It follows that:

Lq̈ +
1

C
q = 0

This is precisely the equation of a simple harmonic oscillator! Indeed we can rewrite it as:

q̈ + ω2q = 0

where

ω =

√
1

LC

Physically it is not hard to understand the oscillations. Suppose we start with a charged capacitor.
As it tries to discharge, it sends a current through the inductance. This resists the buildup of current,
by Lenz’s law. After passing through the inductance the charges pile up on the other plate of the
capacitor, creating a voltage in the opposite direction. Then the charges are pushed back through
the circuit. In this way an LC circuit will, in principle, oscillate forever. We see that capacitance
acts as a “stiffness” while inductance acts as “inertia”.

We do not need to do any work to understand this system further. All the mathematics we have
developed simply applies. The charge in the circuit will oscillate as:

q(t) = CE cos(ωt+ αE)

The only thing we need to do is understand the different possible initial conditions.

Exercise (level B): Try to understand the conditions under which any desired value of initial charge
and initial current can be achieved.

Next, suppose we introduce a resistance into the circuit. The voltage drop across a resistor is
VR = IR = Rq̇. Adding this into the equation we have:

Lq̈ +Rq̇ +
1

C
q = 0
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This is a damped harmonic oscillator! The resistor provides the damping. We easily see that the
damping constant λ is R

2L
. The system is now an RLC circuit. Its Q-factor is:

Q =
ω

λ
=

1

R

√
L

C

So if Q > 1
2

or Q < 1
2

then we have an underdamped or overdamped circuit. In the first case the
charges will oscillate for a while and die down, while in the second case they will die down without
oscillating.

Finally, we can apply an AC current of a frequence ωE to the circuit. Thus we had a term V0 cosωEt
to the original equation. So we have a forced oscillator and V0 plays the role of the amplitude of
the driving force, F0, in our previous analysis. Our previous analysis, including the possibility of
resonance, applies in a straightforward way. Moreover it is easy to tune either ωE or ω, the first one
by changing the AC frequency and the second by varying L or C.

2 Coupled Oscillations

In this section we discuss coupling between harmonic oscillators. This is not the same as superposi-
tion, as we will see in a moment. The problem of coupled oscillators is of fundamental importance
in physics. This is the concept underlying wave behaviour. It is relevant in many-body condensed
matter physics, quantum field theory and string theory, however in all these cases one also has to
introduce quantum mechanics. Here we will only study what happens in the context of classical
mechanics.

2.1 Two identical coupled oscillators

Coupling of two oscillators means that while each one is connected to an independent centre by a
spring, the two are also connected to each other by a spring. This makes three springs in all! The
problem can be realised using two simple pendulums with separate points of suspension and then
joining them with a spring.

Let us start with two independent oscillators of the same mass m. The first one has coordinate x1,
the second one has coordinate x2 (do not confuse this with the x1, x2 that we used earlier to specify
the particular and general solutions for one oscillator). Each one is connected by a spring of the
same stiffness k to their equilibrium positions, x1 = 0, x2 = 0. Thus we have:

mẍ1 = −kx1

mẍ2 = −kx2

(2.1)

Each oscillator has its own solution and there is nothing very interesting about this system! It
becomes interesting when we connect these two masses by a spring which is at equilibrium precisely
when both masses are at rest at their respective origins. This is illustrated in the figure.

If this new spring has a stiffness k12, then the force due to it on each of the masses is proportional
to k12(x1 − x2). What is the sign? Suppose x1 > x2. This means the distance between the masses is
less than the equilibrium length of the connecting spring. So this spring is compressed. To restore
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itself to equilibrium, it forces particle 1 to the left and particle 2 to the right. It follows that the new
equations are:

mẍ1 = −kx1 − k12(x1 − x2)

mẍ2 = −kx2 + k12(x1 − x2)
(2.2)

This is the coupled simple harmonic oscillator. To find the motion of the system we just need to
solve this pair of coupled differential equations. In the present example this is quite easy as we will
see. Just add the two equations, to get:

m(ẍ1 + ẍ2) = −k(x1 + x2) (2.3)

Next we take the difference of the two equations, to get:

m(ẍ1 − ẍ2) = −k(x1 − x2)− 2k12(x1 − x2) = −(k + 2k12)(x1 − x2) (2.4)

Notice that the first equation depends only on x1 + x2 while the second only depends on x1− x2. So
we can define:

X1 = x1 + x2, X2 = x2 − x2

It is clear that X1 is proportional to the centre-of-mass position x1+x2
2

while X2 is the position of one
mass relative to the other. Now the equations read:

Ẍ1 = −ω2
1X1, Ẍ2 = −ω2

2X2 (2.5)

where

ω2
1 =

k

m
, ω2

2 =
k + 2k12

m

Notice that just be changing variables, we have found two decoupled equations! The price we pay is
that neither X1 nor X2 are coordinates of any physical object. Instead they are called normal modes
of the system. Normal modes are coordinates in terms of which a coupled system appears decoupled.
Once we find normal modes, the mathematics becomes easy. However the physical interpretation
can be subtle.

In the present example, the solutions are:

X1(t) = C1 cos(ω1t+ α1), X2(t) = C2 cos(ω2t+ α2) (2.6)

The angular frequencies ω1, ω2 have been determined above and C1, α1, C2, α2 are arbitrary constants.
It follows that we can excite each of the normal modes independently of the other, and it only remains
to interpret these normal modes. For this, we need to understand what happens if X1(t) oscillates
while X2 remains at rest, and the other way around.

The first one is simple. If X2(t) = 0, it means the two particles maintain a constant distance from
each other. Moreover, this is the distance at which the spring k12 is in equilibrium. This means
that both masses move together as if they were a rigid body. This is called “centre-of-mass motion”.
During this motion the middle spring always stays in equilibrium, so its stiffness does not contribute
to the frequency. This is why the frequency of this motion is ω.

The second independent motion arises when X1(t) = 0 while X2(t) oscillates with angular frequency
ω2. In this motion, the centre-of-mass is fixed so the two masses simultaneously move towards each
other, and then away from each other. When moving towards each other, the outer springs get
stretched while the middle spring is compressed. The stiffness of all three springs reacts to push the
masses apart. When they move apart, the middle spring is stretched and the outer ones compressed.
Again their combined stiffness comes into play. This explains why the frequency ω2 depends on both
k and k12. The general motion of the system is a combination of both normal modes, with a free
choice of two amplitudes and two phases. In general it may look complicated but since it is just a
decoupled combination, the mathematics is very simple and completely predicts the motion.
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The energy in each normal mode must follow the standard formula:

E1 =
1

2
M1Ẋ

2
1 +

1

2
M1ω

2
1X

2
1

E2 =
1

2
M2Ẋ

2
2 +

1

2
M2ω

2
2X

2
2

(2.7)

except that we have not yet determined the effective masses M1,M2 of the normal modes. The total
energy is E1 + E2. To find the masses, rewrite the above kinetic terms as:

1

2
M1(ẋ1 + ẋ2)2 +

1

2
M2(ẋ1 − ẋ2)2

The coupling of oscillators is only through stiffness, not through inertia. So the kinetic energy of the
coupled system must be the same as that of the uncoupled one:

1

2
m(ẋ2

1 + ẋ2
2)

Comparing the two expressions above, we see that M1 = M2 = 1
2
m. It follows that the total energy

is:

E1 + E2 =
1

2
m(ẋ2

1 + ẋ2
2) +

1

2

m(ω2
1 + ω2

2)

2
(x2

1 + x2
2) +m(ω2

1 − ω2
2)x1x2 (2.8)

Now in the limit k12 → 0, we have ω1 = ω2 = ω. In this limit the last term vanishes and the potential
energy becomes the standard one, 1

2
mω2x2 for each oscillator. We see that the last term represents

the coupling of energy between the two oscillators. Due to this coupling, the energy in the system
can get transferred back and forth between the two masses as time progresses. This is similar to
beats, and can be seen by solving the following exercise.

Exercise (level B): Consider the above coupled oscillator with initial conditions x1(0) = 2a, x2(0) =
0, ẋ1(0) = ẋ2(0) = 0. Find the total energy of the system. Solve for the motion with these initial
conditions. Show that the amplitude of oscillation of the first mass builds up to a maximum while the
second mass has a small amplitude, and then after some time the first mass has a small amplitude
while that of the second mass builds up. In this way energy gets “exchanged” between the two
oscillators.

A nice physical realisation of the above problem is to take two identical simple pendulums of the
same length, and join the bobs by a spring. The centre-of-mass mode will have both bobs moving in
phase. The other mode has them alternately coming together and flying apart.

The above example was particularly simple because the two separate oscillators were identical. What
if they are not? Let us keep both masses equal to m but take two independent stiffnesses k1, k2. It
is easy to see that the coupled equations are now:

m1ẍ1 = −k1x1 − k12(x1 − x2)

m2ẍ2 = −k2x2 + k12(x1 − x2)
(2.9)

This time, taking the sum and difference does not serve to decouple them. We have to diagonalise
the system to find the normal modes.As in the previous case, after diagonalisation we will have two
decoupled modes. It is just a slightly tedious exercise to find them. Hence this is left as an optional
exercise for interested students.

Exercise (level C): Diagonalise the above general system of two coupled oscillators and find the normal
modes. When m1 = m2 you only need to diagonalise the RHS and this if fairly easy. However if
m1 6= m2 then the situation is more complicated.

33



2.2 N identical coupled oscillators

The above problem has an easy generalisation to n coupled oscillators, where each one is coupled
to the next one on its left and right by a spring. We take all masses to be equal to m and all
springs to be identical, with stiffness k. The positions of the masses are x1(t), x2(t), · · ·xn(t) and the
equilibrium position is xi = 0 for all i. There are N + 1 springs in all. The ith mass experiences a
force of magnitude k(xi−1 − xi) from the spring on its left, and k(xi − xi+1) from the spring on its
right. It is easy to see that the sign is positive for the former and negative for the latter. Thus:

mẍ1 = −kx1 − k(x1 − x2)

mẍ2 = k(x1 − x2)− k(x2 − x3)

mẍ3 = k(x2 − x3)− k(x3 − x4)

· · ·
mẍn−1 = k(xn−2 − xn−1)− k(xn−1 − xn)

mẍn = k(xn−1 − xn)− kxn

(2.10)

Notice that if we set x3, x4, · · · xN = 0 then we recover the pair of coupled oscillators that we already
studied in the previous subsection (in the special case k12 = k).

We can rewrite the above as a matrix equation:

m


x1

x2

· · ·
· · ·
xn−1

xn

 = −k



2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 1 · · · 0
...

