Orientation Effects in Ion–Molecule Collisions

Bhas Bapat

E-mail: bhas.bapat@iiserpune.ac.in

At NCAMP-21 Jan 2017

Orientation Effects in Ion-Molecule Collisions

Deepak Sharma Pragya Bhatt, C P Safvan (IUAC-Delhi) Ajit Kumar

(IISER-Pune) (JMI-Delhi)

- Molecules are not spherically symmetric, so the outcome of a collision between an ion and a molecule should depend on the relative angle between the molecular axes and the projectile direction
- Diatomic molecule aligned perpendicular to the incident projectile:
 - ★ projectile interacts mainly with the electron cloud of one atom
 - \star low-charge molecular ions expected
- Diatomic molecule aligned parallel to the incident projectile:
 - ★ projectile interacts equally with the electron cloud of both the atoms
 - ★ high-charge molecular ions expected

Introduction

- For a diatomic molecule there can be Alignment and Orientation
 - ★ Alignment implies axis parallel w.r.t the projectile
 - Orientation implies alignment plus specific pointing
- Homonuclear diatomics:
 - ★ only alignment is meaningful
 - Outcome of a collision: anisotropy possible, but forward-backward asymmetry not possible
- Heteronuclear diatomics:
 - ***** orientation is meaningful
 - ★ Outcome of a collision: there may be anisotropy as well as asymmetry

A simple theoretical model

Wohrer and Watson (1993 Phys Rev A)

• Assume independent atoms

- Add cross-sections for multiple ionisation of the two atoms in perpendicular and parallel orientations
- Wang (1989 Phys Rev A)
- Added scattering amplitudes instead of cross-sections

(end-view, along the projectile)

A simple theoretical model

Wohrer and Watson (1993 Phys Rev A)

- Ionization cross sections are calculated in the independent electron approximation
- Predicted different cross-sections for O_2^{k+} ($k = 1 \dots 12$)

A simple theoretical model

Caraby et al. (1997 Phys Rev A)

- Applied the Wohrer–Watson model to CO^{q+} fragmentation and
- Predicted a symmetric distribution around 90° w.r.t. projectile

 $\frac{d\sigma}{d\Omega} = \frac{\sigma}{4\pi} [1 + \beta P_2(\cos\theta)]$

 β is a measure of enhancement or depletion of yield along the perpendicular direction relative to an anisotropic distribution

$$\begin{array}{c} - & - & \operatorname{CO}^{2+} \dots & \operatorname{CO}^{5+} \dots & \operatorname{CO}^{8+} \\ - & - & \operatorname{CO}^{3+} \dots & \operatorname{CO}^{6+} & - & \operatorname{CO}^{9+} \end{array} \\ 1 \cdot 2 \\ 1 \\ 0 \cdot 8 \\ 0 \cdot 6 \\ 0 \cdot 6 \\ 0 \cdot 6 \\ 0 \cdot 4 \\ 0 \cdot 2 \\ 0 \end{array}$$

30 60 90 120 150 180

Angle of the molecule θ (degrees)

0

Difficulty:

Molecules in an ensemble (e.g. in a cell or a jet) are randomly oriented. How do we determine orientation effects in the interaction?

Way out:

Difficulty can be overcome in some processes - viz. multiple ionisation leading to dissociation

Experimental Strategy

- Under single collision condition
 - direction of fragments can be related to the molecule's orientation
 - need mass and velocity vector of each fragment for every collision
- Assumptions
 - ★ collision times are shorter than rotational times
 - initial momentum of the parent molecule is much smaller than the fragment momentum
 - ★ For ionic fragmentation
 lab-frame ≡ molecular frame

Experimental Strategy

- measure three momentum components of each ion for each event
- obtain ejection angle w.r.t. projectile axis event-by-event
- extract dissociation probability as a function of angle from the list mode data
- in the present case the angle is referred to \vec{P}_C

Measurement of ion momentum

- spatial and temporal dispersion of charged particles in a uniform electric field
- simultaneous measurement of flight-time and spatial spread
- requires an internally cold, well-localised source of particles

