free html templates

PUBLICATIONS

  1. Uttama Mukherjee and Arun Venkatnathan , Invoking Chemical Principles to Predict the Anions of Dihydrooxazole Family as Prospective Carbon Capture Moieties, Comp. Theo. Chem , Just accepted (2021).
  2. Prabhat Prakash, Shylendran Ardhra, Birane Fall, Michael J. Zdilla, Stephanie L. Wunder and Arun Venkatnathan , Solvate sponge crystals of (DMF)3NaClO4: reversible pressure/temperature controlled juicing in a melt/press-castable sodium-ion conductor , Chemical Science , 12, 5574 (2021).
  3. A. V. Lyulin, S. Sengupta, A. Varughese, P. V. Komarov and A. Venkatnathan, Effect of annealing on structure and dynamics in hydrated Nafion membranes, ACS Applied Polymer Materials, 2, 11, 5058 (2020).
  4. R. Pant, S. Sengupta, A. V. Lyulin and A. Venkatnathan, Computational investigation of a protic ionic liquid doped poly-benzimidazole fuel cell electrolyte, J. Mol. Liquids , 113686 (2020).
  5. R. Pant, S. Sengupta, A. V. Lyulin and A. Venkatnathan, Charge delocalization effects on Nafion structure and water /proton dynamics in hydrated environments, Fluid Phase Equil. , 504, 112340 (2020).
  6. B. Fall, P. Prakash, M. R. Gau, S. L. Wunder, A. Venkatnathan and M. J. Zdilla, Experimental and theoretical investigation of the ion conduction mechanism of tris(adiponitrile)perchloratosodium, a self-binding, melt-castable crystalline sodium electrolyte, Chem. Mater. , 31, 8850 (2019).
  7. G. Kritikos, R. Pant, S. Sengupta, K. Karatasos, A. Venkatnathan, and A.V. Lyulin, Nanostructure and Dynamics of Humidified Nafion-Graphene Oxide Composites via Molecular Dynamics Simulations, J. Phys. Chem. C., 122, 22864 (2018).
  8. P. Kumar, P. Prakash, K. R. Ramya and A. Venkatnathan, Probing Translational and Rotational Dynamics in Hydrophilic/Hydrophobic Anions based Imidazolium Ionic Liquid-water mixtures Soft Matter, 14, 6109 (2018).
  9. P. Prakash, and A. Venkatnathan, Site-Specific Interactions in CO2  Capture by Lysinate Anion and Role of Water Using Density Functional Theory, J. Phys. Chem. C. 122, 12647 (2018).
  10. P. Prakash, J. Aguirre, M. Van Vliet, P. Chinnam, D. Dikin, M. Zdilla, S. Wunder, A. Venkatnathan, Unravelling the structural and dynamical complexity of the equilibrium liquid grain-binding layer in highly conductive organic crystalline electrolytes, J. Mater. Chem. A. 6, 4394 (2018).
  11. S. Sengupta, R. Pant, P. Komarov, A. Venkatnathan and A. V. Lyulin, Atomistic simulation study of the hydrated structure and transport dynamics of a novel multi acid side chain polyelectrolyte membrane, Int J. Hydrogen Energy 42, 27254 (2017).
  12. R. Pant, M. Kumar and A. Venkatnathan, Quantum Mechanical Investigation of Proton Transport in Imidazolium Methanesulfonate Ionic liquid , J. Phys. Chem. C. 121, 7069 (2017).
  13. P. Prakash and A. Venkatnathan, Molecular mechanism of CO2  absorption in Phosphonium Amino Acid Ionic Liquid, RSC Advances 6, 55438 (2016).
  14. K. R. Ramya, P. Kumar and A. Venkatnathan, Molecular Simulations of Anion and Temperature Dependence on Structure and Dynamics of 1-hexyl-3-methylimidazolium Ionic Liquids, J. Phys. Chem. B, 119, 14800 (2015).
