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Abstract. In this talk, we discuss the spectral theory for some non-normal

operators on separable Hilbert spaces. Recall that a Hilbert space H is an
inner-product space endowed with the inner-product 〈·, ?〉, which is complete

in the induced norm ‖ · ‖ ≡
√
〈·, ·〉. By the Hilbert space operator T on H, we

mean a linear transformation T : H → H satisfying

‖Th‖ ≤M‖h‖ (h ∈ H)

for some finite number M > 0. A linear operator T ∗ : H → H is said to be the
adjoint of T if it satisfies

〈Tx, y〉 = 〈x, T ∗y〉 (x, y ∈ H).

A linear operator N on H is said to be normal if N∗N = NN∗. Multiplication

operators on Hilbert spaces of square-integrable functions provide basic exam-

ples of normal operators. Any operator T on H for which T ∗T − TT ∗ 6= 0 is
non-normal. Any isometry (that is, an operator T satisfying T ∗T = I) which

is not surjective is a rather special example of a non-normal operator.

In the first half of this talk, we discuss one of the cornerstones of the
Operator Theory: Spectral Theorem for Normal Operators. This theorem

roughly asserts that any normal operator N can be obtained by integrating

the co-ordinate function on the compact subset σ(N) of the complex plane with
respect to a “nice” projection-valued measure. Moreover, one can make sense

out of f(N) for a class of functions f which include, in particular, continuous

functions. In the remaining half, we address the following delicate question:
What is the “size” of T ∗T − TT ∗ for a non-normal operator T?

There are two well-studied classes of non-normal operators for which the above
question can be answered to a greater extent. In the case of hyponormal

operators (operators for which T ∗T − TT ∗ ≥ 0), the most remarkable answer

is due to Berger and Shaw ([2]). In the case of 2-isometries (operators for

which I − 2T ∗T + T ∗2T 2 = 0), the same is a recent achievement due to the
speaker ([5]). Needless to say, these results have far-reaching consequences to

the spectral theory for non-normal operators. The proof of the Berger-Shaw-

type result for 2-isometries relies heavily on the basic theory of the so-called
Cauchy dual operators, a subject of independent interest ([8]). We also plan
to discuss some recent developments related to the Cauchy dual operators in

the unbounded and multi-variable operator theory ([6] and [7]).
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