...
0 · · · · · · −1 2 −1
0 · · · · · · 0 −1 2




x1

x2

· · ·
· · ·
xn−1

xn

 (2.11)

The matrix on the RHS is a very famous one in mathematics: it is called the “Cartan matrix of
the Lie algebra AN”. The name is not relevant for us, however it will help us find a useful result.
What we would now like to do is take suitable linear combinations of x1, x2, · · · , xN such that we find
N decoupled normal modes. This is the same as finding the eigenfunctions and eigenvalues of the

stiffness matrix, which is just ω2 times the Cartan matrix, where ω =
√

k
m

. Finding these by hand

is difficult, but we can look up the result. It is known that the eigenvalues of this Cartan matrix are:

λn = 4 sin2 πn

2(N + 1)
, n = 1, 2, · · ·N (2.12)

Thus, once we diagonalise the matrix through appropriate linear combinations, we will have N
decoupled normal modes X1, X2, · · ·XN satisfying:

Ẍn = −ω2
nXn = −ω2λnXn

Thus the normal mode frequencies are:

ωn = ω
√
λn = 2ω sin

πn

2(N + 1)
, ω =

√
k

m
(2.13)

We can verify this for the case of two coupled oscillators, which we have already solved. Putting
N = 2, the frequencies ω1, ω2 are (2ω sin π

6
, 2ω sin π

3
) which is the same as (ω,

√
3ω). Previously we

had found ω1 = ω and ω2 =
√

k+2k12
m

. With k12 = k, we have ω2 =
√

3k
m

=
√

3ω. So the two

calculations agree.
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2.3 Large number of identical coupled oscillators

Let us now consider a slightly different problem, which will eventually help us in analysing the
vibrations of a stretched string. We deviate a bit from the previous case in that we consider chain
of identical oscillators numbered 0, 1, . . . (N + 1), each having mass m and connected to the left
and right neighbours by identical springs of stiffness k, and later consider the limit N → ∞ as an
approximation to a string under tension. We use the variable y to indicate the displacement, rather
than x, keeping in mind that we will need x to show the position of a particle constituting the string.
The end-point masses are taken to be fixed (stationary). The equation of motion for the pth oscillator
is given by

mÿp = k(yp−1 − yp)− k(yp − yp+1)

We attempt to solve this set of equations by assuming a harmonic solution in time:

yp = Ap cos(ωt)

where we have taken ω to represent a normal mode frequency. We expect to find as many solutions
(values) of ω as the number of oscillators. We set k/m = ω2

0 as usual. Substituting the trial solution
into the equation of motion we find the following relationship between the coefficients Ap:[

−ω2 + 2ω2
0

]
Ap − ω2

0 [Ap+1 + Ap−1] = 0

The equation can be rewritten as

Ap−1 + Ap+1

Ap
=
−ω2 + 2ω2

0

ω2
0

,

which is a recursive relation for Ap. Once again, we assume a harmonic trial solution, but now for
the the amplitude:

Ap = C sin(pθ)

in which C is a constant.

Substituting the trial solution in the recursive relation for Ap, and noting that sinα + sin β =
2 sin[(α + β)/2] cos[(β − α)/2] we get

Ap−1 + Ap+1

Ap
= 2 cos θ =

−ω2 + 2ω2
0

ω2
0

Two boundary conditions are to be satisfied, corresponding to the fixed masses at the end of the
chain of oscillators: A0 = 0, AN+1 = 0. The first condition is satisfied by the trial solution for p = 0
automatically, while the second condition enforces

C sin[(N + 1)θ] = 0

This implies

θ =
nπ

N + 1
, (n = 0, 1, 2, . . .∞).

Thus, the permitted amplitudes are

Ap = C sin

(
p

nπ

N + 1

)
Substituting this form of Ap in the recursion relation we get

2 cos

(
nπ

N + 1

)
=
−ω2 + 2ω2

0

ω2
0
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Using the trigonometric relationship cosα = 1− 2 sin2 α/2, we get

ω2 = 4ω2
0 sin2

[
nπ

2(N + 1)

]
,

each value of n representing a different mode Thus the normal modes of this system of coupled
oscillators have frequencies

ωn = 2ω0 sin

[
nπ

2(N + 1)

]
.

How many distinct values can ωn take? The sin function is periodic, spans its range in the domain
[0, π/2], and only positive values of ωn are meaningful, so, there will be N allowed values.

Exercise (level A): Find out, for what values of n are the amplitudes of the corresponding mode zero.

Exercise (level B): Show that if we let n take values beyond N + 1, the resulting values of ω get
repeated following the pattern ωN+1−p = ωN+1+p.

The displacement of the pth oscillator in the nth normal mode is

yp,n = Apn cos(ωnt)

which we will write once in the long form:

yp,n = Cn sin

(
pnπ

N + 1

)
· cos

[
2ω0 sin

(
nπ

2(N + 1)

)
t

]
in which Cn is an arbitrary constant, representing the amplitude of the nth mode. This number is
essentially determined by the initial impulse that sets the system into oscillation and it need not be
the same for all modes. Note, that we have assumed at t = 0 all particles are at rest. If the initial
conditions are different from this, the new conditions can be easily accommodated by allowing a
phase in the time part of the solutions:

yp,n = Apn cos(ωnt+ δn)

2.4 Transverse Displacements

The motion of the oscillators we have considered so far is longitudinal. What happens if the oscilla-
tions are transverse? Consider a string of identical masses m connected by elastic links of length l.
Let T be the tension offered by the links.

T


p


p−1


p+1

y
p+1

y
p

y
p−1

T

x
p−1

x
p−1

x
p+1

l
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Let these masses be in transverse oscillations (along y), with the end masses fixed as usual. The
force on the pth oscillator can be written component-wise as

Fx = T cos(αp)− T cos(αp−1)

Fy = T sin(αp)− T sin(αp−1)

Since the string is displaced only slightly from its mean position, we can take αp to be small for p.
Hence we only need to retain terms of order α in simplifying the force equation for small oscillations.
In this limit cosα ≈ 1 and sinα ≈ α. Hence we have

Fx = 0

Fy = T (αp)− αp−1)

From the accompanying diagram we can see that αp = (yp+1 − yp)/l and αp−1 = (yp − yp−1)/l.
The force on the pth oscillator is mass times its acceleration, so the equation of motion for the y
component becomes

m
d2yp
dt2

=
T

l
(yp+1 − yp)

If we set ω0 = (T/ml)2, we find that the equation of motion becomes

d2y

dt2
+ 2ω2

0yp − ω2
0yp−1 − ω2

0yp+1 = 0

which is indeed identical to the equation we obtained for coupled longitudinal oscillations. So this
model can be extended to the transverse oscillations of a string under tension. What we need to do
is consider the limit when N →∞.

If l is the equilibrium separation between the oscillators, then the length of the equivalent string is
L = l(N+1) and the tension in the string is T = kl. In the limiting case, we will have have m, l→ 0,
while the mass per unit length, µ = m/l remains constant. Thus

ω2
0 =

k

m
=
T/l

m
=

T

µl2

From the equation for ωn we see that the highest mode, n = (N + 1) has a frequency 2T/µl2, while
for the low modes (n� N), we get approximately

ωn = 2

(
T

µl2

)1/2(
nπ

2(N + 1)

)
=

(
T

µ

)1/2 (nπ
L

)
We have thus found the frequencies of the lowest normal modes. In these modes, the particle
displacements are given by Apn

Apn = C sin

(
p

nπ

N + 1

)
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In the continuum limit N → ∞, we can locate the pth particle by its position coordinate xp = pl =
pL/(N + 1). Hence

Ap = C sin
(nπxp

L

)
and the displacement of an arbitrary particle on the the string in the the low modes is given by

yn = C sin
(nπx
L

)
cos

[(
T

µ

)1/2 (nπ
L

)
t

]

3 A stretched vibrating string

Let us now analyse the vibrations of string by a different method that does not invoke the idea of
an array of coupled oscillators. Let the string be under tension T and have mass per unit length µ.
Consider a small segment of the string, having length ∆l.





x

y

T

T

Referring to the diagram the forces on the string along the y and x directions are

Fx = T cos θ − T cos(θ + ∆θ)

Fy = T sin θ − T sin(θ + ∆θ)

Assuming that the distortion of the string from a straight segment shape is minor, we expand the
trigonometric functions and ignore terms of order (∆θ)2. In that approximation

Fx = 0, Fy = T∆θ,

and ∆l ≈ ∆x. Hence the equation for the transverse displacement of the string is

Fy = (µ∆x)
d2y

dt2
= T∆θ

We can write ∆θ in terms of x, y by recognising that

tan θ =
dy

dx
; sec2 θ =

d2y

dx2

dx

dθ

Once again, ignoring terms of order (∆θ)2, we have sec θ ≈ 1 and we can write

∆θ =
d2y

dx2
∆x

The equation of motion thus becomes

(µ∆x)
d2y

dt2
= T

d2y

dx2
∆x
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which we rearrange and write as
d2y

dx2
=
µ

T

d2y

dt2

Comment: The quantity (µ/T )−1/2 has dimensions of speed. We will see later that this is indeed
the speed u at which the disturbance propagates along the string. As usual, we search for harmonic
solutions to this equation

y(x, t) = f(x) cos(ωt)

so that
d2y

dx2
=
d2f

dx2
cos(ωt);

d2y

dt2
= −ω2f(x) cos(ωt)

Hence
d2f

dx2
cos(ωt) =

µ

T

[
−ω2f(x) cos(ωt)

]
From the above equation it is clearly seen that f(x) must be a harmonic function with a solution of
the form

f(x) = A sin(ωx/u); u = (µ/T )−1/2

which must meet the boundary conditions, f(0) = f(L) = 0. These conditions give us the normal
mode frequencies

ωn =
nπu

L
and the complete solution for the displacement of an arbitrary particle:

yn(x, t) = An sin
(nπx
L

)
cos

(
nπut

L

)
If we compare this solution with the solution obtained from the analysis of an infinite string of
coupled oscillators, we find that the solutions are essentially the same.

3.1 Generalised displacement of a string and harmonic analysis

Consider the most general form of the displacement of a point on a stretched string, as a function of
time, which is a linear combination of all harmonics:

y(x, t) =
∞∑
0

Cnyn(x, t) =
∞∑
0

An sin
(nπx
L

)
cos

(
nπut

L

)
Let us now consider the displacement of a point located at x, at a particular instant of time, t. Then
the displacement at that instant will be given by the expression

y(x, t) =
∞∑
0

Bn sin
(nπx
L

)
where Bn are new constants. Depending on which time we have chosen to view the string at, these
constants will in general, be different. But the main point is that now the displacement of a point at
an instant is a sum of several harmonic displacements, each of which has the form sin(nπx/L). What
is not known are the values of Bn. But the values of Bn can be found by exploiting some properties of
the sine and cosine functions. Let us consider the following equality based on the previous equation.∫ L

0

y(x, t) sin
(mπx

L

)
dx =

∫ L

0

∞∑
0

Bn sin
(nπx
L

)
sin
(mπx

L

)
dx; m ≥ 1

Now the RHS integral, IR, can be written as a sum of cosine functions by using the identity

sinA sinB = [cos(A−B)− cos(A+B)]/2
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So

IR =

∫ L

0

∞∑
0

Bn

[
cos

(
(m− n)πx

L

)
− cos

(
(m+ n)πx

L

)]
dx

=
∞∑
0

Bn

sin
(

(m−n)πx
L

)
(m− n)π

−
sin
(

(m+n)πx
L

)
(m+ n)π


The second term of IR is zero always, but the first term has a 0/0 form when m = n. So this is the
only term of the series that is non-zero. In other words, of all terms contributing to IR, we need
consider only the mth term. Thus,

IR =

∫ L

0

Bm sin2
(mπx

L

)
dx

which can be easily integrated as

IR =
1

2

∫ L

0

Bm

[
1− cos

(
2mπx

L

)]
dx

=
1

2
Bm [L− 0]

= BmL/2

We thus obtain the value of Bm

Bm =
2

L

∫ L

0

y(x, t) sin
(mπx

L

)
dx; m ≥ 1

Once the values of Bm are determined by this prescription, we have completed our task of breaking
down the general displacement of a vibrating string (at a particular instant of time) into harmonics.
Note, that these are harmonics in real space, not harmonics in time.

3.2 Fourier Decomposition

The analysis pertaining to the string obeys the boundary condition that the end-points have zero
displacement (i.e. the end points are nodes) . This enforces the use of sine functions in the sum. If
the boundary conditions were different, say for example, that the end points are anti-nodes, then
the solutions would be in terms of cosine functions, and the harmonic analysis would involve cosine
functions alone. So in the most general case we will need to allow for both types of harmonics. In
such a general case we will have

y(x) =
a0

2
+
∞∑
n=1

[
an cos

(
2nπx

L

)
+ bn sin

(
2nπx

L

)]
This decomposition of a periodic function into harmonics is called Fourier analysis and the series is
called the Fourier series. Let us consider some simple periodic functions, such as a sawtooth or a
rectangular function.2 A sawtooth wave is one in which the amplitude goes from zero to some finite
non-zero value in some time T and then drops rapidly to zero.

y = y0(x/L) 0 < x ≤ L

2Typically such functions are useful in electronics and acoustics, where these can be realised as waveforms that are
periodic in time, not in space, which is what have been discussing. Fourier analysis works out exactly the same way
in time as it did in real space. That analysis is called time domain fourier analysis. It is important to remember this
distinction.
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A rectangular wave is one which has a constant (non-zero) amplitude over some distance l1, followed
by a certain distance l2 during which the amplitude is zero. The cycle then repeats. If l1 = l2
(≡ L/2), and the amplitude swings from −A to +A then it is called a square wave.

