Aditya Solar wind Particle Experiment (ASPEX)

Presentation to ADCOS ISRO HQ, 22 May 2014

Science Team:

- P. Janardhan (PI)
- Santosh Vadawale (Co-PI)
- B. Bapat
- D. Chakrabarty (Co-I)
- Prashant Kumar
- K. P. Subramanian

Engineering Team:

- P. R. Adhyaru
- S. B. Banerjee
- S. K. Goyal
- Tinkal Ladia
- A. R. Patel
- A. B. Shah
- M. Shanmugam
- Y. B. Acharya (Advisor)

A revised and enhanced version of the original proposal named "Solar Wind and Thermal Ion Spectrometer (SWATIS)" submitted by Rajmal Jain

Genesis of the revised proposal

ADCOS queries to the earlier (SWATIS) proposal of 24-01-2014

- How to measure the anisotropy has to be worked out
- Spectral Index of [-6] has to be checked
- How to distinguish between Maxwellian and non-Maxwellian components in the velocity distributions of protons and ions?

Our Analysis of the issues

- Anisotropy alluded to in the original proposal was in error; the anisotropy relevant in the context of solar wind is thermal anisotropy, not spatial flux anisotropy
- The anisotropy is meaningful with reference to the local magnetic field.
- Distinction between Maxwellian and non-Maxwellian components may be made if the energy resolution and energy range are properly chosen
- However, species separation is necessary
- Moreover, species separation (He⁺⁺/H⁺) is needed for addressing the anisotropy issue properly
- Thermal anisotropy as well as Helium abundance are affected by solar events and interplanetary processes

ASPEX : Science Objectives

- What is the thermal and spatial anisotropy in the distribution of particles in the direction of the Parker spiral vis-à-vis other directions at the L1 point?
- How different are the distributions of supra-thermal ions in normal solar wind as compared to that during SEP events?
- How strong is the correlation between various solar events and deviations from the average value of the He⁺⁺/H⁺ number density ratio at L1?

Solar Wind Energy Spectrum

- The energy distribution of solar wind particles can be approximated by a combination of multiple Maxwellian and power law distributions
- The (Maxwellian) temperature for solar wind particles streaming along the local magnetic field is different from the temperature for particle streaming perpendicular to the local magnetic field

Solar Wind Thermal Anisotropy

Thermal Anisotropy

 $\beta = \frac{Kinetic Energy}{Magnetic Energy}$

β perpendicular: ratio for particles streaming perpendicular to the local magnetic field

β parallel: ratio for particles streaming along the local magnetic field

Solar Wind Helium Abundance

- The He⁺⁺/H⁺ ratio can vary from a few % to even 35%. Possibly has a solar cycle dependence. (Steiger and Richardson, 2006)
- CME occurrence can be determined in situ by helium abundance enhancement (HAE)
 [He⁺⁺/H⁺ > 0.08] signals CME occurrence

(Neugebauer and Goldstein, 1997).

 Other solar events and interplanetary activities also expected to influence the He⁺⁺/H⁺ ratio

Steiger and Richardson, 2006

ASPEX : Measurement Strategy

- Use HAE as the flag for unusual Solar activity or interplanetary events
- When flagged, search for thermal and spatial (flux) anisotropies from the energy-angle distributions of the two species separately.
- In the absence of a magnetic field probe, flux changes in different directions vis-à-vis the Parker spiral is the best alternative for addressing magnetic field dependent effects
- Concurrent species, direction, and energy resolving ability of the instrument are the key to such investigation

ASPEX delivers competing Science

- Addresses thermal and spatial anisotropy
- Addresses proton/alpha flux variation
- Wide energy coverage including the supra-thermal range
- Optimal match of Science goals with L1 location

ASPEX delivers competing Science

- Addresses thermal and spatial anisotropy
- Addresses proton/alpha flux variation
- Wide energy coverage including the supra-thermal range
- Optimal match of Science goals with L1 location

Comparison with SWATIS

- Angular distribution capability in one plane only (but the plane was undefined).
- No species separation.
- Only meant to measure energy (not velocity) dependent fluence.

Comparison with other missions

- ACE & WIND : At L1 but spinning platform
- STEREO : Not at L1 (one leading and one trailing the Earth in its orbit)
- SOHO : At L1 and three-axis stabilized but no multi-directional capability.

