Recall

Recall from the previous lecture

- Rational numbers have recurring decimal expansion
- Real numbers are numbers which have infinite decimal expansion which may or may not be recurring.
- $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ where x_{n} is a real number for every natural number n.
- Absolute value $|x|$ of a real number x.
- Distance between two real numbers x and y, this is just $|x-y|$.

Lecture 2- Convergent Sequences and limits

Amit Hogadi

IISER Pune, Fall 2014.

Outline of this lecture

Consider an infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$
How many of us understand the phrase $\left|x_{n}\right|$ becomes smaller and smaller as n becomes large?

Please pay attention to the following concepts

- Convergent sequence.
- Limit of a convergent sequence.

The concept of convergence and limits lies at the heart of calculus.

The sequence $1 / n$

We are now going to build a somewhat complicated definition by studying a simple example.
Consider the infinite sequence

$$
x_{1}, x_{2}, x_{3}, \ldots .
$$

where

$$
x_{n}=\frac{1}{n} .
$$

The terms of this sequence approach 0, i.e. they become smaller and smaller as n grows larger.

Goal

Give a precise meaning to the phrase become smaller and smaller.

As small as you want

Let us arrive at a precise definition by asking some questions.
Q: What does it exactly mean when one says x_{n} approaches zero?
A: It means you can make $\left|x_{n}\right|$ as small as you want.
Q: Can you make it smaller than 0.4 ?
A: Yes ! note that $1 / 3=0.33<0.4$. Moreover $n \geq 3$

$$
\left|x_{n}\right|=\frac{1}{n}<0.4
$$

Going to larger stage to make it smaller

Q: How about making it smaller than 0.001
A: For $n \geq 1001$

$$
\left|x_{n}\right| \leq 0.001
$$

Q: Can you make it smaller than 10,000 ?
A: This is easy. $\left|x_{n}\right| \leq 1<10,000$ for all $n \geq 1$.

Observe the following:

- To make $\left|x_{n}\right|$ smaller than than 0.4 , we had to restrict to $n \geq 3$.
- But to make it smaller than 0.001 we had to look at $n \geq 1001$.
- Depending on how small you want to make the terms, we may have to start at a larger n.

Watch the precise definition evolve

Intuitive definition

A sequence x_{n} approaches zero if $\left|x_{n}\right|$ can be made as small as you like after a certain stage

Precise Definition

A sequence x_{n} converges to zero if for any $\epsilon>0$ there exists N, such that $\left|x_{n}\right|<\epsilon$ for all $n \geq N$.

Example 1

Let us apply this definition to the example the sequence $x_{n}=1 / n$.
Q: Take $\epsilon=0.4$. Can you make $\left|x_{n}\right|<0.4$?
A: Yes ! Let $N=3$. for all $n \geq N,\left|x_{n}\right|<0.4$.
Q: Take $\epsilon=1$ million. Can you make $\left|x_{n}\right|<1$ million?
A: Easy. All terms are already less than 1 . So $N=1$ will work. For every $n \geq 1$

$$
\left|x_{n}\right|<1 \text { million }
$$

Q: Take $\epsilon=0.001$. Can you make $\left|x_{n}\right|<0.001$ after a certain stage?
A: $N=1001$ works.

Example 2:

Let us slightly modify the earlier sequence by making the first 100 terms large. Consider the new sequence

$$
x_{n}= \begin{cases}10,000 & \text { if } n \leq 100 \\ 1 / n & \text { if } n>100\end{cases}
$$

Q: Take $\epsilon=0.4$. Can you make $\left|x_{n}\right|<0.4$ after a certain stage?
A: Now, $N=3$ will not work. Because $\left|x_{n}\right|=10,000$ for all n up to 100 . So we have to take N at least 101. $N=101$ works.

Q: $\epsilon=1$ million?
A: Think!
Q: $\epsilon=0.001$. Can you make $\left|x_{n}\right|<0.001$ after a certain stage?
A: Again $N=1001$ will work.

- Changing the first few terms of a sequence does not affect convergence.
- i.e. if x_{n} converges to 0 , then after changing finitely many terms the new sequence will also converge to 0 .
- We may have to choose a larger value of N for some ϵ. However the modified sequence will still converge to zero.

