Understanding multiply-charged molecular ions through their break-up

Bhas Bapat

Physical Research Laboratory, Ahmedabad

At IISER Pune 30 October 2013

The PRL Team

V Sharma, R K Kushawaha, K Saha, Amrendra Pandey

R K Singh, S B Banerjee, I A Prajapati K P Subramanian, B Bapat

From IIT-Madras

Sunil Kumar, P C Deshmukh

From IIT-Kanpur

N Sathyamurthy

From IUAC Delhi

M R Jana, C P Safvan

From RRCAT

G S Lodha and the Indus-1 staff

- ► Journal of Chemical Physics 139 164309 (2013)
- Review of Scientific Instruments 84 073101 (2013)
- ► Journal of Physics B 43 205204 (2010)
- ► Journal of Physics B **42** 105201 (2009)
- Physical Review A 78 042503 (2008)
- ► Journal of Physical Chemistry **111** 10205–10211 (2007)
- ► Journal of Physics B 40 13–19 (2007)
- ▶ Physical Review A **74** 022708 (2006)

What is experimental atomic and molecular physics?

- Obtaining information about the structure and dynamics of atoms and molecules (neutral and charged) by spectroscopy, collisions
- Why study these processes?
 - they are of relevance to atmospheric and stellar, even biological processes
 - ► atomic and molecular processes occur all around us everywhere!
 - significant technology fallouts: materials science, medical applications etc.
- Experimentally tackle the quantum many-body coulomb problem;
- Standard chemistry different from interaction of single molecules!

What is experimental atomic and molecular physics?

- Obtaining information about the structure and dynamics of atoms and molecules (neutral and charged) by spectroscopy, collisions
- Why study these processes?
 - they are of relevance to atmospheric and stellar, even biological processes
 - ► atomic and molecular processes occur all around us everywhere!
 - significant technology fallouts: materials science, medical applications etc.
- Experimentally tackle the quantum many-body coulomb problem;
- Standard chemistry different from interaction of single molecules!

Focus of this talk: multiply charged molecular ions

Structure of a Molecule

A molecule may be thought of as a collection of nuclei moving in the mean field of electrons, with overall charge neutrality

Structure of a Molecule

A molecule may be thought of as a collection of nuclei moving in the mean field of electrons, with overall charge neutrality

- Large difference in masses of nuclei and electrons permits decoupling of degrees of freedom: rotational, vibrational, electronic
- The net energy of the molecule can be conveniently depicted as a function of the internuclear separation for a given electronic configuration

few eV: dissociation/ionisation

- Molecules are stable: usually several stable states
 - energy levels and other static properties are spectroscopically accessible
- ► Singly charged molecular ions: usually at least one stable state
 - ► amenable to spectroscopy, but difficulties in having a large ensemble
- Doubly charged molecular ions: often one stable state, or at least a metastable state
 - ▶ inaccessible to spectroscopy; rich structure of the PE surfaces
 - dissociative double ionisation is particularly interesting
- Higher charged molecular ions : unstable, almost entirely repulsive PE surfaces

The effect of a perturbation is a change in the mean field seen by the nuclei, causing the nuclei to respond to it

Perturbing a molecule

The effect of a perturbation is a change in the mean field seen by the nuclei, causing the nuclei to respond to it

- A perturbation may take a molecule to a high-lying state – leading to dissociative ionisation
- Ionisation and dissociation occur on differing time scales

$$\begin{array}{rcl} \mathsf{AB} & \xrightarrow{\gamma,q} & \mathsf{AB}^{n+} + \mathrm{e}^{-} & [\mathsf{fs}] \\ \mathsf{AB}^{n+} & \longrightarrow & \mathsf{A}^{p+} + \mathrm{B}^{q+} & [\mathsf{ps}] \end{array}$$

 Dissociation patterns expected to depend on the type of electronic excitation

Perturb atoms or molecules (targets) using charged particles or photons

- Photon interaction
 - energy selective
 (E = ħω)
 - angular momentum selective $(\Delta L = 1)$
- Charged particle interaction
 - a range of energy and momentum transfers
 - no angular momentum selection rules