For ease of representation, we can set A = 1 and scale the x coordinate so that the period of the
function is 2π with a range [−π, π].

y = −1 −π < x < 0

= +1 0 < x < π

Exercise (level B): Show that for the “standard” square wave shown above, the Fourier series is

y(x) =
∞∑
m=1

bm sin(mx); bm = 4/mπ for even m; bm = 0 for odd m

and all cosine terms are zero.

Exercise (level B): Show that a sawtooth wave is represented by the Fourier series

y(x) =
∞∑
n=1

(−1)n+1 2

nπ
sin
(nπx
L

)

4 Travelling Waves

Consider a finite string, open at one end and rigidly held at the other end. If it is given an impulse
at the open end, a ripple travels towards the fixed end. The ripple (or a train of ripples) travels back
after reflection, and if conditions are right a standing wave is formed. The shape of the string, or
this standing wave, is very much like the normal mode oscillations of a fixed string that we have seen
before. So, the travelling wave should be described by the normal mode solutions. Let us see how
the travelling wave case is contained in the normal mode solutions.

The normal mode solution is
yn(x, t) = An sin

(nπx
L

)
cos(ωnt)

where ωn = nπv/L is the nth mode frequency and v is the wave speed. By using the trigonometric
identities for addition of sines we can re-write the above equation as

yn(x, t) =
1

2
An

[
sin
(nπx
L

+ (ωnt)
)

+ sin
(nπx
L
− (ωnt)

)]
The first term represents a wave travelling in the −x direction, while the second term represents the
one travelling to the +x direction. This can be seen as follows.

Take a specific displacement y+
0 given by the second term corresponding to a certain combination of

x, t. Since y+
0 is a harmonic function, the same value of y+

0 will reappear at some other value of its
arguments, x+ ∆x, t+ ∆t. Hence we must have

sin
(nπx
L
− ωnt

)
= sin

(
nπ(x+ ∆x)

L
− ωn(t+ ∆t)

)
This implies

nπ∆x/L = ωn∆t
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or, since ωn = nπv/L,
∆x/∆t = v

which tells us that the wave is propagating in the +x direction with speed v. Similarly the other
term in the standing wave solution represents a wave travelling in the −x direction.

There is one subtlety which we have overlooked. The normal mode solutions which we used above,
were obtained in the first place with the constraints that the end points of the string are fixed. But
the travelling wave is obtained for one open end and a fixed other end. How are we justified in
extending the first solution to the second case? The justification is based on two conditions: first,
that setting up the travelling wave is a transient phenomenon (the impulse acts for a short time,
compared to the period of the wave) and eventually (after the wave has travelled to the fixed end
and back), a steady state is attained. Even if the wave train is finite (and much shorter than the
length of the string, it is a periodic phenomenon, although the value of y is zero for most of the string
coordinates. And we have seen that any periodic function can always be written as a (infinite) sum
of sines and cosines (Fourier decomposition). The normal modes are just the components whose sum
would represent any arbitrary pulse or wave train.

In short, the normal mode solutions cover the case of travelling waves, not only for waves that span
entire strings, but also for short wave trains.

4.1 Speed of a wave

We have analysed the vibrations of a string in two ways. First, as a system of N coupled oscillators
in the limit N → ∞ as then a continuous medium which exhibits transverse oscillations subject
to the constraint that its end-point are fixed. For the ideal string, having length L, mass per unit
length µ and under tension T , the relationship between the wavelength, frequency of oscillation and
the velocity of the wave was obtained as

v = (T/µ)1/2, λn = 2L/n, ωn = πnv/L

with no upper limit on n, at least in principle.

However, in the limiting case of N coupled oscillators, the normal mode frequencies were given by

ωn = 2ω0 sin

[
nπ

2(N + 1)

]
.

These are N different frequencies, the successive normal modes are not integer multiples of a basic
frequency ω0 = (T/µ)1/2/L. Instead, the values are closer together and the highest possible value
is twice the basic frequency. However, when n/N is small, i.e. for the low modes the two solutions
agree. Experience tells us that the second analysis is closer to reality than the first one. One might
argue that any finite length of string contains an enormous number of atoms, so the string is always
in the limit (n/N)→ 0, even for relatively large values of n, so there is really no difference between
the two cases. This argument is of limited validity, because every real string has a finite thickness,
and for any non-zero thickness of the string there will always be transverse stresses or shearing forces,
which will invalidate our assumption of the string being composed of perfect one-dimensional simple
harmonic oscillators.

An important consequence of the unequal spacing of the normal mode frequencies implies that the
product ωnλ

ωnλ =

(
(T/µ)1/2

L

)
sin

[
nπ

2(N + 1)

]
· 2L

n
,

is not constant. This implies that the velocity of the wave is mode-dependent; higher modes have a
lower velocity.
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4.2 Dispersion of waves

This observation that the velocity is dependent on the mode has an interesting and important
consequence. If a bunch of waves with slightly different characteristics are travelling in a medium,
the waves will separate out as time progresses. This phenomenon is called dispersion.

Consider two waves,
y1,2 = A sin(k1,2 − ω1,2t)

in which the difference between the two k values and the ω values is small. If these waves are
superposed, i.e. they travel through along the same region of a medium, then the displacement due
to the two together will take the form

y = y1 + y2

= 2A

[
sin

(
k1 + k2

2
x− ω1 + ω2

2
t

)
+ cos

(
k1 − k2

2
x− ω1 − ω2

2
t

)]
= 2A

[
sin (kx− ωt) + cos

(
∆k

2
x− ∆ω

2
t

)]
in which we have defined k to be the average of k1, k2 and ∆k to be the difference k2 − k1, and
likewise for ω and ∆ω. This expression is a product of two travelling waves solutions, both travelling
in the +x directions. The first travelling wave is the one represented by the sine function, with
wave speed ω/k. The other wave is the one represented by the cosine function, with wave speed
∆ω/∆k. What are these waves? A comparison with the phenomenon of beats will help. Beats occur
when oscillations with two slightly differing frequency are superposed. That superposition has a very
similar functional form to the above equation. There the cosine function was an envelope to the
time-varying oscillation pattern, while the sine function was the oscillation itself. Likewise, here, the
cosine function is an envelope to the crests of the travelling wave. It envelopes a group of waves. The
envelope moves with a velocity equal to ∆ω/∆k, and this is called the group velocity. It is the speed
corresponding to the average wave vector, and also the speed at which energy is transmitted. The
speed corresponding to the sine function is the usual wave velocity, also called the phase velocity,
since it (also) the speed at which the phase of any point on the wave changes.

Dispersion is seen in all kinds of waves, a well-known example is the dispersion of white light into
rays of different colours by a prism. Red wavelengths have a lower speed than violet wavelengths
in glass which causes dispersion – separation according to wavelength – when they travel unequal
distances. Dispersion does not occur in passage through air. A corollary is that the refractive index
of glass is wavelength dependent.

4.3 Transmission across a boundary

A standing wave is bounded by fixed end points, while a travelling wave is not. What happens when
the travelling wave meets a boundary? To answer this let us first generalise what we mean by a
boundary. A boundary, in general, is a location where the wave meets a resistance or opposition
to motion. If the resistance is infinite, it is the same having a fixed point, that is the point does
not yield to the disturbance. (The end points of a finite stretched strings are boundaries of this
kind.) From such a boundary the wave will get reflected with complete reversal of the displacement,
because the rigid boundary will exert an equal and opposite force on the string and hence invert
the displacement. In general, however, when the boundary is not perfectly rigid, there is partial
transmission and partial reflection across the boundary. Sticking to the protoptypical string, let us
construct a simple boundary problem, and understand what happens at the boundary.

A boundary can be created by merely considering the junction of two straight strings, a light one
(say, on the left) and a heavy one (on the right). Let the junction correspond to x = 0 and the mass
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per unit length of the two strings be be µL and µR. If a wave is incident from the left, in the +x
direction, we will have the incident and reflected wave in the left portion and a transmitted wave in
the right portion. The displacements of the strings in the two portions will be

yL = A sin(kLx− ωt) +B sin(−kLx− ωt)
yR = C sin(kRx− ωt)

Note, that kR and kL are, in general, different, since µL 6= µR, and the velocities of the waves in the
two media are not the same (recall that k = ω/v). The frequencies, however are the same, for if they
were not, then it might happen that the point at the boundary will be forced to oscillate at different
frequencies at the same time, which is an inconsistency.

The boundary conditions to be satisfied are

At x = 0 yL = yR and
∂yL
∂x

=
∂yR
∂x

These boundary conditions merely imply continuity of the string, and the absence of shearing of
the boundary. Furthermore, the continuity of the first derivative is essential for defining the second
derivative, which characterises the wave.

Substituting the two expressions for displacements in these boundary conditions, we get (after setting
x = 0)

A sin(−ωt) +B sin(−ωt) = C sin(−ωt)
kLA cos(−ωt)− kLB cos(−ωt) = kRC cos(−ωt)

or

A+B = C

A−B =
kR
kL

C

From these we find

C

A
=

2

1 + kR/kL
B

A
=

1− kR/kL
1 + kR/kL

The ratios of the amplitudes of the incident, reflected and transmitted waves are thus related to the
wave vectors in the two media, or in turn, the velocity of the waves in the two media:

C

A
=

2

1 + vL/vR
B

A
=

1− vL/vR
1 + vL/vR

4.4 Sound Waves

So far, we have been mostly discussing waves on a string. When a string is plucked we see a standing
wave pattern, and we hear a sound. The sound is heard not merely because the string vibrates,
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but also because these vibrations are transmitted through air to our eardrum. This suggests that
the column of air between the source and the ear responds to the vibrations in a harmonic manner,
thereby agitating the eardrum. Let us see how the air column (or any gas, for that matter) responds
to vibrations.

A gas is characterised – leaving aside for the time being the chemical structure of its constituents –
by density and pressure. The pressure is a function of the density: P = f(ρ). A tiny impulse, such as
that created by a vibrating string or a vibrating membrane, will create a local pressure disturbance.
Small changes in pressure from the quiet condition can be written as

P = P0 +
∂P

∂ρ
∆ρ

where ∆ρ = ρ−ρ0 is the change in the density due to the impulse. Note, that the pressure and density
changes are localised, because the disturbance is an impulse (sudden and short-lived application of
a force). The effect of the impulse propagates with a finite speed through the medium as we will
shortly see. This is in contrast to the case when we gradually and continuously press a piston in a
cylinder–piston arrangement which is commonly referred to in the study of thermodynamics of gases.

Since the disturbance is an impulse, it is useful to investigate what happens to a parcel of the gas,
whose thickness along the direction of the impulse is negligible. We need not concern ourselves with
what happens to each molecule (which has a random motion, and no single molecule travels along
the applied impulse), as it is sufficient to investigate what happens to them on the average. However,
we must make allowance for the fact that a gas is easily compressed and is not a rigid body. So, if
we have of two parcels of the gas with some separation between them, there is no guarantee that
under the application of a force that displaces these parcels, the separation between them will remain
unchanged. In general if x1 and x2 are the coordinates of the parcels, then their displacement under
an external force will lead to new coordinates x′1 and x′2 given by

x′1 = x1 + u(x1) and x′2 = x2 + u(x2)

where u(x) is a function that specifies the displacement at various locations, and is not the same at
all locations, in general. To be more precise, u is also a function of time, for if it were not, we would
not be able to account for the fact that the density of a gas tends to become homogeneous with time.