ASPEX : Instrument Capabilities

- Will measure particle flux along different directions:
 - Along the direction of the Parker spiral (and anti-Parker direction)
 - Along the sunward direction (and anti-sunward direction)
 - Normal to the ecliptic plane.
- Will cover the energy range 100 eV to 20 keV using two measurement techniques
- Will have alpha/proton separation over the entire energy range.
- Concurrent direction, energy and species resolving ability sets it apart from other existing spacecraft at L1.

The ASPEX Instrument

ASPEX

Solar Wind Ion Spectrometer (SWIS)

- 100 eV to 20 keV energy range using an Electrostatic Analyser
- Separation of proton, alpha and heavier ions by means of a magnetic analyzer and a position sensitive detector
- Angular distribution over complete azimuth in one plane and ±30 deg in an orthogonal plane.

Supra-thermal and Energetic Particle Spectrometer (STEPS)

- Covers the energy range 0.02 to 5 MeV using solid state detectors
- Multi-directional capability (4 orthogonal directions)
- A pair of detectors in each direction — one for protons and the other for heavier ions

ASPEX : The SWIS Module

Observational requirements & implementation

Observational Requirement	Instrument Implementation
Acquiring the energy	Electrostatic Energy Analyser
spectrum of solar wind	(Top Hat Geometry)
particles over the energy	
range (<i>E</i> / <i>q</i>) of 100 eV to 20	
keV	
Measuring the angular	Electrostatic Guiding plate
distributions of the particles in	and position sensitive
and across the ecliptic plane	detection
Measure energy spectrum of	Magnetic mass separation of
proton and alpha particle	energy analysed particles
separately	

SWIS Instrument Details

- Top Hat electrostatic energy analyser
- Followed by permanent magnet mass separator (radial dispersion)
- Finally, a position resolving planar detector (MCP + resistive anode)

Section View

SWIS Instrument Details

Top Hat electrostatic energy analyser

Section View

- Followed by permanent magnet mass separator
- Finally, a position resolving planar detector (MCP + resistive anode)

Bottom View (detector removed)

SWIS Design Elements

Element	Description	Parameter values	Purpose
		[Range]	
lon guide	opposed hemispherical	[-3500,3500] V voltage	to sweep the angle in the
	plates	scan (energy	ecliptic plane
		dependent range)	
Energy	concentric hemispheres	[-15,-3500] V voltage	to obtain the energy
Analyser	with gap	scan	spectrum
Accelerating	planar grid	-2.5 kV for low energy	to accommodate a larger
stage		ions, 0 for high energy	range of energies for mass
		ions	analysis
Mass	permanent magnets	0.8 T each, 16 pieces	to separate p+,α, heavy
separator	arranged		ions
	circumferentially		
Detector	80 mm diameter	-2.5 kV bias, resisitive	to determine particle hit
	microchannel plate with	anode readout	radial and angular
	position sensitive anode		coordinate

Magnetic mass analyzer

- Radial array of 16 permanent magnets
- Pole strength 0.5—0.8 T (Sm-Co or NdFeB)
- Approx trapezium section and short pole length
- Will need special fabrication

Radial deflection

$$r-r_0 = (1/8)^{1/2} (q/E)^{1/2} (q/m)^{1/2} BL^2$$

Angle of exit

 $\tan \psi = (qBL) / (2mE)^{1/2}$

Magnetic Analyzer Parameters

Dimension	Value	Tolerance	Comments
Length of Magnetic Field region	40 mm	1.0 mm	in axial direction
Pole Strength (B _r)	0.8 T		circumferential
Radial extent of Magnetic	1540 mm	1.0 mm	increases away from the
Field region			equatorial plane of energy
			analyser
mu-metal shield	dia 130, 2	1 mm	cylinder with end caps and
	thk		annular slits
Leakage field	30 µT (= B _{earth})	7 cm from instrument axis	Dependant on exact shielding geometry (being worked out)

Basic Measurables using SWIS

<i>Measured</i> <i>Quantity</i>	Range	Accuracy	Related Instrument Parameter
Energy	0.1–20 keV		Scanning of voltage on inner hemisphere
Angle of incidence	0–360° in zenith plane ±30 in ecliptic plane	22.5° 5°	Angular coordinate of particle hit on MCP/Anode Guiding plate Voltage
Species	1– ∞ a.m.u.	Three groups: p+, α, heavier ions	Magnetic field and radial coordinate of particle hit ions