Perturb atoms or molecules (targets) using charged particles or photons

- Photon interaction
 - energy selective $(E = \hbar \omega)$
 - angular momentum selective $(\Delta L = 1)$
- Charged particle interaction
 - a range of energy and momentum transfers
 - no angular momentum selection rules

\ldots and study the response

- Detect charged particles or photons, which carry information about the response of the target
 - Ion mass spectrometry
 - Electron energy spectroscopy, angular distributions
 - Photon spectroscopy
- Can combine two or more of the above
- Focus here is on double ionisation and dissociation of molecules

Molecular ions... dissociation dynamics

$$AB \rightarrow AB^{2+} + 2e^- \rightarrow A^+ + B^+ (+ 2e^-)$$

fragments give us clues : their kinematic properties are leads to the transient state

Molecular ions... dissociation dynamics

- ▶ for an N-body break-up, there are 3N - 4 free parameters in the momentum space
- ► N-particle continuum: 3N - 4 (= k) free phase space coordinates
- Quantum-mechanically

$$T_{fi} = \langle f | \frac{q}{|b - \vec{v}_{\rho} t|} | i \rangle$$
$$|T_{fi}|^2 \Leftrightarrow d^k \sigma / dq_1 \dots dq_k$$

$$AB \rightarrow AB^{2+} + 2e^- \rightarrow A^+ + B^+ (+ 2e^-)$$

fragments give us clues : their kinematic properties are leads to the transient state

Molecular ions... dissociation dynamics

- ▶ for an N-body break-up, there are 3N - 4 free parameters in the momentum space
- ► N-particle continuum: 3N - 4 (= k) free phase space coordinates
- Quantum-mechanically

$$T_{fi} = \langle f | \frac{q}{|b - \vec{v}_{\rho} t|} | i \rangle$$
$$|T_{fi}|^2 \Leftrightarrow d^k \sigma / dq_1 \dots dq_k$$

$$AB \rightarrow AB^{2+} + 2e^- \rightarrow A^+ + B^+ (+ 2e^-)$$

fragments give us clues : their kinematic properties are leads to the transient state

- Experimental Challenge: detect all fragments and determine all momentum components of each fragment (Kinematically complete measurements)
- No exact solutions to the multi-electron Schrödinger equation
- Measurement of DCS enhances our understanding of the dynamics

- Create molecular ions by the overlap of a neutral beam and an ionising beam under single collision conditions
- ► Detect all ions formed in a single collision in coincidence
- Measure the momentum vector of each ion
- ► Obtain complete correlated kinematic information of all fragments

- Create molecular ions by the overlap of a neutral beam and an ionising beam under single collision conditions
- ► Detect all ions formed in a single collision in coincidence
- Measure the momentum vector of each ion
- ► Obtain complete correlated kinematic information of all fragments
- As perturbing agents our experiments employ
 - electrons [at PRL]
 - soft x-rays [Indus-1]
 - ions [IUAC Delhi]
 - All spectrometers built in-house

CMI : mass separation and axial momentum components

- ► lons (mass *m*, charge *q*) are extracted by a uniform electric field (*E*)
- Flight time (t) from formation to detection is measured
 - start: electron detection
 - stop: ion detection

CMI : mass separation and axial momentum components

- ► lons (mass *m*, charge *q*) are extracted by a uniform electric field (*E*)
- Flight time (t) from formation to detection is measured
 - start: electron detection
 - stop: ion detection

- If p_{||} = 0
 - $t_0 = [8s/E]^{1/2} [m/q]^{1/2}$
- For an ion with arbitrary \vec{p}

 $p_{||} pprox (t_0 - t)qE$

ToF spectra: a glimpse into dissociation dynamics

What does a ToF spectrum tell us?

