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Hamiltonian for a Diatomic Molecule

The hamiltonian for a diatomic molecule can be considered to be made up of three
terms

Ĥ = T̂N + T̂el + V̂

where T̂N is the kinetic energy operator for nuclear motion, T̂el is the kinetic energy
operator for the electronic motion and V̂ is operator comprising all electrostatic
interactions

V̂ = −
∑
i

1

|~ri − ~R/2|
−
∑
i

1

|~ri + ~R/2|
+
∑
i

∑
j>i

1

rij
+

1

R
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Hamiltonian for a Diatomic Molecule

In the explicit form, the Hamiltonian is

Ĥ = −
∑
i

1

2
∇2

i −
∑
N

1

2MN
∇2

N −
∑
i

ZA

|~ri − ~rA|
−
∑
i

ZB

|~ri − ~rB |
+
∑
i

∑
j>i

1

|~rij |
+

ZAZB

|~rAB |

where ~ri is the position of the i th electron w.r.t. the center-of-mass, and ~rA and ~rB are
the positions of the nuclei.
It is usual to make the abbreviations ~R = ~rA − ~rB and ~rij = ~ri − ~rj etc.

For a homonuclear diatomic ~rA = 1
2
~R and ~rB = −1

2
~R, and ZA = ZB = Z , so that the

hamiltonian becomes

Ĥ = −
∑
i

1

2
∇2

i −
∑
N

1

2MN
∇2

N −
∑
i

Z

|~ri − ~R/2|
−
∑
i

Z

|~ri + ~R/2|
+
∑
i

∑
j>i

1

rij
+

Z 2

R
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Comparison of Nuclear and Electronic Motions

The motion of the centre-of-mass is unimportant, since we are only interested in
internal motion of the nuclei and electrons, not in the overall translational motion

Since there are only two nuclei, the problem of the motion of the nuclei reduces to
the motion of a single particle located at ~R with a reduced mass
µ = M1M2/(M1 + M2) under the action of a central force in a space-fixed
coordinate system with origin at the centre-of-mass.

Hence the nuclear kinetic energy operator reduces to

−1

2
∇2

N = − 1

2µR2

(
∂

∂R
R2 ∂

∂R

)
− 1

2µR2
K̂ 2

where K̂ 2 is the angular momentum operator for the nuclear motion in a
space-fixed coordinate system with origin at the centre-of-mass
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Comparison of Nuclear and Electronic Motions

The mass of the nuclei is much larger than that of the electrons, so the time
scales of their motions are quite different and we can consider the electronic
motion to be occurring for fixed values of R

So the net wavefunction is written as the sum of the products of nuclear and
electronic wavefunctions

Ψ(R, {~ri}) =
∑
a

Φa(R; {~ri})Fa(~R)

Since, the dependence of the electronic wavefunction on the nuclear coordinates is
weaker that the dependence of the nuclear wavefunctions on the nuclear
coordinates, we may write

∇2
NΦa(R; {~ri})Fa(~R) ≈ Φa(R; {~ri})∇2

NFa(~R)

This is called the Born–Oppenheimer approximation
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Comparison of Nuclear and Electronic Motions

The Schrödinger Equation is written in the form

Ĥ
∑
a

ΦaFa = E
∑
a

ΦaFa

From this we obtain the equation for the electronic motion

ĤelΦa(R; {~ri}) = Ea(R)Φa(R; {~ri})
since the nuclear operator has no effect on the electronic part
The terms in Ĥel are

Ĥel = T̂el + V̂

T̂el = −
∑
i

1

2
∇2

i

V̂ = −
∑
i

1

|~ri − ~R/2|
−
∑
i

1

|~ri + ~R/2|
+
∑
i

∑
j>i

1

rij
+

1

R
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Comparison of Nuclear and Electronic Motions

R enters the electronic Schrödinger equation as a parameter.

Ea(R) has to be obtained for each value of R.

The motion of the nuclei can in turn be considered to occur in a “potential” given
by Ea(R).