Operation of the instrument

- Scan over the 0.1–20 keV energy range in 100 variable steps [ΔE = 5–100 eV]
- Azimuth angular scan by sweeping the guiding plate voltage
- At fixed hemisphere voltage the guiding field will be scanned to admit particles with different angles of incidence
- Guiding field voltage will be the most cycled parameter

Instrument Orientation

Instrument Orientation

Orbit at *L*1

Parker Spiral

Plane of this slide is the Ecliptic Plane

Earth-Sun axis

FoV in ecliptic plane is swept from the local tangent to the Parker Spiral to the sunward direction

Detector and readout

- Primary detector is a 80 mm dia microchannel plate pair
- Anode is a resistive sheet (*Quantar Inc.*)
- Secondary electron shower on Anode is read off 4 electrodes simultaneously, giving a charge division
- Charge division pattern is analysed to get the centroid (position) of the shower

Data readout/binning

- 4 charge values are recorded for each ion detected.
- Position (x,y) is derived and binned in a 100*100 array
- Polar coordinates are better (needs a different anode readout)
- Histogramming is advanatageous when count rates are low, list-mode storage of (x,y) values is advantageous

Anode Readout Alternative

- 16 angular sectors
- Adjacent sectors shorted near centre
- Charge deposition on a sectorpair read out by one CSPA pair and radial position derived based on charge division
- The typical charge per shower 100 fC, and is amplified using a charge-sensitive preamplifier (such as Amptek 121) followed by a shaping amplifier and peak-detection.
- Total 8 readout pairs (16 CSPAs)
- Sector number and radius are stored

SWIS Electronics Block Diagram

BIASING VOLTAGES

SIGNAL PROCESSING

SWIS Package/ Dimensions

SWIS Masses

Analysing and guiding hemispheres	150 g	Aluminium Alloy
Magnets	320 g	16 pieces, Sm-Co
Soft iron Yoke	290 g	2 nos, inner and outer rings
Mu-metal shield	770 g	Cylinder and end caps
Detector	70 g	Including resitive anode
Fasteners, posts etc.	100 g	
Total	1800 g	Excluding electronics

Total Resources

Sensor package	Weight	Weight 1800 gm (Likely to reduce with better magnetic shield design)
	Size	Size 150 dia × 150 ht with a base of 150 × 150 × 60 [ht] mm ³
Processing electronics package (including HV)	Weight	3700 gm (Likely to reduce significantly if potting issues are resolved)
	Size	150 × 150 × 90 [ht]
Total weight and raw power		5500 gm and ~15 W
Data rate		20 kB/histogram or 10kBs ⁻¹ (~ 1 GB/day)

New Elements

Magnet Array

- High field permanent magnets, which can withstand high temperatures.
- Sm-Co magnets which have a space heritage and are available in the desired strengths
- Consultations with ISRO engineers are needed
- The magnets are needed in the form of trapezoidal cross section and small dipole length
- These special shapes will have to manufactured. One vendor has already been identified for this
- Effects of leak fields to be estimated

Detector Readout

- Microchannel plate position readout (preferably in polar coordinates).
- Of these the resistive anode scheme has been chosen on grounds of compactness of the readout unit and simplicity of the electronics.
- Various anode patterns are being considered
- The typical charge per shower 100 fC, and is amplified using a charge-sensitive preamplifier (such as Amptek 121) followed by a shaping amplifier and peak-detection.

Proof of Concept

Construction

- Top Hat Elements : fabrication nearly complete
- NdFeB bar magnets ordered, array and shield assembly being designed
- Imaging MCP (delay-line based, not RAE) and readout software available
- Vacuum system for testing is at hand
- Segmented RAE fabrication under discussion with RRCAT, Indore

Testing

- Initial testing using Penning ion source (up to 5 keV) at PRL
 - One will be borrowed for a short time
 - Another is indented
- For higher energies, testing will be done at IUAC, Delhi
- Expect proof of concept demonstration by Sep 2014

(using commercial standard electronics and detector)