- Identification of fragment ion mass/charge and (to some extent) kinetic energy information
- Indication of dissociation pathways (which fragments are formed)
- Glimpse into dissociation mechanisms (sequences, rearrangements etc.)
- To study doubly charged molecular ions, we need to go a step further

ToF : ion-ion-correlation maps

Double Ionisation/dissociation

 $\text{CO}_2 \rightarrow \text{CO}_2^{2+*} + 2e^-$

Concerted dissociation

$$\begin{array}{rcl} \mathsf{CO}_2^{2+*} & \rightarrow & \mathsf{O}^+ + \mathsf{CO}^+ \\ \mathsf{CO}_2^{2+*} & \rightarrow & \mathsf{C}^+ + \mathsf{O}^+ + \mathsf{O} \\ \mathsf{CO}_2^{2+*} & \rightarrow & \mathsf{C} + \mathsf{O}^+ + \mathsf{O}^+ \end{array}$$

Sequential dissociation

$$\begin{array}{rcl} \mathrm{CO}_2^{2+*} \rightarrow \mathrm{CO}^{2+} + \mathrm{O} & \rightarrow & \mathrm{C}^+ + \mathrm{O}^+ + \mathrm{O} \\ \mathrm{CO}_2^{2+*} \rightarrow \mathrm{CO}^+ + \mathrm{O}^+ & \rightarrow & \mathrm{C}^+ + \mathrm{O} + \mathrm{O}^+ \end{array}$$

ToF : ion-ion-correlation maps

Double Ionisation/dissociation

 $\text{CO}_2 \rightarrow \text{CO}_2^{2+*} + 2e^-$

Concerted dissociation

$$\begin{array}{rcl} \mathsf{CO}_2^{2+*} & \rightarrow & \mathsf{O}^+ + \mathsf{CO}^+ \\ \mathsf{CO}_2^{2+*} & \rightarrow & \mathsf{C}^+ + \mathsf{O}^+ + \mathsf{O} \\ \mathsf{CO}_2^{2+*} & \rightarrow & \mathsf{C} + \mathsf{O}^+ + \mathsf{O}^+ \end{array}$$

Sequential dissociation

$$\begin{array}{rcl} \text{CO}_2^{2+*} \to \text{CO}^{2+} + 0 & \to & \text{C}^+ + \text{O}^+ + 0 \\ \text{CO}_2^{2+*} \to \text{CO}^+ + \text{O}^+ & \to & \text{C}^+ + \text{O} + \text{O}^+ \end{array}$$

ToF techniques allow recording of multiple ions from a given break-up in a sequence

ToF : ion-ion-correlation maps

Double Ionisation/dissociation

 $CO_2 \rightarrow CO_2^{2+*} + 2e^-$

Concerted dissociation

 $\begin{array}{rcl} CO_2^{2+*} & \to & O^+ + CO^+ \\ CO_2^{2+*} & \to & C^+ + O^+ + O \\ CO_2^{2+*} & \to & C + O^+ + O^+ \end{array}$

Sequential dissociation

$$CO_2^{2+*} \rightarrow CO^{2+} + O \rightarrow C^+ + O^+ + O$$

$$CO_2^{2+*} \rightarrow CO^+ + O^+ \rightarrow C^+ + O + O^+$$

ToF techniques allow recording of multiple ions from a given break-up in a sequence

Patterns in the map provide insight into fragmentation dynamics

- Position of the island: Fragmentation products
- Shape and slope of the island: Fragmentation sequence
- Extent of the island: Energy release

$$\text{CO}_2
ightarrow \text{CO}_2^{2+}
ightarrow$$
 fragments

Patterns in the map provide insight into fragmentation dynamics

- Position of the island: Fragmentation products
- Shape and slope of the island: Fragmentation sequence
- Extent of the island: Energy release

 $CO_2 \rightarrow CO_2^{2+} \rightarrow \text{fragments}$

What's the tail to $CO^+:O^+$?

