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Outline

• Outline of an atomic/molecular physics experiment

• Basics of collisions and molecular structure

• Some aspects of molecular collision dynamics

• Types of collision investigations
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What is experimental atomic and molecular physics?

• information about the structure and dynamics of atoms and molecules by spectroscopy,
collisions

• Why study these processes?

– they are of relevance to atmospheric and stellar, even biological processes
– atomic and molecular processes occur all around us – everywhere!

• experimentally tackle the quantum many-body coulomb problem;

• significant overlap with other branches: astrophysics physics, materials science, earth
and atmospheric science, chemistry, medical applications etc.

• Standard chemistry different from interaction of single molecules!
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How do we do it?

Perturb atoms or molecules (targets) using charged particles or photons

• Photon interaction

– energy selective
(E = h̄ω)

– angular momentum selective
(∆L = 1)

• Charged particle interaction

– a range of energy and momentum transfers
– no angular momentum selection rules

Ion–molecule Collisions (Bapat, PRL) 3



How do we do it?

. . . and study the response

• Detect charged particles or photons, which carry information about the response of
the target

– Ion mass spectrometry (m/q)
– Electron energy spectroscopy, angular distributions
– Photon spectroscopy

• Can combine two or more of the above

Focus here is on Ion–Molecule collisions
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Scattering Basics

• A beam of particles (ions) crosses a collection of target particles (molecules) in vacuum.

• Usually single collision conditions are maintained

• Coulomb interaction with electrons in the molecules changes the path of the ions
(ion–nucleus interaction neglected)

• Perturbed molecule responds leading to rearrangement of electrons and nuclei

• The response is detected in the form of
–photon emission (fluorescence)
–electron emission (ionisation)
–charged or neutral atom or radical emission (dissociation or ionisation)

• Target–projectile roles may be reversed (i.e. the projectile may be the object of
investigation and target may be the probe or vice versa)
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Perturbation of a Molecule

A molecule may be thought of as a collection of nuclei moving in the mean field of
electrons, with overall charge neutrality

• Large difference in masses of nuclei
and electrons permits decoupling of
degrees of freedom (rotation, vibration,
electronic)

• Can be perturbed by a charged particle
or photon
meV: rotation
sub-eV: vibration
few eV: dissociation/ionisation
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Collision Regimes

• Fast ions

– Large velocities
– Short interaction times
– Vertical transitions
– Frozen molecule

• Slow ions

– Low velocities
– Long interaction times
– Electron clouds can adjust
– Chemistry
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Dissociative Ionisation

• The effect of ionisation is a change in the
mean field seen by the nuclei, causing the
nuclei to respond to it

• An excited molecule may dissociate
producing charged and neutral fragments

B+

A+

(A+B)2+

• Ionisation and dissociation occur on differing time scales

AB + γ −→ (ABn+)∗ + e− [∼ fs]

(ABn+)∗ −→ Ap+ + Bq+ (n = p + q) [∼ ps]

• Dissociation patterns expected to depend on the type of electronic excitation

• Fragments carry information about the excited molecular ion state
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Dissociative ionisation example: CO2

Ionisation followed by dissociation of the molecular ion

Ionisation
CO2 → CO2+

2 + 2e−

Concerted fragmentation

CO2+
2 → O+ + CO+

CO2+
2 → C+ + O+ + O

CO2+
2 → C + O+ + O+

Sequential fragmentation

CO2+
2 → CO2+ + O → C+ + O+ + O

CO2+
2 → CO+ + O+ → C+ + O + O+
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Energy diagram of dissociative ionisation
Experiment with CO2 KER and molecular energy levels

KER and molecular energy levels
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• Kinetic Energy released depends on

– the participating excited state
– the overlap of the ground-state with

the excited state

• Also to be taken into account

– fragmentation sequence
– metastability
– explosion geometry
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Molecular ions. . . dissociation dynamics