Let a certain parcel of the gas be specified by two boundaries, perpendicular to the direction of
the impulse, located at the coordinates x and x + ∆x. Thus, in the quiet condition, the parcel has
thickness ∆x along the direction of the impulse and a cross section area A and density ρ0. As a
result of the impulse the pressure and the density within this parcel changes, as does the thickness
of the parcel, but the mass of the parcel remains unchanged. This gives us the relationship

ρ0(A∆x) = ρ′(A∆x′)

As a result of the impulse the boundary at x is displaced to x+ u(x) while the boundary at x+ ∆x
is displaced to (x+ ∆x) + u(x+ ∆x). The new thickness of the parcel is given by

∆x′ = [(x+ ∆x) + u(x+ ∆x)]− [x+ u(x)]

= ∆x+ u(x+ ∆x)− u(x)

= ∆x+
∂u

∂x
∆x

Using this in the mass conservation equation then gives us

ρ0 = ρ′
[
1 +

∂u

∂x

]
45



which can be re-cast as

ρ− ρ0 = −ρ0
∂u

∂x

Now let us recall that the displacement function u(x) is function of time too, which means that the
displaced parcel is accelerating. The acceleration is related to the net force on the parcel, or in other
words to the difference in the pressure on the two boundaries of the parcel. So

Fx − Fx+∆x = (ρ0A∆x)
∂2u

∂t2

Since pressure is force per unit area, we divide both sides by A to get

Px − Px+∆x = ρ0∆x
∂2u

∂t2

∴ −∂P
∂x

∆x = ρ0∆x
∂2u

∂t2

∴ −∂P
∂x

= ρ0
∂2u

∂t2

Using P = P0 + ∂P
∂ρ

(ρ− ρ0), we have

− ∂

∂x

[
P0 + (ρ− ρ0)

∂P

∂ρ

]
= ρ0

∂2u

∂t2

butP0 is a constant and ρ−ρ0 = −ρ0
∂u
∂x

, and (∂P/∂ρ) = K/ρ, where K is the adiabatic bulk modulus
of the gas. Hence,

−K
ρ0

∂

∂x

[
−ρ0

∂u

∂x

]
= ρ0

∂2u

∂t2

∂2u

∂x2
=
ρ0

K

∂2u

∂t2

This is exactly the wave equation we have been dealing with. Here it represents a wave comprised of
the longitudinal displacements of a slice of the gas when subject to an impulse. In other words, this
is the equation for a sound wave. The speed of sound in a gas is thus

√
K/ρ. The compressibility

of the gas permits the setting up of a longitudinal sound wave in it, and this is how the effect of
vibrations of a string reaches our eardrum.

5 Wave Pulses

When we shake or twirl a rope, we create a pulse that travels along the rope. Typically this pulse
will propagate at a speed equal to

√
T/µ. This is an elementary form of sending a signal ; another

example of an elementary signal is when you clap to draw someone’s attention. The wave pattern
for neither of these signals are anything like the harmonic solutions for waves or oscillations that we
have been analysing so far. The main differentiating feature is that these signals persist only for a
short duration TD, whereas the harmonic solutions apply at times, and also over the full range of
the spatial coordinates (since the form sin or cos (ωt− kx) has finite values for all t and x). So does
it mean that the harmonic solutions developed so far will be useless to describe these displacements
(of the rope, or the air parcel) that last for only a finite time?
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5.1 A pulse in time

If we concentrate at any point on the rope (i.e. we keep x fixed) and observe how this point moves in
time we might get a displacement versus time graph as shown in the figure below, shown as repeating
after some time.

TR

TD

y(t)

Without bothering about the details of the shape of the pulse, we can say that pulse is a disturbance,
that results in a displacement that has a general form

[x fixed] : y(t) 6= 0 0 < t < TD

= 0 TD < t < TR

where TR is a arbitrary time, usually much larger that TD, and can in principle be ∞. TR would
usually be the time after which the signal is repeated. Repeated signals are used, for example, in real
life communications including speech, the latter being far more complicated that communication by
electronic signals.

As we have just seen, a pure sinusoid exists for infinite time, so the y(t) above cannot be such
function. Some common signal shapes might be a single sawtooth, a single rectangular pulse, or just
any lump. We know from our earlier discussion of Fourier analysis, that each such disturbance in
time can be written as an infinite sum of harmonics of a base frequency ω0

y(t) =
∞∑
n=1

Cn cos(ωnt+ δn); ωn = nω0

Since such decomposition can always be done, and each of the components is a harmonic function,
we can apply all our analysis of travelling waves and oscillations, to understand the propagation of
any arbitrary pulses.

Let us consider now a special (if rather artificial) case, of a signal pulse which is a train of m cycles
of the pth harmonic of the base frequency and that the signal is repeated after a time that is equal
to the period corresponding to the base frequency.

Such a signal would be described by

y(t) = A sin(pω0t) 0 < t < TD

= 0 TD < t < TR

where TD = 2mπ/pω0 is the duration of m cycles of the pth harmonic and TR = 2π/ω0. This function
is neither symmetric nor antisymmetric as it stands, but we can make it appear antisymmetric (since
it is a sin function) by merely shifting the time reference.

y(t) = 0 −π/ω0 < t < −mπ/pω0

= A sin(pω0t) −mπ/pω0 < t < +mπ/pω0

= 0 +mπ/pω0 < t < +π/ω0
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We find the Cn as follows

Cn =
2

TR

∫ +TR/2

−TR/2
dt y(t) sin(nω0t)

We have to change the limits of integration now to account for the fact that the signal is non-zero
only for a small duration, (−mπ/pω0,mπ/pω0), which is less than the repetition period. So

Cn =
ω0A0

π

∫ +mπ/pω0

−mπ/pω0

dt sin(pωt) sin(nωt)

=
ω0A0

2π

∫ +mπ/pω0

−mπ/pω0

dt [cos(p− n)ω0t− cos(p+ n)ω0t]

=
ω0A0

2π

[
sin(p− n)ω0t

(p− n)ω0

− sin(p+ n)ω0t

(p+ n)ω0

]+mπ/pω0

−mπ/pω0

=
ω0A0

π

[
sin(p− n)m

p
π

(p− n)ω0

−
sin(p+ n)m

p
π

(p+ n)ω0

]

For n ≈ p the first term is very large compared to all other terms. In this approximation we have

Cn =
A0

π

[
sin[(p− n)m

p
π]

(p− n)

]

Cn =
mA0

π

[
sin θn
θn

]
where θn = m

p
π(p − n). The values of Cn are large only when θn ≈ 0, i.e. p ≈ n and fall off rapidly

as θ approaches π and then they oscillate. This means that the Fourier component corresponding
the harmonic which the signal is made of is the dominant component, as expected. Now consider
the case when m = p, i.e. the the number of cycles of the pth harmonic that constitutes the signal is
p itself. Then there is only one term in the expansion, Cp, since the signal is a complete wave train
over the entire repetition period, not restricted to a few cycles.

If the signal pulse is only 1 cycle of the pth harmonic, then Cn = A0/p for n = p and Cn = A0

π
[ sin θn
θn

]
for n 6= p. and the amplitudes for all n ≈ p are equal.

5.2 Group of frequencies

In the previous section we looked at a pulse in time, that propagates on a string or through a medium,
and showed that it could be treated as a linear combination of multiple harmonics. The narrower the
pulse is in time, the greater is the number of harmonics which contribute significantly to the linear
combination describing the pulse.

Let us know do the reverse exercise. We will start with a group of frequencies which are associated
with the oscillation of a point, and determine how the displacement appears as a function of time.
Let this group of frequencies be made up of n equally-spaced values in the range ω0 to ω0 + ∆ω,
with each frequency having the same amplitude a. Let the spacing between adjacent frequencies be
δω. The average frequency of this group, ω̄ = ω0 + δω(n− 1)/2. The resultant displacement of the
particle (at a fixed x coordinate) at any time t will be given by

y(t) =
n−1∑

0

a cos(ω0 + iδωt)
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The sum can be effected by a geometric method, or by converting the cosines to imaginary exponen-
tials (see The Physics of Vibrations and Waves, Chapter 1, H. J. Pain). We get

y(t) = a
sin[n(δω)t/2]

sin[(δω)t/2]
cos[(n− 1)(δωt)/2]

= a
sin[(∆ω)t/2]

sin[(∆ω)t/2n]
cos[ω̄t]

For t not much different from 0, and for a large number of frequencies with a narrow spread compared
to their mean value, the denominator can be simply written as (∆ω)t/2n. Then we have

y(t) = na cos[ω̄t]
sin[(∆ω)t/2]

[(∆ω)t/2]

The cosine term varies rapidly compared to the sine term, since ω̄ is greater than ∆ω, and the graph
of y(t) appears as shown below.

ω̄ = 50,∆ω = 10

ω̄ = 50,∆ω = 5
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The envelope function is the sine function. Thus we have an oscillation at frequency ω̄, whose
amplitude is modulated by a sin((∆ω)t/2)/((∆ω)t/2) function. The amplitude is maximum (= na)
at t = 0, since all oscillations are initially in phase. As time progresses, they go out of phase and
when (∆ω)t/2 becomes π the amplitude of the envelope becomes zero. Thus the time ∆t in which
the amplitude of the envelope falls from its maximum value na to zero is 2π/(∆ω). We also find an
important relationship between ∆ω and ∆t

∆ω∆t = 2π.

This is just a more concrete statement of what we had found in the previous section: the narrower
the spread in time of a pulse (small ∆t), the larger the number of frequencies (large ∆ω) needed to
represent the pulse and vice-versa, keeping the product of their spreads fixed. (This statement is
called the bandwidth condition, for reasons we will shortly see.)

We can look at the final expression for y(t) obtained above as a rapidly varying harmonic function
whose amplitude is modulated gradually in time. The function

y(t) = [a+ b cos(ω′t)] cos(ωt)

is also a similar function overall, but with a different modulation. Suppose now, that this modulated
ocsillation travels. That is,

y(x, t) = [a+ b cos(ω′t)] cos(ωt− kx)

If ω′ � ω, then we can think of this as a wave at frequency ω carrying a signal of a lower frequency,
the signal being understood as the modulation of its amplitude. This form of sending a signal by
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amplitude modulation is commonly adopted in radio transmission; the frequency ω′ is the frequency
of the speech or sound that is being transmitted (note that this frequency is not single valued, it is
typically any value in the range of audible frequencies). If this travelling wave is interrupted at some
position xR, the oscillation at that point will have the form

y(x, t) = [a+ b cos(ω′t)] cos(ωt− δ)
or

y(t) = a cos(ωt− δ) +
b

2
cos[(ω′ + ω)t− δ] +

b

2
cos[(ωt+ ω′)t+ δ]

The first term is simply oscillation at the carrier wave frequency, while the other terms are frequen-
cies on either side of the main frequency, also side-bands. To retrieve the signal at the frequency
ω′, we need to decouple it from the carrier frequency, which an electronic implementation of the
orthogonality property of cosines, applied at different frequencies in the side bands. Thus, when we
tune in to a radio station, the receiver has to be sensitive to not just to the carrier frequency, but
also to the side bands. This is a reason why radio senders operate at frequencies that are generously
separated from each other.

5.3 Dispersion of waves

In the discussion about a carrier wave and amplitude modulation for transmitting a signal, we
assumed that all frequencies would travel at the same speed v. However this need not always be the
case. In an earlier section on dispersion we looked at two waves,

y1,2 = A sin(k1,2 − ω1,2t)

in which the difference between the two k values and the ω values is small are superposed. As they
travel along the same region of a medium, the displacement due to the two together is

y = 2A

[
sin

(
k1 + k2

2
x− ω1 + ω2

2
t

)
+ cos

(
k1 − k2

2
x− ω1 − ω2

2
t

)]

The cosine component represents an envelope of the more rapidly oscillating sine wave. The envelope
over the group of two waves has a velocity vg, given by

vg =
∆ω

∆k
=
ω1 − ω2

k1 − k2

.