- an excited molecular ion in a metastable state may decay into a pair of fragments
- there will be a statistical distribution of the decay time
- under the action of the electric field, the molecular ion will decay at different distances from the detector
- the flight time of the fragments will show up as a tail in ion-ion coincidence map

Excited State Lifetime

 $\text{CO}_2^{++} \rightarrow \text{CO}^+ + \text{O}^+$

- Dissociation is associated with a repulsive PE energy function
- A metastable decay is associated with a finite barrier in the PE function
- This is the case with excited states of CO₂²⁺ (and a few other species, e.g. SF₄²⁺)
- Experimentally measured for CO_2^{2+} : $\tau = 5.8 \pm 1.5 \ \mu s$

Excited State Lifetime

 $CO_2^{++} \rightarrow CO^+ + O^+$

- Dissociation is associated with a repulsive PE energy function
- A metastable decay is associated with a finite barrier in the PE function
- This is the case with excited states of CO₂²⁺ (and a few other species, e.g. SF₄²⁺)
- Experimentally measured for CO_2^{2+} : $\tau = 5.8 \pm 1.5 \ \mu s$

KER and Excited state energy levels

 KER depends on the overlap of the ground-state with the excited state and the topology of the PES

KER and Excited state energy levels

 KER depends on the overlap of the ground-state with the excited state and the topology of the PES

$CO_2^{++} \rightarrow O^+ + CO^+$

 KER can be derived from the extent of the correlation island (i.e. the the momentum difference of the ion pair)

KER and Excited state energy levels

Spectroscopy of excited molecular ion states is effected by mapping KER distribution to excitation functions and calculated of potential energy surfaces

CMI : full momentum vector

So far only one component of momentum has been tackled – for complete kinematics we need the remaining momentum components too.

CMI : full momentum vector

So far only one component of momentum has been tackled – for complete kinematics we need the remaining momentum components too.

Recall : $p_z \approx (t_0 - t)qE$

CMI : full momentum vector

So far only one component of momentum has been tackled – for complete kinematics we need the remaining momentum components too.

Recall : $p_z \approx (t_0 - t)qE$

- transverse components of momentum determine the deflection of the particle from the axis
- a large area position resolving detector is required
- if the flight time is known,
 (x, y) can be easily related to
 the transverse momenta

$$p_x = m(x - x_0)/t$$

$$p_y = m(y - y_0)/t$$

CMI : momentum maps

$$ABC \rightarrow ABC^{n+} [+ ne^{-}];$$

$$ABC^{n+} \rightarrow A^{n_1+} + B^{n_2+} + C^{(n-n_1-n_2)+}$$

Transform: $(t, x, y) \mapsto (p_z, p_x, p_y)$ for for all ions from each event Fragment momenta \gg parent momenta \Rightarrow lab frame = molecular CM frame

CMI : momentum maps

$$ABC \rightarrow ABC^{n+} [+ ne^{-}];$$

$$ABC^{n+} \rightarrow A^{n_1+} + B^{n_2+} + C^{(n-n_1-n_2)+}$$

Transform: $(t, x, y) \mapsto (p_z, p_x, p_y)$ for for all ions from each event

- Derive any desired kinematic parameter from the correlation map
- If one fragment is neutral, its momentum vector can still be derived by applying conservation rules.

Fragment momenta \gg parent momenta \Rightarrow lab frame = molecular CM frame

CO_2^{2+} : 3-body break-ups

▶ angular distributions in the molecular frame, with \vec{p}_{ion1} as reference

• \vec{p}_{neut} determined from momentum balance in the reaction

 \blacktriangleright Most probable [O–C–O]^2+ bond angle $\approx 155\pm8^\circ$

Photo-triple-ionisation of CO₂

$$\gamma \ [200 eV] + CO_2 \rightarrow CO_2^{3+} \rightarrow C^+ + O^+ + O^+$$

Photo-triple-ionisation of CO₂

$$\gamma [200 \text{ eV}] + \text{CO}_2 \rightarrow \text{CO}_2^{3+} \rightarrow \text{C}^+ + \text{O}^+ + \text{O}^+$$

Photo-triple-ionisation of CO₂

O=C=O bond angle [^o]

$$\gamma \ [200 eV] + CO_2 \rightarrow CO_2^{3+} \rightarrow fragments$$

Experimental branching ratios

C^{2+}	O^+		0.212
O^{2+}	C^+		0.142
O^{2+}	O^+		0.133
C^+	O^+	0+	0.517

$$\gamma \ [200 eV] + CO_2 \rightarrow CO_2^{3+} \rightarrow fragments$$

Experimental branching ratios					
C^{2+}	O^+		0.212		
O^{2+}	C^+		0.142		
O ²⁺	O^+		0.133		
C^+	O^+	O^+	0.517		

