Recall from the previous lecture

- Rational numbers have recurring decimal expansion
- Real numbers are numbers which have infinite decimal expansion which may or may not be recurring.
- $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- An **infinite sequence** $x_1, x_2, x_3, ...$ where x_n is a real number for every natural number *n*.
- Absolute value |x| of a real number x.
- Distance between two real numbers x and y, this is just |x y|.

Lecture 2- Convergent Sequences and limits

Amit Hogadi

IISER Pune, Fall 2014.

글 🕨 🖌 글 🕨

Outline of this lecture

Consider an infinite sequence $x_1, x_2, x_3, ...$

How many of us understand the phrase $|x_n|$ becomes smaller and smaller as n becomes large?

Please pay attention to the following concepts

- Convergent sequence.
- Limit of a convergent sequence.

The concept of convergence and limits lies at the heart of calculus.

We are now going to build a somewhat complicated definition by studying a simple example. Consider the infinite sequence

$$x_1, x_2, x_3, \dots$$

where

$$x_n=\frac{1}{n}$$

The terms of this sequence approach 0, i.e. they become smaller and smaller as *n* grows larger.

Goal

Give a precise meaning to the phrase become smaller and smaller.

Let us arrive at a precise definition by asking some questions.

- **Q**: What does it exactly mean when one says x_n approaches zero?
- A: It means you can make $|x_n|$ as small as you want.

Q: Can you make it smaller than 0.4?

A: Yes ! note that 1/3 = 0.33 < 0.4. Moreover $n \ge 3$

$$|x_n|=\frac{1}{n}<0.4$$

Q: How about making it smaller than 0.001

A: For *n* ≥ 1001

 $|x_n| \le 0.001.$

Q: Can you make it smaller than 10,000? **A**: This is easy. $|x_n| \le 1 < 10,000$ for all $n \ge 1$.

Observe the following:

- To make $|x_n|$ smaller than than 0.4, we had to restrict to $n \ge 3$.
- But to make it smaller than 0.001 we had to look at $n \ge 1001$.
- Depending on how small you want to make the terms, we may have to start at a larger *n*.

Intuitive definition

A sequence x_n approaches zero if $|x_n|$ can be made as small as you like after a certain stage

Precise Definition

A sequence x_n converges to zero if for any $\epsilon > 0$ there exists N, such that $|x_n| < \epsilon$ for all $n \ge N$. Let us apply this definition to the example the sequence $x_n = 1/n$.

Q: Take $\epsilon = 0.4$. Can you make $|x_n| < 0.4$? **A**: Yes ! Let N = 3. for all $n \ge N$, $|x_n| < 0.4$.

Q: Take $\epsilon = 1$ million. Can you make $|x_n| < 1$ million? **A**: Easy. All terms are already less than 1. So N = 1 will work. For every $n \ge 1$

 $|x_n| < 1$ million

Q: Take $\epsilon = 0.001$. Can you make $|x_n| < 0.001$ after a certain stage? **A**: N = 1001 works.

Example 2:

Let us slightly modify the earlier sequence by making the first 100 terms large. Consider the new sequence

$$x_n = \begin{cases} 10,000 & \text{if } n \le 100 \\ 1/n & \text{if } n > 100 \end{cases}$$

Q: Take $\epsilon = 0.4$. Can you make $|x_n| < 0.4$ after a certain stage ? **A**: Now, N = 3 will not work. Because $|x_n| = 10,000$ for all *n* up to 100. So we have to take *N* at least 101. N = 101 works.

Q: $\epsilon = 1$ million? **A**: Think !

Q: $\epsilon = 0.001$. Can you make $|x_n| < 0.001$ after a certain stage? **A**: Again N = 1001 will work.

- Changing the first few terms of a sequence does not affect convergence.
- i.e. if *x_n* converges to 0, then after changing finitely many terms the new sequence will also converge to 0.
- We may have to choose a larger value of N for some ε. However the modified sequence will still converge to zero.