If we divide the numerator and the denominator by k1k2, and note, that v1 = ω1/k1 (and similarly
for 2), we get

∆ω

∆k
=
v1/k2 − v2/k1

1/k2 − 1/k1

.

If v1 and v2 are the same, that is the medium is non-dispersing, then each of them will be equal to
vp, the rate of change of the phase of the oscillation, or the phase velocity. In that case we can write
the following condition for a non-dispersive medium

vg =
∆ω

∆k
= vp

Radio wave broadcast, by time-dependent modulation of the amplitude, which results in the creation
of side-bands, can be effective only when this condition is satisfied, otherwise the receiver will not
receive all side-bands simultaneously. Dispersion is actually the norm rather than the exception.
Light passing through any transparent solid exhibits dispersion, as seen most dramatically in a
prism; seismic waves are dispersed in the earth’s crust, and such dispersion becomes a tool for
estimating the composition of the earth’s interior and also for testing of materials for fractures and
inhomogeneities and in medical diagnostics using ultrasonic waves.
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6 Electromagnetic waves

In previous sections we have considered stationary and travelling waves on a stretched string, or
collection of coupled oscillators. We also discussed sound waves in a medium. Now we will turn our
attention to electromagnetic waves. They have some similarities with the above systems, but also
some very important differences.

Electromagnetic waves are also called “electromagnetic radiation”. The most familiar form of this
radiation is light, which is usually studied under the heading of “optics” where we talk about focusing
of rays, lenses, interference, diffraction etc. However, we now understand that visible light occupies a
very small segment within the range of electromagnetic radiation. The rest of the range is occupied
by radiation having names like infrared, ultraviolet, X-rays, gamma-rays, radio waves etc.

In terms of fundamental properties, all types of radiation are absolutely the same. They can all
exhibit the basic properties of light, such as interference and diffraction. They can all be polarised
or unpolarised. They only differ from each other in their frequency/wavelength. Of course in terms
of interaction with materials and human beings, the various types of radiation behave extremely
differently from each other. For example, unlike light some of them can cause damage, some of them
can pass through solid matter, some can communicate radio signals effectively, some can transmit
heat. Lenses may or may not bend all types of radiation. But ultimately all these different behaviours
are only due to the difference in frequency!

Thus it makes sense to consider the basic properties of electromagnetic waves and this is what we
will do here.

The first question is, what are the waves made up of? By analogy with a sound wave, we may
imagine an electromagnetic wave is an oscillation in some medium. However this contradicts some
simple experiments. First place a music player in a glass jar and evacuate the jar with a vacuum
pump. You can no longer hear any music. However you can still see the music player! Apparently
light has travelled in the vacuum. You may argue that the vacuum was not perfect enough. But
consider that sunlight reaches us across space. So either it travels through a vacuum, or there is a
medium that we do not know about, filling all of space, and light is an oscillation of that medium.

Such a medium was hypothesised under the name of “ether”. If it exists, then motion through the
ether should change the speed of light (as motion through air changes the speed of a sound wave).
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However the very sophisticated Michelson-Morley experiment tested for such a change in the speed
of light and found no such effect. This experiment led to the modern view that there is no ether,
and electromagnetic waves indeed propagate in a vacuum.

Of course, light also propagates in materials. In this case it is found to propagate more slowly. But
this does not mean that the light wave is an oscillation of that material. In fact, the light wave keeps
striking atoms of the material and undergoing reflections, and this effectively slows down the wave.
But microscopically (i.e. in between collisions), it is always moving at the same speed – the speed of
light c, which is roughly 3× 108 m/sec. Einstein understood that the speed of light is a fundamental
constant of the universe and it plays an essential role in the special theory of relativity.

But we are no closer to understanding electromagnetic radiation. If it is not the vibration of a
medium, what is it the vibration of? The answer lies in the concept of a field, a basic entity in
modern physics. The electromagnetic field consists of the two vectors ~E(~x , t) and ~B(~x , t), known as
the electric and magnetic field, which pervade all of space. These fields carry energy and exert force.
For example a charged particle moving in an electromagnetic field experiences the famous Lorentz
force:

~F = q ~E + q~v × ~B

The important point is that a field is a quantity defined at all points of space and time. It satisfies
certain equations called “field equations”. For the electromagnetic field, these are called “Maxwell’s
equations”. These were abstracted from a number of experiments performed by Coulomb, Oersted,
Biot, Savart, Ampère, and Faraday among others. We are not going to write down all these equations
here, but let us mention that they are of the following general form. They involve first derivatives of
the fields ~E, ~B with respect to both space and time, and they also involve some given distribution
of charges ρ(~x , t) and currents ~J (~x , t). They take the form:[

Some linear function of ∂ ~E
∂t
, ∂

~E
∂x
, ∂

~B
∂t
, ∂

~B
∂x

]
=
[
Some linear function of ρ, ~J

]
Here we used ∂ ~E

∂x
as shorthand for the three quantities ∂ ~E

∂x
, ∂

~E
∂y
, ∂

~E
∂z

. Once we specify the sources, the
above equations will determine the field – of course subject to imposing suitable boundary conditions.

To be explicit, one of Maxwell’s equations is:

~∇ · ~E =
ρ

ε0

where ε0 is a constant called the “permittivity of the vacuum”. Since ~∇ · ~E = ∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
, we

see that it is of the general form given above. The other Maxwell equations are more technical and
each of them embodies some property of electromagnetism.

The important thing is that every possible electromagnetic field has to be a solution of Maxwell
equations. That includes the field of a point charge, of a magnet, of a conducting wire, of a solenoid,
of a conductor of any shape etc, But most of these solutions are not of interest to us here. We
will restrict ourselves to the special class of electromagnetic field configurations that correspond to
electromagnetic radiation.

6.1 Plane electromagnetic waves

Let us consider electromagnetism in the absence of sources: ρ = ~J = 0. In that case, the Maxwell
equations take the source-free form:[

Some linear function of ∂ ~E
∂t
, ∂

~E
∂x
, ∂

~B
∂t
, ∂

~B
∂x

]
= 0
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From these equations one can derive the following simple results:

~∇2~E − 1

c2

∂2 ~E

∂t2
= 0

~∇2~B − 1

c2

∂2 ~B

∂t2
= 0

(6.1)

This is the electromagnetic wave equation. Mathematically it is identical to equations that we have
already seen. It is basically the same as Eq.(??) describing the propagation of a disturbance along a
stretched string (that equation was written assuming the disturbance is only along a fixed direction,
say x. We can do the same here if we restrict our attention to fields that vary only along x and are

independent of y and z. In that case ~∇ 2 → ∂2

∂x2
and we get precisely the same equation).

Recall that in the equation for a vibrating string, the velocity v of the disturbance appeared in the
same place as c in the electromagnetic equation. But there is an important difference in the two

quantities. For the string, we have v =
√

T
µ

which depends on physical properties of the string,

namely its tension T and mass per unit length µ. However in the electromagnetic case the velocity
of the wave is a fixed quantity c – a constant of nature independent of any material. We will take
this electromagnetic wave equation in vacuum as our starting point.

One may wonder how there can be electromagnetic waves in the absence of sources! What provides
the energy for these waves? The answer goes like this: we can imagine that some disturbance created
the wave in some region of space and time. The wave will spread and we observe it far away, in a
region of space that is completely empty. The above equation tells us what we can expect to see in
this region far away from sources. If we want to understand what we would see near the source, that
would require us to solve the wave equation with a source. That is a more difficult job and we avoid
it for now.

One enormous convenience is that we do not need to learn new mathematics to solve the electro-
magnetic wave equation. The general solution of the electromagnetic wave equation is:

~E(~x , t) = ~E0e
i(~k ·~x−ωt)

~B(~x , t) = ~B0e
i(~k ·~x−ωt)

(6.2)

where ω = c|~k | and ~k is called the wave vector. Of course, linear combinations of the above
solutions are also allowed. As we have seen previously, the principle of superposition holds and we
can superpose any of the above solutions to get a general one. Note that we have written the general
solution as a complex one, but the physical electric and magnetic fields ~E, ~B are supposed to be real.
So we have to make sure our linear combination is real. One way is to write “Re( )” around every
expression, which just means to take the real part. To avoid complicating our formulae we will not
write this “Re” every time, but it should be assumed to be present.

Now let us consider waves propagating along the z-direction. In that case, ~k = (0, 0, k) where the
number k can be either positive or negative, and ω = |k|c = ±kc. Thus we can have two terms:

uk(z, t) = Aei|k|(z−ct) +Be−i|k|(z+ct) (6.3)

The first term corresponds to waves propagating to the right, while the second describes waves
propagating to the left.

Given the basis above, we can take superpositions of the uk and build up any function of (z − ct)
and any other function of (z + ct) by Fourier analysis. Thus the most general electromagnetic wave
in the z-direction will have components:

u(z, t) = f(z − ct) + g(z + ct) (6.4)

where f, g are independent functions of one variable.

53



Now recall that the second-order wave equation was obtained by differentiating the first-order
Maxwell equations. Therefore a solution of Maxwell equations will satisfy the wave equation, but a
solution of the wave equation need not satisfy the Maxwell equations! So out of the general class
of solutions of the above form where u stands for any of the six quantities Ex, Ey, Ez, Bx, By, Bz,
we should not expect that all of them are genuine electromagnetic waves. So let us go back to the
general form of the wave and write it as follows:

~E = ~εEE0 e
i(~k ·~x−ωt)

~B = ~εBB0 e
i(~k ·~x−ωt)

(6.5)

So far we have done nothing, because the exponential is the general one and the coefficient has
been parametrised as by a magnitude (E0 and B0) and unit vectors ~ε that are called “polarisation

vectors”. Note that the polarisation vectors do not depend on ~x , t but they can depend on ~k .

However, now we must impose Maxwell’s equations. There are two relatively simple equations, which
in free space are ~∇ · ~E = 0, ~∇ · ~B = 0. Imposing these on the above solutions, we find:

~k · ~εE = 0 = ~k · ~εB (6.6)

Since ~k is the direction of motion of the wave, this tells us that the polarisation of the wave (i.e. the

direction of the vectors ~E, ~B) is perpendicular or transverse to the direction of motion. We see that
electromagnetic waves are transverse waves.

The remaining Maxwell equations lead to the following additional condition:

~B =
1

c
k̂ × ~E

From this it follows that:

B0 =
1

c
E0, εB = k̂ × εE (6.7)

where k̂ is the unit vector
~k

|~k |
along the direction of motion.

To summarise, the most general electromagnetic waves in free space are given by:

~E = Re
(
E0~εEe

i(~k ·~x−ωt)
)

~B = Re

(
E0

c
(k̂ × ~εE) ei(

~k ·~x−ωt)
) (6.8)

and linear combinations. Notice that the three vectors ~εE,~εB, k̂ are all unit vectors and pairwise
orthogonal. Thus they form an orthonormal set. One can make this more explicit by going into a
special basis. Suppose, as before, we take the wave to be propagating along the z-direction. Then
k̂ = (0, 0, 1). Now the transversality condition says that the polarisation vector is orthogonal to
this. By rotating our x − y plane, we can align the electric polarisation along the x axis. Thus
~εE = (1, 0, 0). Finally ~εB = k̂ × ~εE = (0, 1, 0) and we clearly see the orthonormal set.

Notice that ~E and ~B are in phase with each other and we saw their amplitudes are proportional.
Thus an electromagnetic wave is an oscillating pair of crossed electric and magnetic fields having
amplitudes in a fixed proportion, the same phase, and perpendicular directions. Note that when we
draw a picture of an electromagnetic wave, the transverse displacement that we draw is not plotted
in real space! The wave is not “oscillating transversely in real space”. Rather, there is a transverse
electric and magnetic field, and the picture shows the magnitude of this field.