The nuclear Schrödinger equation is thus given by[
− 1

2µR2

(
∂

∂R
R2 ∂

∂R

)
− 1

2µR2
K̂ 2 + Ea(R)

]
Fa(R) = EFa(R)
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Electron Terms in a Diatomic Molecule

The field of several point charges (two in this case) is not centrally symmetric, so
the angular momentum of the electrons in a diatomic molecule is not conserved

A diatomic molecule has a cylindrical symmetry (taken as the ẑ) axis, and the
projection of the angular momentum along this axis, Lz is a conserved quantity

Thus we can identify electron states by the (quantised) eigenvalues of the L̂z
operator in diatomic molecules

The electronic eignefunctions Φa are simultaneous eigenfunctions of the
Hamiltonian and L̂z

Similar to atoms, we identify the states belonging to different Lz eignevalues by
greek letter labels

〈Lz〉(= Λ) 0 1 2 3
Symbol Σ Π ∆ Φ
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Electron Terms in a Diatomic Molecule

The electronic Hamiltonian is symmeteric w.r.t. reflection in a plane containing
the z axis (i.e. the xz or yz planes). This reflection operation changes the sign of
the y or the x coordinates, but leaves the sign of z unaltered.

If under such a reflection, Φ changes to Φ′, then Φ and Φ′ are different in that
the sign of the eigenvalue of L̂z will be flipped if Λ 6= 0.

Since the sign of Λ does not change the energy, states with Λ 6= 0, that is the
Π,∆,Φ states are doubly degenerate

The value of Λ for the Σ states is unaffected by the reflection, so Φ′ and Φ in
such cases can only be different by a multiplying factor: Φ′ = cΦ (since Ĥel is
unaltered.

Since a double reflection is an identity operator, the constant must be ±1. Hence,
there must be two kinds of Σ states, those that flip sign on reflection, and those
that do not. These are labelled respectively as Σ− and Σ+ states.
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Electron Terms in a Diatomic Molecule

For homonuclear diatomics, another symmetry is possible, namely that of
inversion through the centre of mass (~r → −~r)

Neither Ĥel nor L̂z are altered by this inversion operation, so the only change in
the wavefunction Φ under inversion is that of a change in sign

States for which the wavefunction flips sign under inversion are called ungerade,
meaning odd, or u states, while those that do not flip sign under invesion are
called gerade meaning even, or g states.

In addition to this, the state can be identified by it spin multiplicity.

If S is the sum of the spins of the electrons in the molecules (only open shells
matter), then the multiplicity, i.e. the number of spin wavefunctions that are
possible for a given spatial wavefunction obeying the Pauli exclusion principle, is
2S + 1.
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Electron Terms in a Diatomic Molecule

The family of states of a diatomic molecule will thus be designated by the term
symbols

Λ 0 1 2 3
Symbol Σ Π ∆ Φ

reflection symmetry Σ± Π ∆ Φ
inversion symmetry Σ±g ,u Πg ,u ∆g ,u Φg ,u

In addition, each term will have a multiplicity label, 2S + 1, so that the full term
symbols will be like 1Σ+

g ,
2Πu, etc.

Most diatomics have a 1Σ+
g ground state, exceptions are O2 (3Σ+

g ) and NO (2Π).
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Electronic Motion in H+
2

Let us now consider the electronic motion in H+
2 . The electronic hamiltonian is

Ĥelec = −1

2
∇2 − 1

|~r − ~rA|
− 1

|~r − ~rB |
+

1

R

The solutions to the Schrödinger equation are obtained by two methods

an approximate method based on linear combinations of atomic orbitals (LCAO)
a method based on separation of variables followed by numerical solutions differential
equations in one variable

The LCAO assumes that the electron can “belong” to either or the two atoms,
and in the separated atoms limit have atomic hydrogen wavefunction

Further, when the atoms are combined, the net wavefunction is a linear
combination of the atomic wavefunctions centred on either of the two atoms
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Electronic Motion in H+
2

The net wavefunction (including the spin wavefunction) must possess an exchange
anti-symmetry (Pauli’s principle), so the spatial part of the wavefunction must
have a definite symmetry or antisymmetry

Thus there are two possible LCAO wavefunctions

Φg (R, r) =
1√
2

[φ(ra) + φ(rb)]

Φu(R, r) =
1√
2

[φ(ra)− φ(rb)]

where ra = |~r − ~rA| and rb = |~r − ~rB |, and φ is a hydrogenic wavefunction.

The first form, for the gerade state, is symmetric, the second form, for the
ungerade state, is antisymmetric.
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Electronic Motion in H+
2

If the φ states are 1s hydrogenic states, then the net wavefunction corresponds to
a L = 0 state.

Thus the Φg and Φu wavefunction represent 2σg and 2σu states.

