Assignemnt 6

1 Let f be continuous at a and $f(a)>0$. Show $\exists \delta>0$ such that $f(x)>0$ for all x satisfying $|x-a|<\delta$. In other words, if a continuous function is positive at a point, it remains positive at nearby points.
2 Define $f^{\prime}(a)$, the derivative of a function f at a. Give examples to show that derivative may not exist.
3 Prove that the function f defined by $f(x)=|x|$ is a continuous but not differentiable at 0 .
4 Calculate $\lim _{x \downarrow 0} \frac{\sin |x|}{x}$ and $\lim _{x \uparrow 0} \frac{\sin |x|}{x}$
5 Show that if g is continuous at a and f is continuous at $g(a)$, then $f \circ g$ is continuous at a.