• For
$$p_z = 0$$

$$t_0 = [8s/E]^{1/2} (m/q)^{1/2}$$

• For
$$\vec{p} \neq \vec{0}$$

$$p_z \approx (t-t_0)qE$$

 $p_x = m(x-x_0)/t$
 $p_y = m(y-y_0)/t$

Detecting multiple ions in coincidence

• Aim: measurement of momenta of fragments in reactions of type

$$AB \rightarrow AB^{n+} \rightarrow A^{m+} + B^{(n-m)+}$$

• Strategy: Record both ions arising from one event, build a correlation map

• list mode record of all events

Projectiles used: p^+ 25–200 keVq/v=1...0.35 Xe^{9+} 450 keVq/v=24

Results for two distinct perturbations:

 $egin{array}{ccc} {
m p}^+ & 50 \ {
m keV} & q/
u pprox 0.7 \ {
m Xe}^{9+} & 450 \ {
m keV} & q/
u = 24 \end{array}$

 $N(\theta) = N_0[1 + \beta_1 P_1(\cos \theta) + \beta_2 P_2(\cos \theta)] \sin \theta$

 $N(\theta) = N_0[1 + \beta_1 P_1(\cos \theta) + \beta_2 P_2(\cos \theta)] \sin \theta$

 $N(\theta) = N_0[1 + \beta_1 P_1(\cos \theta) + \beta_2 P_2(\cos \theta)] \sin \theta$

 $N(\theta) = N_0[1 + \beta_1 P_1(\cos \theta) + \beta_2 P_2(\cos \theta)] \sin \theta$

- Xe⁹⁺ on CO (q/v = 24)
 - ★ Nearly isotropic fragmentation for CO²⁺, CO³⁺ and CO⁴⁺ channels ★ $\beta_1 \approx 0$, $\beta_2 \approx 0$
- p^+ on CO (q/v = 0.7)
 - ★ CO²⁺ fragmentation : isotropic fragmentation $\beta_1 \approx 0, \beta_2 \approx 0$
 - * CO³⁺ fragmentation: strong orientation dependence $\beta_2 = 0.63 \pm 0.01, \ \beta_1 = 0.14 \pm 0.001$
 - \star CO⁴⁺ fragmentation: stronger orientation dependence
 - $eta_2 = 1.22 \pm 0.03$, $eta_1 = 0.33 \pm 0.02$

Results for same projectile at different velocities:

 p^+ 25 keV–200 keV (q/v=1...0.35 au)

Projectile Velocity Dependence – CO³⁺

Projectile Velocity Dependence – p+ on CO

Anisotropy, as well as forward-backward asymmetry, increase with deceasing velocity.

Previous Experimental Result : CO

Siegmann et al. 2002 Phys Rev A

- Dissociation of COⁿ⁺ (D⁺ at 100 keV on CO)
- Near-isotropic distribution for n = 2
- Anisotropic distribution for n > 3
- Slight asymmetry for n > 4
- Observations fitted to the Statistical Energy Deposition model

Another Result

Mizuno 2007 JPCS : separating capture and loss channels

 $C^+:O^+$

 $C^{2+}:O^{+}$

 $C^+:O^{2+}$

Siegmann et al 2003 NIM(B):

Alignment and Orientation *q* **and** *v* **dependence**

- Some of the previous results are in contrast to our observations
- There has been a lack of clarity about the distinction between orientation effects and alignment effects
- The SED explains some features for homonuclear diatomic molecules

- Our observations
 - * Low projectile charge leads to greater anisotropy (for the same velocity)
 - ★ High velocity projectile leads to greater anisotropy (for the same charge)
 - * High q/v leads to greater degree of ionisation
- Explanation: Owing to the Coulomb repulsion for a given impact parameter, larger q/v implies a larger distance of closest approach d_{min}
- For large d_{min}, the molecule appears to be nearly structureless – hence weak orientation effects

$$d_{min} = rac{b}{[1 - rac{2qU(d_{min})}{mv^2}]^{1/2}}$$

• However, even for large d_{min} , a large q/v ion can cause multiple ionisation