Assignment 5 - Normal subgroups, quotient groups - II

- 1 For a subgroup *H* of a group *G*, define index of *H* in *G* to be the number of left cosets of *H*. Show that an index two subgroup of any group is always normal.
- 2 (First isomorphism theorem) : Let $\phi : G \to G'$ be a homomorphism. Show that $G/\text{Ker}(\phi)$ is isomorphic to $\text{Im}(\phi)$.
- 3 Let M, N be normal subgroups of G. Show that the set $MN = \{mn \mid m \in M, n \in N\}$ is a normal subgroup of G.
- 4 Give an example of a non-normal subgroup of $GL_n(\mathbb{R})$.
- 5 Let $SL_n(\mathbb{R})$ is normal in $GL_n(\mathbb{R})$. Show that $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong \mathbb{R}^{\times}$. ¹

¹the expression $G \cong G'$ means G is isomorphic to G'.