  15. M. Kumar and A. Venkatnathan, Quantum Chemistry Study of Proton Transport in Imidazole Chains, J. Phys. Chem. B 119, 3213 (2015).
  16. K. R. Ramya, P. Kumar, A. Kumar and A. Venkatnathan, Interplay of Phase Separation, Tail Aggregation, and Micelle Formation in the Nanostructured Organization of Hydrated Imidazolium Ionic Liquid , J. Phys. Chem. B 118, 8839 (2014).
  17. K. R. Ramya, R. Kumar and A. Venkatnathan, Energy and spectral characteristics of hydrogen occupied pure and tetrahydrofuran doped water cages, Comp. Theo. Chem. 1039, 28 (2014).
  18. M. More, A. P. Sunda, and A. Venkatnathan, Polymer chain length, phosphoric acid doping and temperature dependence on structure and dynamics of ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membrane, RSC Advances 4, 19746 (2014).
  19. A. P. Sunda, V. M. Dhavale, K. Sreekumar and A. Venkatnathan, Structure and Dynamics of Benzyl-NX3 (X = Me, Et) Trifluoromethanesulfonate Ionic Liquids, J. Phys. Chem. B 118, 1831 (2014).
  20. M. Kumar and A. Venkatnathan, Mechanism of proton transport in ionic liquid doped Perfluorosulfonic acid membranes, J. Phys. Chem. B 117, 14449 (2013).
  21. K. R. Ramya and A. Venkatnathan, Characterization of interaction energy and vibrational Raman spectra of nitrogen clathrate hydrates, Comp. Theo. Chem. 1024, 1 (2013).
  22. K. R. Ramya and A. Venkatnathan, Density Functional Theory study of oxygen clathrate hydrates, Indian J Chem, Sec A, special issue on Complex Chemical Systems, 52A, 1061 (2013).
  23. K. R. Ramya and A. Venkatnathan, Vibrational Raman spectra of hydrogen clathrate hydrates from Density Functional Theory, J. Chem. Phys., 138, 124305 (2013).
  24. A. P. Sunda and A. Venkatnathan, Parametric dependence on shear viscosity of SPC/E water from equilibrium and non-equilbrium molecular dynamics simulations, Molecular Simulation, 39, 728 (2013).
  25. A. P. Sunda, M. More and A. Venkatnathan, A Molecular investigation of nanostructure and dynamics of Phosphoric/Triflic acid blends of hydrated ABPBI [poly(2,5-benzimidazole)] Polymer Electrolyte Membrane, Soft Matter, 9, 1122 (2013).
  26. A. P. Sunda and A. Venkatnathan, Molecular Dynamics Simulations of Side Chain Pendant of Perfluorosulfonic Acid Polymer Electrolyte Membranes, J. Mater. Chem. A., 1, 557 (2013).
  27. M. More, S. Pahari, S. Roy and A. Venkatnathan, Characterization of structure and dynamics of phosphoric acid doped benzimidazole mixtures: a molecular dynamics study, J. Mol. Mod., 19, 109 (2013).
  28. A. P. Sunda and A. Venkatnathan, Atomistic Simulations of Structure and Dynamics of Hydrated Aciplex Polymer Electrolyte Membrane, Soft Matter, 8, 10827 (2012).
  29. M. Mane, A. Venkatnathan, K. Ghatak and K. Vanka, Exploring the Potential of Doped Zero-Dimensional Cages for Proton Transfer in Fuel Cells: A Computational Study, J. Phys. Chem. B, 116, 9803 (2012).
  30. K. R. Ramya and A. Venkatnathan, Stability and Reactivity of Methane Clathrate Hydrates: Insights from Density Functional Theory, J. Phys. Chem. A, 116, 7742 (2012).
  31. S. Pahari, C. Choudhary, P. R. Pandey, M. More, A. Venkatnathan and S. Roy, Molecular Dynamics Simulation of Phosphoric Acid Doped Monomer of Polybenzimidazole: A Potential Component Polymer Electrolyte Membrane of Fuel Cell, J. Phys. Chem. B, 116, 7357 (2012).