Example 3 (constant sequence)

Consider the constant sequence

$$
0,0,0,0, \ldots
$$

i.e. $x_{n}=0$ for all natural numbers n.

Q: Take $\epsilon=0.00001$. Can you make $\left|x_{n}\right|<0.0001$ after a certain stage?
A: $\left|x_{n}\right|$ is always equal to 0 in this case. Thus for any value of $\epsilon>0$,

$$
\left|x_{n}\right|<\epsilon \text { for all } N
$$

So $N=1$ works. Note that any other natural number also works.

Example 4

$$
x_{n}= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{cases}
$$

Q: Take $\epsilon=20$. Can you make $\left|x_{n}\right|<20$ after a certain N ?
A: For all terms $x_{n},\left|x_{n}\right|$ is either 0 or 1 . So it is already less than 20 . Any N will work, e.g. $N=1$.

Q: Take $\epsilon=0.5$. Can you make $\left|x_{n}\right|<0.5$?
A: No. There is no N such that after the N-th stage $\left|x_{n}\right|<0.5$. This is because for any such N, there is always an even number n bigger than N. e.g. $n=2 N$.

$$
\left|x_{2 N}\right|=1 \nless 0.5 .
$$

This sequence does not converge to 0 .
To show this we produced an $\epsilon(=0.5)$ for which no N works.

Consider the sequence

$$
x_{n}=0 \text { for all } n .
$$

Convergent sequence and its limit

An infinite sequence $x_{1}, x_{2}, \ldots, x_{n}$ is said to converge to a real number x if the distance between x_{n} and x becomes smaller and smaller as n becomes larger.

Convergent sequence

A sequence x_{n} converges to x if,
given any $\epsilon>0$,
there exists N such that
$\left|x_{n}-x\right|<\epsilon$ if $n \geq N$.

- x is called the limit of the sequence x_{n}.

Example 5:

$$
x_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ 1+1 / n & \text { if } n \text { is even }\end{cases}
$$

The idea is $1 / n$ approaches zero as n becomes large, so $1+1 / n$ will approach 1.

Q: Can $\left|1-x_{n}\right|$ made smaller than 0.01 for all n after a particular stage?
A: In the language of the definition, we are given $\epsilon=0.01$ and we want to find a natural number N such that all terms after N are at a distance less than the given ϵ from 1 .
Choose $N=200$.
IF $n>N, 1 / n<1 / 200<0.01$.
$\left|1-x_{n}\right|=|1 / n|<0.01$
We did not choose N very carefully. In fact $N=101$ would also work. It is not important here to choose an optimal N.

Example 6

The sequence

$$
x_{n}=n
$$

does not converge to any limit.
Since its terms grow larger and larger, the sequence is not of the type show in the figure below:

Example 7

$$
x_{n}=\frac{2 n}{n^{2}+1}
$$

$n^{2}+1$ grows more rapidly than $2 n$. Therefore the above sequence converges to zero. To prove this we need to show that we can make the terms smaller than a given ϵ, we need to ensure:

$$
\begin{array}{ll}
& \frac{2 n}{n^{2}+1}<\epsilon \\
\text { i.e. } & 2 n<\epsilon\left(n^{2}+1\right) \\
\text { i.e. } n+1 / n>\frac{2}{\epsilon}
\end{array}
$$

Since $1 / n$ is always positive, the above will hold if

$$
n>\frac{2}{\epsilon}
$$

Q: What are the possibilities for N in this case?

Assignment I

1 Define what do you mean by ' 1 is a limit point of an infinite sequence x_{n} '.
2 Show that $\frac{1}{n^{2}}$ converges to zero.
3 Show that the sequence $x_{n}=2-1 / n^{2}$ converges to 2 .
4 Consider the sequence $x_{n}=\frac{n}{2 n+1}$. Does x_{n} converge to any limit? Explain.

5 Consider the sequence $x_{n}=\frac{n^{2}}{n+1}$. Does x_{n} converge to any limit? Explain.

6 Give an example of a sequence which does not converge anywhere (other than the above sequences and examples discussed in the class).

