ASSIGNMENT 10

MTH101 (2014)

(1) State l'Hopital's rule. Find $\lim _{x \rightarrow 0} \frac{x}{\tan x}$ using this rule.
(2) What is wrong with the following use of l'Hopital's rule:

$$
\lim _{x \rightarrow 1} \frac{x^{3}+x-2}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{3 x^{2}+1}{2 x-3}=\lim _{x \rightarrow 1} \frac{6 x}{2}=3 .
$$

(The limit is actually $-4!$).
(3) Prove that if

$$
\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0
$$

then there exists an $x \in[0,1]$ such that

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n}=0
$$

(4) Calculate the critical points of the function $f(x)=x+\frac{3}{x^{2}}$. Can the second derivative $f^{\prime \prime}$ be used to say determine whether these critical points are local maxima or minima? Sketch the graph of this function.

