Assignemnt 5

1 Assuming triangle inequality (i.e. $|x+y| \leq|x|+|y|$) show that for any two real numbers x, y

$$
|x|-|y| \leq|x-y|
$$

Give examples to show that the inequality can be strict.
$2 \lim _{x \rightarrow a} f(x)=\ell$ and $\lim _{x \rightarrow a} g(x)=m$. Show that

$$
\lim _{x \rightarrow a}(f(x) \cdot g(x))=\ell \cdot m
$$

3 Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)$ exists but is not equal to $f(a)$.
4 Show

$$
\lim _{x \rightarrow 1} \frac{x^{5}+27 x^{2}+3}{x^{10}+1}=\frac{35}{11}
$$

You may use theorems discussed in class, provided you clearly state them.

