NUCLEAR AND PARTICLE PHYSICS PHY 422/622

ASSIGNMENT II

(1) Given that $\left(K^{+}, K^{0}\right)$ form an isospin-doublet and $\left(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\right)$form an isospintriplet, what are the ratio of cross sections for

$$
\begin{array}{lll}
\pi^{-}+p & \longrightarrow & K^{+}+\Sigma^{-} \\
\pi^{-}+p & \longrightarrow & K^{0}+\Sigma^{0} \\
\pi^{+}+p & \longrightarrow & K^{+}+\Sigma^{+} \\
\pi^{+}+p & \longrightarrow & K^{0}+\Sigma^{0}
\end{array}
$$

What are the ratios when the $I=3 / 2$ mode dominates?
(2) Consider the bound state of a Dirac fermion and anti-fermion $(f \bar{f})$, such as a meson ($q \bar{q}^{\prime}$) or positronium $\left(e^{-} e^{+}\right)$. Assume that the particle and anti-particle have opposite intrinsic parities. Try to argue that this bound state has eigenvalues for parity and charge conjugation

$$
\begin{aligned}
P & =-1 \times(-1)^{l} \\
C & =-1 \times(-1)^{s+1} \times(-1)^{l}
\end{aligned}
$$

l and s, as usual, are the orbital angular momentum and spin quantum numbers of the bound state.
(3) Deduce the most general angular distribution for the decay

$$
\Lambda^{0} \longrightarrow p+\pi^{-} .
$$

What happens if parity is a good symmetry for the above decay? How was parity-violation experimentally deduced from β-decay of ${ }^{60} \mathrm{Co}$-nuclei?