We have derived these results starting from Maxwell’s equations. Since those equations have a
sound experimental basis, one can be confident that these results are correct. But what is the
experimental evidence for electromagnetic radiation?And do we know that it is made up of crossed
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electric and magnetic fields? Historically, visible light was of course known since pre-history. Infrared
and ultraviolet radiations were isolated in the early 19th century using sunlight and a prism. They
were shown to have somewhat distinctive properties: ultraviolet rays darkened photo film more
rapidly (higher energy) while infrared rays heated up substances more rapidly (lower energy, so more
absorbed). But these were chance discoveries that did not by themselves tell us what radiation was
made up of. The big event came after Maxwell wrote his equations. Heinrich Hertz used Maxwell’s
equations (in the presence of sources) to design an emitter of radio waves and microwaves. He was
able to detect these waves at a distance, and test their reflection and interference properties. He knew
their frequency from the production mechanism, and their wavelength from interference patterns.
Using both together he could calculate the speed:

v = νλ

and found that this speed equalled the speed of light. This was conclusive evidence that the electro-
magnetic waves predicted by Maxwell’s equations really exist.

Exercise (level A): Show that:

~∇ (ei
~k ·~x ) = i~k ei

~k ·~x

~∇ 2
(ei

~k ·~x ) = −ω2

c2
ei
~k ·~x

where ω = c|~k |. Hence verify that the fields in Eq.(6.2) satisfy the electromagnetic wave equation.

Exercise (level A): For the fields given in Eq.(6.8), show that ~E · ~B = 0.

Exercise (level A): Referring to Eq.(6.3), explain clearly (in words) why the first term describes a
wave propagating to the right and the second term describes a wave propagating to the left.

Exercise (level B): Suppose we fix a coordinate system on earth such that the x− y plane is parallel
to the earth’s surface while the z-axis is perpendicular to it. Now consider a radio wave of 10 metres
wavelength, beamed into the sky at an angle of 60◦ to the earth. What are the possible wave vectors
~k of such a beam?

Exercise (level C): If you know Maxwell’s equations, write them (in MKS units) and use them to
derive the electromagnetic wave equations.

6.2 Standing electromagnetic waves

We can get standing electromagnetic waves much as we get standing waves of other kinds. However
there is a slight subtlety involving the magnetic field. First let us consider a (real) plane wave whose
electric field is:

~E(~x , t)plane = E0 x̂ cos(kz − ωt) (6.9)

As mentioned above, we are free to superpose any number of these. Suppose we superpose the above
with an identical wave of the same amplitude travelling in the opposite direction. Then we have:

~Estanding = E0 x̂
(

cos(kz − ωt) + cos(−kz − ωt)
)

= 2E0 x̂ cos kz cosωt
(6.10)

(we frequently need to use the fact that cos(−A) = cosA, i.e. that cos is an even function of its
argument). This is a mode of oscillation in which the points kz = (n+ 1

2
)π have zero amplitude (i.e.

zero electric field) for all time. That characterises a standing wave. Of course it is not completely
trivial to superpose two oppositely directed electromagnetic waves with the same phase. In practice
this can be achieved by confining the radiation in an optical cavity.
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We still have to specify the magnetic field. There is a standard mistake one can make here. If one
writes: ~B = 1

c
k̂× ~E then one will get the wrong answer. The reason is that ~k is different for the two

components of ~E that we added. The above relation between ~B and ~E holds only for plane waves
and not for their superpositions! Thus to find the magnetic field of a standing wave, we must first
find ~B for each of the two counter-propagating waves that we superposed, and then add them. We
find:

~Bstanding =
E0

c

(
ẑ × x̂ cos(kz − ωt) + (−ẑ)× x̂ cos(kz + ωt)

)
= 2

E0

c
ŷ sin kz sinωt

(6.11)

Since sin kz sinωt = cos(kz + π
2
) cos(ωt + π

2
), we see that the magnetic field of a standing wave is

out of phase with the electric field. This is remarkable given that for a plane wave it was always in
phase with the electric field! Thus in a standing wave, the points where ~E = 0 (nodes of the electric

field) are the points where ~B is maximum (anti-nodes of the magnetic field) and vice versa.

Exercise (level A): Sketch the electric and magnetic fields of a standing wave as a function of z, one
next to the other, at the following fixed times: t = 0, t = π

4ω
, t = π

2ω
.

6.3 Energy of an electromagnetic wave

What is the energy of an electromagnetic wave? For any wave, the energy density is proportional to
the square of the amplitude. Thus we expect:

E = a ~E2 + b ~B2 (6.12)

The precise answer can be derived from Maxwell’s equations. Instead of going through the derivation,
we first note that the constants a and b must be such that each term in the above expression has
dimensions of energy. If ε0 is the permittivity of the vacuum then it turns out that ε0 ~E

2 indeed
has the dimensions of energy. The dimensions of ~B2 are 1

c2
times those of ~E2. Therefore, ε0c

2 ~B2

also has the right dimensions. Therefore a, b must be proportional to ε0, ε0c
2 respectively, with some

numerical coefficients. Indeed the energy density of any configuration of ( ~E, ~B), as obtained from
Maxwell’s equations, is:

E =
1

2
ε0

(
~E2 + c2 ~B2

)
(6.13)

This result is very general and holds for any ~E, ~B. For a plane wave we have | ~B| = 1
c
| ~E|, so in this

case:
Eplane = ε0 ~E

2 (6.14)

Note that since ~E is a function of (~x , t), the energy density is time- and position-dependent. However
usually we are more interested in the average energy density, where the average is taken over a cycle.
By now it should be very familiar that the average of cos2 over a cycle is 1

2
, and hence the average

energy density in a plane wave is:

Ēplane =
1

2
ε0E

2
0 (6.15)

Another relevant quantity is the instantaneous energy flow per unit area per unit time. In any
configuration of electric and magnetic fields in vacuum, this is given by the “Poynting vector”:

~S = ε0c
2 ~E(~x , t)× ~B(~x , t) (6.16)

To see its relation to the energy density, let us insert an electromagnetic plane wave solution into
this. Thus we can take:

~E = E0 x̂ cos(kz − ωt)
~B =

E0

c
ŷ cos(kz − ωt)

(6.17)
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from which we get:
~S plane = ε0cE

2
0 ẑ cos2(kz − ωt) (6.18)

Thus the energy flow points along the direction of propagation of the wave, as it should. Taking the
time-average, we find that the time-averaged energy transfer per unit area per unit time for a plane
wave is:

S̄plane = 1
2
c ε0E

2
0

If we divide the energy flow per unit area per unit time by the velocity of the wave, we get a quantity
with dimensions of energy per unit volume, the energy density. Hence we have found that the average
energy density of a plane electromagnetic wave is:

Ēplane =
1

2
ε0E

2
0 (6.19)

which agrees with Eq.(6.15).

The units of energy density are (energy)/(length3) which is the same as that of (force)/(length2).
So in fact the above quantity is also equal to the “radiation pressure”, which is the force exerted by
the electromagnetic radiation on a unit of transverse area. This is true only if the area is a perfect
absorber of radiation. If it is a perfect reflector then the pressure will be double.

Literally, when a big electromagnetic wave hits you, you will feel a pressure! But this is a very small
quantity in most daily applications. The radiation pressure exerted by sunlight on the earth is about
9 micro-Pascals (9 ×10−3 N/m2). It is 7 times higher on Mercury. Radiation pressure is measurable
and can be considered one more verification of the theory of electromagnetic waves. It can also be
large in the context of astrophysical processes like galaxy formation, dynamics of heavy stars, motion
of comets etc. Finally, the “solar sail” is an experimental spacecraft that propels itself in outer space
by radiation pressure.

Exercise (level A): Show that the instantaneous (not averaged) value of the Poynting vector for a
plane electromagnetic wave is:

~Splane = ε0c
2| ~E(~x , t)|2

Exercise (level C): It was claimed above that the radiation pressure exerted by sunlight on the earth
is about 9 micro-Pascals (9 ×10−3 N/m2) and that it is 7 times higher on Mercury. Prove these
approximate statements.

6.4 Polarisation

Let us again consider the standard plane electromagnetic wave along the z-direction:

~E = E0 x̂ cos(kz − ωt) (6.20)

As usual, ~B is completely specified as 1
c
ẑ × ~E, so in this section, we will confine our attention to ~E.

Since the above wave has an electric field purely in the x-direction, we say that it is “plane-polarised
along x”. Now we will coherently superpose two different plane-polarised light beams, both propa-
gating in the z-direction, and will find that the result depends on the relative direction of the two
beams, as well as the relative phase between them.

Let’s start by superposing two beams with perpendicular polarisations, and the same phase. One of
them will be taken to be polarised along x and the other along y. We find:

~E = E0

[
α x̂ cos(kz − ωt) + β ŷ cos(kz − ωt)

]
(6.21)
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Here α and β are two constants, which we can conveniently choose to satisfy α2 + β2 = 1 (by scaling

them and absorbing the scale into ~E0). We see that the above wave is the same as:

~E = E0(αx̂+ βŷ) cos(kz − ωt) (6.22)

As one can easily verify, αx̂ + βŷ is a unit vector at an angle θ to the x axis, where tan θ = β
α

.
So, superposing plane-polarised light in the x and the y directions with the same phase leads to
plane-polarised light at some angle to these axes. We can adjust the angle by suitably choosing α
and β.

Things are quite different if we superpose the two waves with perpendicular polarisations as well as
a phase difference between them. Thus we replace Eq.(6.21) by:

~E = E0

[
α x̂ cos(kz − ωt) + β ŷ cos(kz − ωt+ δ)

]
(6.23)

Let us examine this superposed wave as time progresses, at a fixed position z. The wave will be
effectively plane-polarised along x̂ at the time when cos(kz−ωt+ δ) = 0. But after a short interval,
we will have cos(kz − ωt) = 0 and then the wave is effectively plane-polarised along ŷ. So such a
wave, said to be “elliptically polarised”, behaves like a beam whose plane of polarisation is rotating
with time.

Note that if δ = π then the second term is just −βŷ cos(kz − ωt) so we can again combine the two
terms to get plane polarised light with a polarisation vector αx̂−βŷ. In fact, only for δ = 0, π do we
get a linearly polarised wave by combining the original ones. For intermediate values of the phase
difference, 0 < δ < π, the light is not plane polarised but elliptically polarised.

An interesting special case is when α = β = 1√
2

and also the phase difference is δ = π
2
. In this case,

the wave is:

~E =
1√
2
E0

[
x̂ cos(kz − ωt)− ŷ sin(kz − ωt)

]
(6.24)

We call this wave “circularly polarised”. The characteristic of this is that the plane of polarisation
rotates while the amplitude remains constant.

Clearly we have seen all this before, in the study of the two-dimensional isotropic harmonic oscillator.
That is basically what an electromagnetic wave is!

6.5 Interference

Suppose we superpose electromagnetic waves of equal amplitude from two sources. We take the
two sources to be separated by a distance 2L along the x-direction and also let the polarisation be
along some common transverse direction (it doesn’t matter which one). We treat the original waves
from each source as plane waves along the z-direction, but actually they travel in slightly different
directions depending on the point where we observe them. In this situation we can write the two
waves as:

E1 = E0 cos(kd1 − ωt), E2 = E0 cos(kd2 − ωt) (6.25)

where d1, d2 are the distances of a given point from the first and second source respectively. As we
will see, after adding them we no longer have a plane wave.

For a point on the z-axis, clearly d1 = d2 =
√
z2 + L2. However, if the point is off the z-axis then

d1 6= d2. Let us now add the two waves. We get:

E1 + E2 = E0

[
cos(kd1 − ωt) + cos(kd2 − ωt)

]
= 2E0 cos

(
1
2
k(d1 + d2)− ωt

)
cos
(

1
2
k(d1 − d2)

)
= 2E0 cos

(
kd− ωt

)
cos 1

2
k∆

(6.26)
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where d = 1
2
(d1 + d2),∆ = d1 − d2. For a source of fixed average distance from the emitters, as

we vary the relative distance the wave appears to be modulated (i.e. to have a varying amplitude)
due to the second factor. Thus the effective amplitude is 2E0 cos 1

2
k∆ and the effective intensity is

the square, or 4E2
0 cos2 1

2
k∆. This varies from a maximum of 4E2

0 to a minimum of 0, leading to
interference fringes. The dark fringes occur when cos 1

2
k∆ = 0, i.e. when ∆ = (2n + 1)π

k
, while the

bright fringes occur in between the dark ones at cos 1
2
k∆ = ±1, i.e. ∆ = 2nπ

k
.

