Optics

IDC 202

Practise Assignment II *

April 6, 2018

1. Derive Ray-Transfer matrices for the following optical elements -
(a) Translation through a medium of refractive index n.
(b) Refraction at a plane interface, separating media with refractive indices n_{1} and n_{2}.
(c) Refraction at a spherical interface with radius of curvature R. Assume the two media have refractive indices n_{1} and n_{2}. Does the result go over to the previous case when $R \rightarrow \infty$?
(d) Thick lens and thin lens.
(e) Spherical mirror surface of radius of R. What happens when $R \rightarrow \infty$? Does it make sense ?
2. In an optical setup, the product of all individual ray-transfer matrices is called the system matrix. With clear schematic diagrams and quantitive expressions deduce the physical significance of the various elements in the system matrix.

[^0]3. Find the position of the image plane and the size of the image.

[^0]: ${ }^{*}$ These practise assignments will not be graded, but are important for understanding the course material and evaluation components may be based on these.

