NUCLEAR AND PARTICLE PHYSICS PHY 422/622

ASSIGNMENT II

(1) Given that (K^+, K^0) form an isospin-doublet and $(\Sigma^+, \Sigma^0, \Sigma^-)$ form an isospin-triplet, what are the ratio of cross sections for

What are the ratios when the I = 3/2 mode dominates?

(2) Consider the bound state of a Dirac fermion and anti-fermion $(f\bar{f})$, such as a meson $(q\bar{q}')$ or positronium (e^-e^+) . Assume that the particle and anti-particle have opposite intrinsic parities. Try to argue that this bound state has eigenvalues for parity and charge conjugation

$$P = -1 \times (-1)^{l}$$

$$C = -1 \times (-1)^{s+1} \times (-1)^{l}.$$

l and s, as usual, are the orbital angular momentum and spin quantum numbers of the bound state.

(3) Deduce the most general angular distribution for the decay

$$\Lambda^0 \longrightarrow p + \pi^-$$

What happens if *parity* is a good symmetry for the above decay? How was parity-violation experimentally deduced from β -decay of ⁶⁰Co-nuclei?

Date: January 30, 2019.