Microwaves to Mobiles

Bhas Bapat

Indian Institute of Science Education and Research Pune

E-mail:bhas.bapat@iiserpune.ac.in

28 February 2016

Where does the story begin?

The mobile phone seems like a recent phenomenon
How far back do we go to trace its origin? 20 years ? ... 50 years ? ... 100 years ?

A quick recollection

???

Surely the mobile phone has no link to a comb attracting paper or a magnet attracting nails?

A quick recollection

???

Surely the mobile phone has no link to a comb attracting paper or a magnet attracting nails?

1784: Charles Augustin de

Coulomb and his predecessors carried out experiments which established the existence of two kinds of charges in matter

- Like charges attract, unlike charges repel
- The mutual force falls off rapidly as the charges are separated

Magnetic Forces (Magnetostatics)

1820: Hans Christian Oersted

and colleagues showed that wires carrying an electric current affected a magnetic needle

- This force was akin to bar magnets affecting each other
- And this too falls off with increasing separation

Magnetic Forces (Magnetostatics)

- 1849: Andre Marie Ampère established a law describing the magnetic force between two electrical currents
- Currents in the same direction attract, in the opposite direction, repel
- Again, the mutual force falls off with increasing separation

Very Spooky...

- Action at a distance!
- Reconciliation to non-contact forces

Puzzling observation... and its bizarre resolution

Lines of force

- Visualise imaginary lines in space suggest the forces
- The concept of a field is a leap of imagination that proves to be enormously powerful

Electromagnetic Induction

1831–32: Faraday and Henry discovered electromagnetic induction

A magnetic field that changes with time generates a voltage

Motive Effects of Electricity and Magnetism

Forms the basis for all electrical generators, motors, electric trains. air-conditioner and refrigerator compressors, speakers, microphones, bells, fans, mixers, cd-drives, hard-disks...just about anything that involves motion by using electricity

Summary of Developments till 1865 : Stage I

Summary of Developments till 1865 : Stage II

This is how it stood, based on observations...

$$abla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 (Ampère's Law)
 $abla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (Faraday's Law)

... and this is what Maxwell claimed it should be

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

... how could this claim be tested?

This is how it stood, based on observations...

$$abla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 (Ampère's Law)
 $abla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (Faraday's Law)

... and this is what Maxwell claimed it should be

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

... how could this claim be tested?

A claim can be tested on the basis of the predictions resulting from that claim

Prediction-1: Disturbance in one field leads to a disturbance in the other field, and vice-versa – the disturbance is a wave

Prediction-2: Such electromagnetic waves propagate at a speed independent of who observes it

- A claim can be tested on the basis of the predictions resulting from that claim
- Prediction-1: Disturbance in one field leads to a disturbance in the other field, and vice-versa the disturbance is a wave
- Prediction-2: Such electromagnetic waves propagate at a speed independent of who observes it

- A claim can be tested on the basis of the predictions resulting from that claim
- Prediction-1: Disturbance in one field leads to a disturbance in the other field, and vice-versa the disturbance is a wave
- Prediction-2: Such electromagnetic waves propagate at a speed independent of who observes it

... there should be electromagnetic waves

... there should be electromagnetic waves

Hertz's Demonstration, 1887

 The big circuit generates a spark in the gap between the spheres

This causes a spark in the gap of the small circuit even though the two are not in contact!

Electromagnetic Radiation

- Hertz verified Prediction-1
- Hertz sees no 'use' for this work:

"It's of no use whatsoever ... this is just an experiment that proves Maestro Maxwell was right – we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there. Ramifications? ... None, I guess."

- Prediction-2 was verified in due course (Michelson-Morley Experiment, Special Relativity...)
- A wide variety of electromagnetic radiation was eventually discovered
 radiowaves, microwaves, infrared, visible, ultraviolet, x-rays, γ-rays

Electromagnetic Radiation

- Hertz verified Prediction-1
- Hertz sees no 'use' for this work:

"It's of no use whatsoever ... this is just an experiment that proves Maestro Maxwell was right – we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there. Ramifications? ... None, I guess."

- Prediction-2 was verified in due course (Michelson-Morley Experiment, Special Relativity...)
- A wide variety of electromagnetic radiation was eventually discovered
 radiowaves, microwaves, infrared, visible, ultraviolet, x-rays, γ-rays

Working through the 18th and 19th centuries we had a complete mathematical theory of electromagnetism.

Maxwell's equations predicted the existence of electromagnetic waves, and their existence was eventually verified.

Microwaves, yes ... Mobiles, not yet!

Devices that could transmit and receive electromagnetic signals were being developed

Transmitting and Receiving a Telephone Message in a Moving Motor Car.

- 1920s: Wireless telephone from a moving car to the garage half a kilometer away
- 1940s: Communication using electromagnetic waves progressed rapidly; widely deployed during WW-II
- Also police wireless, navigation, radio and TV broadcasts etc.

Hertz's Apparatus

- Size: about 1 m
- Range of signal: about 10 m

Current mobile transmitter/receiver

- Size: about 1 cm
- Range of signal: about 1 km

One-hundredth in size Yet hundred times powerful What made this possible?

Hertz's Apparatus

- Size: about 1 m
- Range of signal: about 10 m

Current mobile transmitter/receiver

- Size: about 1 cm
- Range of signal: about 1 km

One-hundredth in size Yet hundred times powerful What made this possible?

1900–30s:

Something dramatic was happening in our understanding of the microscopic world – a theory that could explain the structure and stability of atoms and matter – Quantum Mechanics

This theory explained many things, ... but it could not predict how novel materials would change our world

The Semiconductor Revolution

- The key: Controlling the electrical properties of semiconductors by adding miniscule amounts of impurities, or dopants
- 1947: Invention of the transistor by Bardeen, Shockley, Brattain
- 1958: Integrated circuit building many components on a single chip of germanium (earlier attempts 1949–1952)
- 1980s: VLSI circuits, transistor based memory, electronic data processing
- Micron-sized circuits transformed the world

How did manipulation of material properties on a tiny scale become possible?

- Ions can be manipulated by EM fields
- We can 'shoot' them at desired targets nearly one at a time
- Suitable ions are implanted into silicon – a few thousand ions in a micron sized area
- Millions of diodes and transistors on a finger-nail sized chip

A smart phone seems like a recent phenomenon, but we can recognise stages of fundamental research which feed into it

- Development of the theory of electromagnetism
 - Maxwell's prediction of electromagnetic radiation
 - Hertz's demonstration of electromagnetic radiation
- Development of Quantum Mechanics
 - Explanation of many puzzling observations
 - But a failure to predict how it would influence the development of novel materials
- The semiconductor revolution
 - Greatly assisted by ion accelerator physics techniques

A smart phone seems like a recent phenomenon, but we can recognise stages of fundamental research which feed into it

- Development of the theory of electromagnetism
 - Maxwell's prediction of electromagnetic radiation
 - Hertz's demonstration of electromagnetic radiation
- Development of Quantum Mechanics
 - Explanation of many puzzling observations
 - But a failure to predict how it would influence the development of novel materials
- The semiconductor revolution
 - Greatly assisted by ion accelerator physics techniques

- Electromagnetism and Quantum Mechanics are pillars of Physics
- Both are success stories of pursuit of knowledge, driven by curiosity
- None of the heroes of these stories had societal 'uses' in mind
- Yet we revel in the beneficial fallouts of their work
- Can we then afford to ignore fundamental research?