It is an easy exercise, given the coordinates of the point of observation, to calculate the average
distance and separation in terms of those coordinates. It is also amusing to note that the the bright
and dark points lie on hyperbolas (because given two centres, the set of all points with d1 − d2 =
constant is a pair of hyperbolas).

6.6 Coherence and bandwidth

Above we have studied ideal electromagnetic waves:

~E = ~E0 cos(kz − ωt+ δ) (6.27)

These have a fixed angular frequency ω (equivalently, a fixed wave number, and fixed wavelength) as

well as a fixed amplitude and phase. Thus all the parameters ~E0, ω, δ are assumed fixed. However,
real radiation is not like this. Consider a lightbulb. It is basically a hot filament that emits light.
This departs from the above formula in many ways:

(i) the light does not have a fixed frequency ω. Rather, it has a spread of frequencies ∆ω peaked
about some particular value. For example a glowing yellow filament will emit radiation peaked at
around 5700 Angstroms (5700× 10−10 metres). The corresponding frequency is:

ν =
c

λ
=

3× 108 m/sec

5.7× 10−7 m
' 5.2× 1014 Hz = 520 Terahertz

and of course ω = 2πν. However the range of wavelengths goes from around 300 Angstroms all the
way to extremely large values (in the infrared). In fact a bulb filament is roughly a “blackbody”
which means it emits over a wide range of frequencies when heated up. This is because at a high
temperature (a few thousand degrees Centigrade) the various molecules in the bulb vibrate, not at
one frequency but at a range of frequencies. Thus one can think of the emitted light as being a
collection of billions of individual beams, each with the above form but with differing values of ω.

(ii) each beam of light does not have the same amplitude and polarisation (encoded in the vector
~E0) since the emitting molecules are moving around randomly.

(iii) each beam is not emitted at the same instant, so the phase δ is not the same.

The above facts are not particularly surprising. The wavelength of light is so incredibly short that any
kind of vibration of the emitter will vary the properties of the wave slightly. Besides the randomness
of the emitter, interactions with matter can also be expected to make a coherent light beam become
incoherent. To reduce the frequency spread of a given beam one can use filters, however it is more
difficult to make the phase the same for all components. Radiation that is made up of waves in step
with each other is called coherent radiation. This is possible to achieve only with a laser. That is
why the invention of the laser opened up so many new areas of research.

Remarkably, even in a vacuum and even with a very good emitter, it turns out that light waves
inevitably become incoherent after travelling some distance if they have a nonzero frequency spread
or bandwidth. This distance is called the coherence length. Let us try to estimate this length knowing
the velocity of the wave (in this case, c) and the bandwidth ∆ν. Very close to the laser, the light
is a coherent superposition (i.e. all the components have the same phase). Now let’s first imagine
there is no spread of frequencies at all (ideal laser). Then the wave is precisely as in the above
equation and it remains coherent indefinitely. In particular the crests and troughs of any component
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are perfectly aligned with those of any other. Thus in the ideal situation, light will propagate for an
infinite distance without any loss of coherence.

However once there is a spread in frequency, the situation changes. Suppose all the components
have exactly the same phase near the emitter, but a frequency spread ∆ν among them. Then very
close to the emitter they will constructively add. But after some distance ∆L, all the phases will be
completely randomised due to the frequency spread. How much is this distance?

To estimate this, assume that the waves are coherent at the initial point z = z0, and their mean
wave number is k = k0 with a spread ∆k � k. Suppose we work at the time t = 0. In this situation
we will typically encounter a superposition like:

cos(kz) + cos
(

(k + ∆k)z
)
' 2 cos(kz) cos

(
(∆k)z

2

)
(6.28)

Now notice that the second factor, which modulates the wave, changes from maximum to minimum
after a shift of z by Lc = π

∆k
. If we have a collection of waves whose frequencies are uncertain by an

amount upto ∆k, then all mutual phase information between them will be lost after traversing the
distance Lc. Thus we say that:

Lc '
π

∆k
=

c

2 ∆ν
(6.29)

is the coherence length of the wave. Here we have used k = 2πν
c

. Equivalently, we can say that:

Lc ∆ν ' c

2
(6.30)

We can convert this into a coherence time:

Tc =
Lc
c
' 1

2 ∆ν
(6.31)

Finally, we can write the coherence length and coherence time in terms of the spread in wavelengths,
which is more intuitive. Since ν = c

λ
, we have:

∆ν = − c

λ2
∆λ (6.32)

from which we find:

Lc =
λ2

2∆λ
(6.33)

To see some concrete figures, suppose a beam of radiation has a mean wavelength of 5700 Angstroms
(yellow) with a spread of 100 Angstroms on each side. Then Lc ∼ 1.6 × 10−3 cm. In a laser we
can reduce the bandwidth to as little as 0.02 Angstroms and get a coherence length of around 8
cm. Notice that if we take long-wavelength light (red) then, for the same bandwidth, the coherence
length is greater.

Exercise (level A): Consider a superposition of an infinite number of electromagnetic waves in the
same direction but with different wave numbers:

~E(z, t) = ~E0

∫ ∞
−∞

dk A(k) cos(kz − ωt) (6.34)

where ω = c|k|. Show that this wave satisfies the electromagnetic wave equation in free space.

Exercise (level B): Write down the electric and magnetic fields, as vectors, for a monochromatic plane
wave of amplitude E0, frequency ω and phase angle δ = 0 which is travelling along the line from the
origin to the point (x, y, z) = (1, 1, 1) and has a polarisation along the x− z plane.
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7 Elastic Properties of Matter

We have considered a variety of oscillating systems so far. The central point in all these discussions
was that the system responds linearly to an external force, when the applied force is small, and the
change in the system is small. However, we did not always quantify the smallness carefully, especially
in the case of systems that are close to real systems – such as vibrating strings or longitudinal waves
in a gas. In such systems the restoring force, which is the response of the system to the external
force, is determined by the properties of material in question. The restoring property is in general
terms referred to as the elasticity of the material. We will examine such properties in detail.

Problem (Level A): What is more elastic, a rubber band or a steel wire? How do cork and block of
plastic compare as regards their elasticity?

7.1 Stress and Strain

When a wire is subjected to an elongating force F (a) applied to it, the elongation of the wire is
found to be directly proportional to the applied force, as long as the elongation is tiny compared
to the length of the wire. Such a force may be realised by either suspending the wire from a rigid
support and hanging a weight by the other end, or by pulling the ends of the wire by equal and
opposite forces, F (a). The elongation is directly proportional to the length of the wire and inversely
proportional to the cross-section area of the wire. In other words,

∆l ∝ F (a)(l/A)

An equilibrium is quickly attained, in that the elongation of the wire reaches a fixed value, so that
there must be a restoring force which opposes and balances the applied force: |F (r)| = |F (a)|. Thus,
at equilibrium we have a restoring force proportional to the extension:

F (r) ∝ ∆l

This proportionality is reminiscent of Hooke’s law, which states that the restoring force is proportional
to the extension (of a spring). Combining the two equations, we have

∆l

l
∝ F (r)

A

The quantity on the left is called the strain, the ratio of the extension to the original length, while the
quantity on the right is called stress, the restoring force per unit area. The proportionality constant
in the case of linear elongation (or equivalently, for linear compression) of an elastic material is given
a special name Young’s Modulus, after Thomas Young, who studied elasticity in great detail. Young’s
relationship, in conformity with Hooke’s law, is usually stated as Stress is proportional to strain for
small extensions (or compressions) of a material. Note, that strain is a dimensionless quantity and
stress, as well as Young’s modulus, have units of pressure. Since this modulus usually relates to wires
or rods under axial tension, the modulus is also called tensile modulus, or tensile strength.

Taking the previous equation forward, we then have at equilibrium

∆l

l
=

1

Y

F (r)

A
=

1

Y

F (a)

A

which is often written as
∆l

l
=
P

Y
,
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where P is the applied force per unit area under equilibrium with the restoring force.

The linear relationship between stress and strain breaks down if the strain is large. The graph below
shows stress vs. strain for a steel wire. Note that in the graph σ = F (r)/A and ε = ∆l/l. The
inset in the graph shows the free body diagram of a rod under longitudinal stress in which the rigid
support structure is replaced by an equivalent force. The stress-strain curve is linear up to point 1 on
the graph. After this stress increases very rapidly, and the material tends to ‘flow’. The material is
expected to return to its original shape and size once the stress is removed, as long as it is in the linear
region. However, in engineering practice the stress corresponding to an offset strain of 0.2% (refer
to point 2 in the figure, and read off the stress corresponding to the linear portion corresponding to
a strain of 0.2%) is taken to be the upper limit of the acceptable limit of stress, before the material
will be considered to be unsafe for use. If the stress increases beyond this point, the strain builds up
rapidly, and the material starts flowing even without an increase in the applied force. The restoring
force fails to keep up with the applied force, as the applied force increases.

It is observed that the elongation of a free wire is always accompanied by a concurrent reduction
of the diameter of the wire, and in the more general case, a longitudinal extension is accompanied
by a transverse compression. In analogy with the longitudinal strain we can define a transverse
strain. In the case of a wire, the transverse strain would be defined as ∆d/d, where d is the diameter.
Experimentally, the transverse and longitudinal strains are found to be related to each other

∆d

d
= −σ∆l

l
= −σP

Y
.

The negative sign indicates that longitudinal extension implies transverse compression and vice-versa.
The proportionality constant σ is called the Poisson’s ratio.3 Had we considered a bar instead of a
wire, the transverse strain would have been defined as ∆w/w and ∆t/t where w and t refer to width
and thickness of the bar. For the bar under longitudinal extension, we have

∆w

w
=

∆t

t
= −σ∆l

l
.

Problem (Level A) : Two identical lifts are installed in two buildings of different heights. The lifts
are suspended by identical steel cables of different lengths, lA = 2 lB. For identical loads, Which
cable is under greater stress? Which is under greater strain?

3Note, that in engineering practice, Young’s modulus is denoted by the symbol E, while Poisson’s ratio is denoted
by the symbol ν, and the symbols for stress and strain are σ and ε.
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7.2 Uniform Strain

In the previous section we considered the case where there is elongating strain along one direction
and a resultant compressive strength along the other two (transverse) directions. But, in practice
we are often faced with a situation where a material is under uniform compressive strain (from all
directions). How do we describe the volumetric strain?

P

P

P

P
P

P

h
l

w

Consider a block (rectangular parallelepiped) of sides l, w, h, which is under uniform compressive
pressure from all directions. The strain along any one direction (say the l direction) comprises a
direct compressive strain due to the force applied along the same direction (∆ldirect/l = −P/Y )
and an indirect elongating strain due to the forces applied along the two transverse directions. The
indirect strain due to the forces along each of the transverse directions is given by +σ(P/Y ). The
sign of the indirect strain is opposite to the sign of the direct strain. Hence the net strain along the
l direction is

∆l

l
= −P

Y
+ 2σ

P

Y

= −(1− 2σ)
P

Y

Exactly identical arguments lead us to the expressions for strains along the w and the h directions:

∆w

w
= −(1− 2σ)

P

Y
∆h

h
= −(1− 2σ)

P

Y

The net effect of the forces is a volumetric compression. The volume of the block is V = lwh, so the
relative change in volume is

∆V

V
=

∆l

l
+

∆w

w
+

∆h

h

Using the expressions for the linear strains along the three directions in the expression for volume
strain, we have

∆V

V
= −3(1− 2σ)

P

Y
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The ratio on the LHS is the volume strain. The ratio −P/(∆V/V ) is is called the compressibility or
bulk modulus, K. Evidently,

1

K
= (1− 2σ)

3

Y

7.3 Shear

In addition to longitudinal and bulk strains, we come across another kind of strain, namely shear
strain. By shear we mean an elastic deformation of a solid, which results in differential displacements
of layers of the material in a direction parallel to the applied force. The usual picture of a cube under
shear is shown as one in which one face remains fixed while the face opposite to the fixed face moves
parallel to it under the action of a force. Notice, that in case of a perfectly rigid body, such a force
would result in acceleration along the applied force, but in the present case we take one face to
stay fixed while the other moves relative to it, creating a restoring, elastic force, until equilibrium is
reached. There is no net force on the body, nor is there a net torque.