PE surface indicates that asymmetric break-ups are energetically favoured, but this contradicts experiment

Further: Selectivity in excitation

Further: Selectivity in excitation

- Dissociation patterns expected to depend on which molecular state is accessed by the excitation
- Can we control or select the excited state that participates in the DI process?
- Such selectivity will bring us closer to the goal of experimentally measuring the fully diferential cross-section to enable a direct comparison with theory
- Selectivity can be brought in by obtaining correlated ion momentum distributions in conjunction with ejected electron energies

Selectivity in excitation : Technique

- Crossed photon and molecular beams, single collision conditions
- Ion momentum spectrometer augmented with theelectron analyser (CMA)
- Electrons of specific energy, selected by the CMA, start the ion TOF clock

- ► Target: OCS
- Valence electronic configuration (6σ)²(7σ)²(8σ)²(9σ)²(2π)⁴(3π)⁴
- Perturbation: 172 eV photons

Selectivity in excitation

- ► Target: OCS
- Valence electronic configuration (6σ)²(7σ)²(8σ)²(9σ)²(2π)⁴(3π)⁴
- Perturbation: 172 eV photons
- Ionization to low binding energy states mostly yields stable doubly charged molecular ion
- Fragmentation increases when higher binding energy states are accessed

We have demonstrated the use of CMI in understanding multiply-charged molecular ions

- determination of the fragmentation sequence of various channels
- measuring the lifetime of metastable states
- estimation of the transient species geometry
- shell-selectivity effects on DI patterns
- Non-coulombic fragmentation of doubly and triply charged molecular ions
- Orientation dependence of fragmentation channels
- Rearrangements in molecular ions leads to formation of new bonds, new species

- Improve on the shell-selectivity by better electron analysis and a smarter correlation strategy
- Full kinematics in particular, orientation effects and angular distributions with shell selectivity – still to be explored
 - Higher photon energy, better energy resolution (Synchrotron: Indus-2)
 - ► Ion impact studies of similar type (MeV class ion accelerator: IUAC)

- Improve on the shell-selectivity by better electron analysis and a smarter correlation strategy
- Full kinematics in particular, orientation effects and angular distributions with shell selectivity – still to be explored
 - Higher photon energy, better energy resolution (Synchrotron: Indus-2)
 - ► Ion impact studies of similar type (MeV class ion accelerator: IUAC)
- Look into applications of ion-ion correlation mapping
 - Inspiration: stopping power studies from the 1960s has benefited isotope geochronology via accelerator mass spectrometry
 - Inspiration: atmospheric aerosol analysis has benefited from high resolution ToF-MS

- Improve on the shell-selectivity by better electron analysis and a smarter correlation strategy
- Full kinematics in particular, orientation effects and angular distributions with shell selectivity – still to be explored
 - Higher photon energy, better energy resolution (Synchrotron: Indus-2)
 - ► Ion impact studies of similar type (MeV class ion accelerator: IUAC)
- Look into applications of ion-ion correlation mapping
 - Inspiration: stopping power studies from the 1960s has benefited isotope geochronology via accelerator mass spectrometry
 - Inspiration: atmospheric aerosol analysis has benefited from high resolution ToF-MS
- Positron and Positronium collisions with molecules

- Improve on the shell-selectivity by better electron analysis and a smarter correlation strategy
- Full kinematics in particular, orientation effects and angular distributions with shell selectivity – still to be explored
 - Higher photon energy, better energy resolution (Synchrotron: Indus-2)
 - Ion impact studies of similar type (MeV class ion accelerator: IUAC)
- Look into applications of ion-ion correlation mapping
 - Inspiration: stopping power studies from the 1960s has benefited isotope geochronology via accelerator mass spectrometry
 - Inspiration: atmospheric aerosol analysis has benefited from high resolution ToF-MS
- Positron and Positronium collisions with molecules
- (Re-)building classic experiments that form the bedrock of modern science, for interpretation by undergraduate students