The wavefunctions and probability densities of the two states along the
internuclear axis are plotted next.
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Electronic Motion in H+
2
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Electronic Motion in H+
2

The energy of either of the two states is given by

〈E 〉 =

∫
Φ∗ĤΦdτ∫
Φ∗Φdτ

The numerator is given as∫
Φ∗ĤΦdτ =

1

2
[(EAA + EBB)± (EAB + EBA)]

where

EAA =

∫
φ∗(ra)Ĥφ(ra)dτ and EAB =

∫
φ∗(ra)Ĥφ(rb)dτ

We define a overlap integral

S(R) =

∫
φ(ra)φ(rb)dτ
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Electronic Motion in H+
2

Then EAA and EAB can be finally written as

EAA = E0 +
1

R
(1 + R) exp(−2R)

EAB =

[
E0 +

1

R

]
S(R)− (1 + R) exp(−R)

The denominator is given as∫
ΦΦdτ =

1

2

∫
[φ(ra)∗φ(ra) + φ(rb)∗φ(rb)± (φ(ra)∗φ(rb) + φ(rb)∗φ(ra))] dτ

= 1 + S(R)
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Electronic Motion in H+
2

Finally, the energies of the two states are

Eg ,u = E0 +
1

R

(1 + R) exp(−2R) + (1− 2R2/3) exp(−R)

1± (1 + R + R2/3) exp(−R)

The quantity E0 is simply the binding energy of the electron to one of the nuclei
in the separated atoms limit; if the φ(ra) and φ(rb) states are 1s states, then
E0 = 0.5.

The two Eg ,u(R) curves, offset by E0 is shown next.

Eg (R) has a minimum near R = 2.5 while Eu(R) is always repulsive.
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Electronic Motion in H+
2
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Electronic Motion in H+
2

Separation of variables
Let us re-consider the electronic hamiltonian of H+

2 and carry out a separation of
variables. The hamiltonian is

Ĥelec = −1

2
∇2 − 1

|~r − ~rA|
− 1

|~r − ~rB |
+

1

R

If we define the variables

ξ = (ra + rb)/R, η = (ra − rb)/R and φ

where φ is the azimuthal angle around the internuclear axis, then the Schrödinger
equation can be separated into three single variable equations

Ψ(R;~r) = X (ξ)Y (η)Z (φ)
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Electronic Motion in H+
2

The coordinates form the confocal elliptical coordinates, in which loci of constant ξ are
ellipses, those of constant η are hyperbolae. The two loci are orthogonal. The two
coordinates are dimensionless and the scale of the problem is set by R, the distance
between the foci.
The three separated equations are

d

dξ

[
(ξ2 − 1)

dX

dξ

]
+

[
R2

2

(
E − 1

R

)
ξ2 + 2Rξ − m2

ξ2 − 1
+ µ

]
X = 0

d

dη

[
(1− η2)

dY

dη

]
+

[
R2

2

(
E − 1

R

)
ξ2 +

m2

1− η2
+ µ

]
Y = 0[

d2

dφ2
+ m2

]
Z = 0

These have to be solved numerically
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Electronic Motion in H2

Let us now consider the electronic motion in H2. The electronic hamiltonian is

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+

1

r12
+

1

rAB

The Schrödinger equation for this can neither be exactly solved, not can
separation of variables be effected.

For later use, we write Ĥ as

Ĥ = Ĥ0(1) + Ĥ0(2) +
1

r12
+

1

rAB

where

Ĥ0(i) = −1

2
∇2

i −
1

riA
− 1

riB
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Electronic Motion in H2

To solve the He problem, we wrote down a trial wavefunction, based on our
knowledge of H wavefunctions

We take a similar approach to solving the H2 problem, writing a trial solution
based on the wavefunctions of H+

2 . We take the trial wavefunction to be a linear
combination of H+

2 molecular ion wavefunctions

As before we have to ensure that the exchange symmetry is maintained and Pauli
exclusion is obeyed when we write the two electron wavefunction as the product
of the spatial and spin parts
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Electronic Motion in H2

The spin wavefunction is either a singlet (S = 0) or a triplet (S = 1), and the
corresponding spin wavefunctions are

χ00 =
1√
2

[α(1)β(2)− β(1)α(2)] S = 0,m =
1

2
,−1

2

χ10 =
1√
2

[α(1)β(2)− β(1)α(2)] S = 1,m =
1

2
,−1

2

χ11 = α(1)α(2) S = 1,m =
1

2
,

1

2

χ1−1 = β(1)β(2) S = 1,m = −1

2
,−1

2
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Electronic Motion in H2

For the spatial part of the wavefunction there are two choices (of H+
2 molecular orbitals

Φg (R, r) =
1√
2

[φ(ra) + φ(rb)]

Φu(R, r) =
1√
2

[φ(ra)− φ(rb)]

which are respectively, symmetric and antisymetric w.r.t. exchange.