Clearly, the contact between the fixed face and the rigid platform is maintained because of some force
due to the contact itself. This force is not known to us directly, but we can derive it by enforcing
the conditions of zero net force and zero net torque. Let, the applied force be Fa. Let the area of
the face on which the force acts be Aface, then the shear stress is (Fa/Aface). The effect of the shear
can be quantified by a (single) shear angle θ as shown in the figure. A single shear angle indicates a
linear strain: layers further away from the fixed face are displaced more than the layers closer to the
fixed face. The ratio of the shear stress to the shear strain is called the shear modulus, µ:

µ =
Fa/Aface

θ
.

Shearing does not change the length of the side or the area of the face, but it does change the length
of the diagonal. The shear strain can be written in terms of the change in the lengths of the diagonals
(refer to parts 2, 3 of the diagram):

θ ≈ ∆s

s

≈ ∆D
√

2

D/
√

2

=
2∆D

D

Since there is no net force on the block, the role of the contact in creating the shearing situation must
be to provide an equal and opposite force to F ′a. This pair of forces do cancel each other, but since
they do not act at the same point, and do not act on the centre of mass, they result in a torque. So
the assumed force F ′a at the contact is not adequate for fulfilling the constraints. (See parts 4 of the
diagram.) To null the torque resulting from Fa and F ′a, we must consider another pair of opposing
forces Fb and F ′b acting along the faces perpendicular to the ones considered before.
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For equilibrium we must have
Fa = F ′a = Fb = F ′b (= F )

The free body diagram of the shear condition is shown in the last part of the figure. The net effect
of the shear is to elongate one diagonal and compress the other, while the face diagonals of the cube
continue to remain orthogonal to each other. The forces, when resolved along the diagonals, yield

Felong =
Fa√

2
+
Fb√

2
=
√

2F

Fcompr =
F ′a√

2
+
F ′b√

2
=
√

2F

The elongating and compressive forces act on the same cross-section area, A′ = s2
√

2, which is
the area of the cross-section perpendicular to the plane of the diagram and containing the shorter
diagonal. The strain along the diagonal is a sum of the direct and indirect strains:

∆D

D
= ±

[
1

Y

√
2F

s2
√

2
+ σ

1

Y

√
2F

s2
√

2

]
∆D

D
= ±1 + σ

Y

F (a)

Aface

where the ± signs correspond to elongation and compression respectively.

Combining the two expressions for the shear strain we get

θ = 2
1 + σ

Y

F (a)

Aface
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We immediately recognise the quantity Y/[2(1 + σ)] as being equal to the shear modulus µ.

Problem (Level B): Show that the Poisson’s ratio of a homogeneous, isotropic, elastic material (in
the linear limit) must lie in the range −1.0 < σ < 0.5.

Problem (Level B): Show that for a cube under pure shear the change in volume is zero to first order
in the shear strain. It is easier to to do this if the strain is written in terms of the length of the
diagonal.

7.4 Torsion

There is another kind of shear, which is due to a differential angular displacement of layers of a solid
– in contrast to differential linear displacement we discussed in the previous section. Imagine a solid
cylinder whose base is fixed and whose top is twisted relative to the base. All points lying within a
circle parallel to the base, as shown in the diagram, will experience an angular displacement φ. The
value of φ increases linearly with the distance h of this imaginary circle from the fixed base. The
base circle experiences no angular displacement, while the circle at the top has the largest angular
displacement. The angular displacement of any point within or on the surface of the cylinder can be
expressed as

φ = θ(h/R)

where h is the height of the point above the base and R is the radius of the cylinder. And θ is the
twist, or torsional angle. Note that this relationship is true, irrespective of whether the point lies on
the surface or inside the cylinder.

The angular displacement on account of the torsion results in a tangential linear displacement of the
point, so for a small cuboidal element of the cylinder (within or on the surface), the effect is identical
to a shear. The shear strain is, as before, given by the angle θ:

θ =
1

µ

∆Fa
A

where ∆A is the area of the face of the small volume element that is parallel to the (fixed) base, and
equals ∆r∆w, so we have

θ =
1

µ

∆Fa
∆r∆w

or ∆Fa = θµ∆r∆w

We note that the shearing force on a tiny element is related to the torque which is causing the twist,
and the shear force on the tiny volume element is related to the torque by ∆τa = r∆Fa, where r is
the radial coordinate of the volume element. We also note, that θ = ψr/h, and ∆w = r∆φ where ψ
is the azimuthal coordinate. We can rearrange and simplify the equation for torsion as

∆τa =
µψr

h
(∆r) (r∆φ)

∴ τa =

∫ R

0

∫ 2π

0

µψr

h
r2 dr dφ

=
µψ

h

πR4

2
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If we define η = πR4/2µl, then the last equation takes a form that is similar to the case of a block
under shear:

ψ =
1

η
τ,

showing that the twist, or torsional shear is proportional to the applied torque and the two are
related by a factor that depends on the geometry of the cylinder and the modulus of rigidity, µ.

θ

θ

h

R

ψ

r

Δw

Δr

Δl

Problem (Level B): Find the frequency of small torsional oscillations for a rod of radius a, length l,
and Young’s Modulus Y , when it is subject to a small torque about its axis of cylindrical symmetry.

8 Bending of Beams

The elastic properties of solids are very important in designing structures of all kinds. A commonly
occurring form of structures involves beams and rods of various shapes. We will study the Euler–
Bernoulli theory of bending of elastic beams that forms the basis for determining the appropriate
shapes of beams in building structures.
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forces below and above the
neutral line

For simplicity let us take a beam of rectangular cross section (sides w × h), which is bent by a
suitable set of forces (we will not worry about their details at this point). Let us take an arbitrary
slice of the beam perpendicular to its length, of thickness t in the normal state. In this state the
slice is a rectangular parallelipiped. When the beam is bent this slice is deformed and the thin face
of the slice changes from being a rectangle to a trapezium. The outer edge is extended, and the
inner edge is compressed. There is a certain line along which the thickness remains unchanged, we
call this the neutral line. On both sides of the neutral line the slice is under strain, and the strain is
non-uniform. It increases as we move away from the neutral line. Consistent with our approach of
linear response, we assume that the strain varies linearly with the distance z from the neutral line.
This assumption automatically takes account of the fact that the strain is negative on the inner side
(−z) of the neutral line, and positive on the outer side (+z) of the neutral line. Thus,

∆t ∝ z

By comparing similar triangles, we obtain the following relationship

t/2

R
=

∆t/2

z

The longitudinal strain on a slice of thickness δz at location z is ∆t/t. This strain is due a force δF
acting along the local tangent. The stress due to the force is δF/w δz. For a rectangular cross-section
of the beam, w is constant, independent of the z, but for other shapes, in general, w varies with z.
In particular, for a circular cross-section of radius r0, w = 2r0 for z = 0 and w = 0 for z = r0. We
therefore find the following relationship

δF

w(z) δz
= Y

∆t

t

so, δF = Y
z

R
w(z) δz
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Note that the force is of compressive type below the neutral line and extensive above it, so the net
effect of this set of forces in any radial plane is to give rise to a moment (which is the cause of
bending). The bending moment can be written as

δM = δF (z) z

= Y
z

R
w(z) δz z

M =

∫
Y
z2

R
w(z) dz

It is convenient to define a quantity J which we can understand loosely as the “moment of the
cross-section”

J =

∫
z2w(z) dz.

which is a way of describing how the material in the beam is distributed away from the neutral line.

Using this definition of J , the equation for bending will take the simple form:

M = JY/R

It is more instructive to write the equation in the form

1

R
=

M

JY

What this equation tells us, is that the curvature to which the rod is bent depends not only on the
bending moment, and the Young’s modulus of the material of the rod, but also to how the shape of
the cross-section is. The information about the shape of the cross-section is contained in J .

Problem (Level A): Compare the bending moments needed to bend two solid beams of circular
cross-section, of same length and material, but with the second having twice the radius of the first.

Problem (Level B): Find the moment of the cross-section for a circular cross-section beam and a
square cross-section beam, both having the same area of cross section.

We have seen how the cross-section of a beam affects it stiffness, or its resistance to bend. Let us now
turn to finding the shape of the bent beam. The starting point is the equation above that relates
the (local) radius of curvature R(x) to the moment. What exactly is R(x)? It is the radius of the
circle which touches the point on the neutral line under consideration and shares a tangent with the
curve assumed by the neutral line.

The radius of curvature, for small distortions of the beam can be derived from the the diagram below:

δθ

δx

δs
δz

 δs: arc length

R
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δs = Rδθ; δx ≈ δs

Hence
1

R
=
dθ

ds
Furthermore,

dθ

ds
≈ dθ

dx
≈ d

dx

dy

dx
Hence the radius of curvature, which is not constant for all x, is given by

1

R(x)
=
d2z

dx2

where z(x) is the equation of the neutral locus. This expression is approximate, but good enough
for the small deflections we are considering.

What about M? M is not the same everywhere along the beam, it is zero at the fixed point, and
the largest at the point of maximum deflection from the original. The equation for the shape is thus

d2z

dx2
=
M(x)

JY

Let us see how this equation is applied to a beam supported at its ends and under load F at its
mid-point as shown below. An apparatus of this type is often used for determining the Young’s
modulus of the material of the beam.

m

L

We will assume that the load is much greater than the weight of the beam itself, and that the
deflection is well within elastic limit. Let the origin of the coordinate be at the mid point. The
shape of the beam is symmetric, so it is enough the solve for one half of the beam. Refer to the free
body diagram below. The end supports provide an upward force F/2 each to balance the load. This
pair of forces also provide a null torque, which is consistent with the fact that the beam does neither
rotate nor translate.

L/2 L/2

F/2F/2

F

x

The moment of the forces applied to the right of the point located at x is given by

M(x) = (F/2)(L/2− x)

The moment of the forces applied to the left of the point located at x is given by

M(x) = −(F/2)(L/2 + x) + Fx
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The two moments are equal and opposite as expected on grounds of equilibrium of an infinitesimal
slice of the beam located at x in its deformed state. (This is consistent with our analysis that a slice
of rectangular section becomes a trapezium due to the couple created by a pair of compressive and
extensive forces on the upper and lower sides neutral locus) Hence the equation of the shape of the
beam is

d2z

dx2
=

1

JY

F

2

(
L

2
− x
)

Integrating once we get
dz

dx
=

1

JY

F

2

(
Lx

2
− x2

2
+ A

)
The integration constant is found to be zero, by requiring that the tangent to the beam at its
mid-point is horizontal, i.e. dy/dx = 0 at x = 0. Integrating once again we get

z =
1

JY

F

2

(
Lx2

4
− x3

6
+B

)
Since the beam is undeflected at the end-point we have z = 0 at x = L/2. Substituting this condition,
we get B = −L3/24. Hence the shape of the beam is given by

z =
F

JY

(
Lx2

8
− x3

12
− L3
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)
Shapes of beams under different loading and support conditions can be obtained in a manner similar
to the one above.

Problem (Level A): Find the deflection of the beam at its centre for the case discussed above.

Problem (Level B): Find the shape of the beam that is rigidly supported at one end and has a load
applied at the other.

Problem (Level C): Find the shape of the beam that is supported at its ends, but bends under its
own weight.
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