13/22

æ

<ロ> <部> <部> <き> <き>

Example 3 (constant sequence)

Consider the constant sequence

 $0,\ 0,\ 0,\ 0,\ \ldots$

i.e. $x_n = 0$ for all natural numbers *n*.

Q: Take $\epsilon = 0.00001$. Can you make $|x_n| < 0.0001$ after a certain stage? **A**: $|x_n|$ is always equal to 0 in this case. Thus for any value of $\epsilon > 0$,

 $|x_n| < \epsilon$ for all N

So N = 1 works. Note that any other natural number also works.

Example 4

$$x_n = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$$

Q: Take $\epsilon = 20$. Can you make $|x_n| < 20$ after a certain *N*?

A: For all terms x_n , $|x_n|$ is either 0 or 1. So it is already less than 20. Any N will work, e.g. N = 1.

Q: Take $\epsilon = 0.5$. Can you make $|x_n| < 0.5$? **A**: No. There is no *N* such that after the *N*-th stage $|x_n| < 0.5$. This is because for any such *N*, there is always an even number *n* bigger than *N*. e.g. n = 2N.

 $|x_{2N}| = 1 \neq 0.5.$

This sequence does not converge to 0.

To show this we produced an ϵ (=0.5) for which no *N* works.

Consider the sequence

 $x_n = 0$ for all n.

< **O** > < **O** >

★ E ► ★ E ►

臣

An infinite sequence $x_1, x_2, ..., x_n$ is said to converge to a real number x if the distance between x_n and x becomes smaller and smaller as n becomes larger.

Convergent sequence

```
A sequence x_n converges to x if,
given any \epsilon > 0,
there exists N such that
|x_n - x| < \epsilon if n \ge N.
```

• x is called the **limit** of the sequence x_n.

< □ > < □ > < □ > < □ > < □ > = Ξ

Example 5:

$$x_n = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 1 + 1/n & \text{if } n \text{ is even} \end{cases}$$

The idea is 1/n approaches zero as *n* becomes large, so 1 + 1/n will approach 1.

Q: Can $|1 - x_n|$ made smaller than 0.01 for all *n* after a particular stage? **A**: In the language of the definition, we are given $\epsilon = 0.01$ and we want to find a natural number *N* such that all terms after *N* are at a distance less than the given ϵ from 1.

Choose N = 200. IF n > N, 1/n < 1/200 < 0.01. $|1 - x_n| = |1/n| < 0.01$

We did not choose *N* very carefully. In fact N = 101 would also work. It is not important here to choose an optimal *N*.

ヘロト 人間ト 人造ト 人造トー

Example 6

The sequence

$$x_n = n$$

does not converge to any limit.

Since its terms grow larger and larger, the sequence is not of the type show in the figure below:

Example 7

$$x_n=\frac{2n}{n^2+1}$$

 $n^2 + 1$ grows more rapidly than 2*n*. Therefore the above sequence converges to zero. To prove this we need to show that we can make the terms smaller than a given ϵ , we need to ensure:

$$\frac{2n}{n^2+1} < \epsilon$$

i.e. $2n < \epsilon(n^2+1)$
i.e. $n+1/n > \frac{2}{\epsilon}$

Since 1/n is always positive, the above will hold if

$$n > \frac{2}{\epsilon}$$

Q: What are the possibilities for N in this case?

- 1 Define what do you mean by '1 is a limit point of an infinite sequence x_n '.
- 2 Show that $\frac{1}{p^2}$ converges to zero.
- 3 Show that the sequence $x_n = 2 1/n^2$ converges to 2.
- 4 Consider the sequence $x_n = \frac{n}{2n+1}$. Does x_n converge to any limit? Explain.
- 5 Consider the sequence $x_n = \frac{n^2}{n+1}$. Does x_n converge to any limit? Explain.
- 6 Give an example of a sequence which does not converge anywhere (other than the above sequences and examples discussed in the class).