Bhas Bapat Electron States of Diatomic Molecules



Electronic Motion in H2

The net wavefunction can thus be three linear combinations of the spatial
wavefunctions for the S = 0 case:

ΨI (1, 2) = Φg (1)Φg (2)χ00

ΨII (1, 2) = Φu(1)Φu(2)χ00

ΨIII (1, 2) =
1√
2

[Φg (1)Φu(2) + Φu(1)Φg (2)]χ00

and only one spatial wavefunction for the S = 1 case

ΨIV (1, 2) =
1√
2

[Φg (1)Φu(2)− Φu(1)Φg (2)]χ1M M = −1, 0, 1
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Electronic Motion in H2

The first wavefunction ΨI (1, 2) represents the lowest state, since Φg , and not φu is the
lower energy molecular orbital
The energy corresponding to this is

E =

∫
Ψ∗I (1, 2)ĤΨI (1, 2)dτ1dτ2

= 2Eg (R)− 1

R
+

∫
|Φg (1)Φg (2)|2dτ1dτ2

The last integral has to be done numerically, and yields R0 = 0.8Å or 1.5 a.u. and
De = 2E0 − E (R0) = 0.1 or 2.7 eV.
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Electronic Motion in H2

Recalling, that

Φg (R, r) =
1√
2

[φ(ra) + φ(rb)]

Φu(R, r) =
1√
2

[φ(ra)− φ(rb)]

and φ(ra) etc. are hydrogen atom 1s wavefunctions, we get

ΨI (1, 2) = φ1s(r1A)φ1s(r2B) + φ1s(r2A)φ1s(rB1) + φ1s(r1A)φ1s(r2A) + φ1s(r1B)φ1s(r2B)

The first two terms represent the case when the two electrons are shared between the
two atoms, while the other two terms represent the case when both electrons are
associated with one atom.
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Electronic Motion in H2

Thus the ΨI (1, 2) wavefunction (of the 1Σg state) is composed of two kinds of
contributions: the covalent contribution (first two terms in the expansion in terms of
atomic wavefunctions) and the ionic contribution (the second two terms)

Ψcov
I (1, 2) = [φ1s(r1A)φ1s(r2B) + φ1s(r2A)φ1s(rB1)]χ00

Likewise the ΨIV (1, 2) wavefunction (of the 3Σu state) also has a covalent part (two
terms in the expansion in terms of atomic wavefunctions):

Ψcov
IV (1, 2) = [φ1s(r1A)φ1s(r2B)− φ1s(r2A)φ1s(rB1)]χ1M
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Electronic Motion in H2

The last two wavefunctions have a special place, as they represent the covalent
bonding wavefunctions for the singlet and triplet cases.
These are given the name valence-bond (VB), or Heitler–London wavefunctions, after
the persons who proposed those.
The energies corresponding to these wavefunctions are

Eg ,u = 2E1s ±
J

1± I 2
± K

1± I 2
+

1

R

where

I =

∫
dτ1φ1s(r1A)φ1s(r1B) =

∫
dτ2φ1s(r2A)φ1s(r2B)

J =

∫
dτ1dτ2|φ1s(r1A)|2|φ1s(r2B)|2

(
1

r12
− 1

r2A
− 1

r1B

)
K =

∫
dτ1dτ2φ1s(r1A)φ1s(r2B)

(
1

r12
− 1

r2A
− 1

r1B

)
φ1s(r2A)φ1s(r1B)
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Electronic Motion in H2

A slight improvement in the binding energy and equilibrium bond length can be
obtained by mixing ΨI and ΨII (both have the same symmetry) and writing a trial
function with an adjustable parameter :

Ψ = ΨI + λΨII

and then minimising the energy by the variational principle.

This yields R0 = 0.75Å or 1.42 a.u. and De = 2E0 − E (R0) = 0.147 or 4.00 eV.

The same trial wavefunction is the same as that obtained by adjusting the mix of
ionic and covalent bonding parts in ΦI :

Ψ = (1− λ)Ψcov
I + (1 + λ)λΨion

I
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Electronic Motion in H2
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Electronic Motion in H2
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