  32. K. R. Ramya, G. V. Pavan Kumar and A. Venkatnathan, Raman spectra of vibrational and librational modes of methane clathrate hydrates using Density Functional Theory, J. Chem. Phys., 136, 174305 (2012).
  33. A. P. Sunda and A. Venkatnathan, Molecular Dynamics Simulations of Triflic acid and Triflate Ions/Water Mixtures: A Potential Electrolyte Component in Fuel Cells, J. Comput. Chem., 32, 3319 (2011).
  34. R. Devanathan, A. Venkatnathan, R. Rousseau, M. Dupuis, T. Frigato, W. Gu and V. Helms, Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane, J. Phys. Chem. B, 114, 13681 (2010).
  35. R. Devanathan, A. Venkatnathan and M. Dupuis, Atomistic simulation of Nafion membrane: II. Dynamics of water molecules and hydronium ions, J. Phys. Chem. B, 111, 13006 (2007).
  36. R. Devanathan, A. Venkatnathan and M. Dupuis, Atomistic simulation of Nafion membrane: I. Effect of Hydration on Membrane Nanostructure, J. Phys. Chem. B, 111, 8069 (2007).
  37. A. Venkatnathan, R. Devanathan and M. Dupuis, Atomistic simulations of hydrated Nafion and temperature effects on hydronium ion mobility, J. Phys. Chem. B, 111, 7234 (2007).
  38. A. Violi and A. Venkatnathan, Combustion generated nano-particles in a benzene flame: A multiscale approach, J. Chem. Phys., 125, 054302, (2006).
  39. A. Venkatnathan and G. A. Voth, Superposition State Molecular Dynamics. J. Chem. Theory Comput., 1, 36 (2005).
  40. A. Venkatnathan, A. Szilva, D. Walter, R. Gdanitz and E. A. Carter, Size extensivity corrections to local multi-reference configuration interaction. J. Chem. Phys., 120, 1693, (2004).
  41. D. Walter, A. Venkatnathan, and E. A. Carter, Local correlation in the virtual space using Multireference Configuration Interaction. J. Chem. Phys. 118, 8127 (2003).
  42. A. Venkatnathan and M. K. Mishra, Treatment of Shape and Auger Resonances using the Dilated Electron Propagator - A Brief Overview of Theory and Applications, invited contribution in Indian J. Phys., 3, 171 (2003).
  43. M. K. Mishra and A. Venkatnathan, Treatment of Shape and Auger Resonances using the Dilated Electron Propagator, Int. J. Quant. Chem., 90, 1334 (2002).
  44. S. Mahalakshmi, A. Venkatnathan, and M. K. Mishra, Application of higher order decouplings of the dilated electron propagator to 2Π CO, 2ΠgN2 and 2ΠgC2H2 shape resonances, J. Chem. Phys., 115, 4549 (2001).
  45. A. Venkatnathan, S. Mahalakshmi, and M. K. Mishra, Higher order decouplings of the dilated electron propagator with applications to 2P Be, 2P Mg shape and 2S Be+ (1s−1) Auger resonances, J. Chem. Phys., 114, 35 (2001).
  46. A. Venkatnathan, M. K. Mishra and H. J. A. Jensen, An investigation of the basis set effects in the characterization of electron-atom scattering resonances using the dilated electron propagator method, Theor. Chem. Accts., 104, 445 (2000).
  47. A. Venkatnathan and M. K. Mishra, The 2-g shape resonance in electron-acetylene scattering: An investigation using the dilated electron propagator method, Chem. Phys. Lett., 296, 223 (1998).
  48. M. K. Mishra, M. N. Medikeri, A. Venkatnathan, and S. Mahalakshmi, Characterization of Shape and Auger resonances using the Dilated one Electron Propagator Method, Mol. Phys., 94, 127 (1998).