ABC→ ABCn+ → Ap+ + Bq+ + C(n−p−q)+

• fragments give us clues : their kinematic
properties are the leads

• for an N-body break-up, there are 3N−4
free parameters in the momentum space

• N-particle continuum: 3N − 4 (= k)
free phase space coordinates

• Quantum-mechanically

Tfi = 〈f | q

|b − ~vp t||i〉

|Tfi |2 ⇔ dkσ/dq1 ... dqk

Need kinematically complete
measurements

i.e. determine all momentum components
of all fragments
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Types of Collision Spectrometry

• Collision-induced fluorescence

• Translational Energy Spectrometry

• Time-of-flight Spectrometry

• Ion Momentum Imaging

• Complete Kinematics : electron & ion coincidence mapping
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Collision-induced fluorescence

• Targets in the form of a cell (gas or
liquid)

• limited to UV-VIS-IR wavelengths

• Targets not dense (to carry out
collisions) so count rates low

• Not easy to get angular distributions
and wavelength dispersion simultaneously.

Ion 
Beam

Gas Cell
with windows

Spectrograph

Collection Optics
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Charged particle Spectrometry

• More “efficient”than photons, ability to
count single particles

• Low number density OK

• Charged particles can be manipulated
easily, while also dispersing them in
velocity, mass etc, and deriving angular
distributions

TOF

Position and TOF are simultaneously recorded and stored as a list of x, y, t triplets
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Translational Energy Spectroscopy

Technique

• A fast ion (a few keV in energy) is made
to collide with a neutral target gas.

• Energy and angular deflection of
scattered ion is measured.

Insights

• the states of the participating species

• dynamics of the collision

• lifetimes of species

• collision cross-sections state populations

Ion–molecule Collisions (Bapat, PRL) 15



Translational Energy Spectroscopy

Binary collision between a fast ion and a neutral target
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Translational Energy Spectroscopy

Arrangement of a high resolution energy loss spectrometer
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Translational Energy Spectroscopy

TES spectrum of N+
2 colliding with NO, at 3000 eV collision energy.
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Motivation for other techniques

Limitations of TES

• Not very useful for dissociating species

• Low efficiency

• Large Equipment

Advantages of TOF

• Compact, simple apparatus

• Ability to collect multiple fragments
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Time-of-Flight Mass Spectrometry : Technique

• A crossed molecular beam and ion beam
arrangement

• Electric field to extract ions and
transport them to a detector

• Event trigger

– Pulsed ion beam
– Pulsed extraction field
– Ejected electron detection using

separate detector

• Time-of-Flight to the detector measured
w.r.t. the event trigger

• A fast response detector to record
successive ion arrivals

TOF ∝
√

m

q
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TOF: sample spectrum
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TOF: insights into dissociation dynamics
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• Gives fragment ion mass and (to some
extent) kinetic energy information

• Determination of dissociation pathways
(which fragments are formed)

• Glimpse into dissociation mechanisms
(sequences, rearrangements etc.)
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TOF : kinetic energy information

• In general, t ≡ t(m, q, p||,~E , s, d)

• Assuming equipartition, KE of every ion
can be estimated :

p|| ≈ (t − T0)qE

KE ≡ 3p2
||/2m

Experiment with CO2 Photoion Kinetic Energy

Photoion Kinetic Energy

momentum of ions can be
determined from the TOF

t ≡ T − T0 = pz/(qEs)

assuming isotropic emission of
photoions, we get

〈K 〉 = 3〈p2
z/2m〉
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TOF : multi-ion-coincidence

• Record all ions arising from one event

ABC→ ABC2+ [+2e−]→ A+ + B+ + C

• TOF techniques allow recording in a sequence

Experimental Technique Ion-ion coincidence

Ion-ion coincidence

Ions are separated in time; detect them as sequence [≈ microsecond
duration].

Needs fast electronics and small event rates [� 1/ ion drift time]

Arrival times are stored event-by-event, as a list
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• Create correlation map

– for each ion from each event, record t1, t2. . .
– repeat for several events – list mode
– Sort the correlated time pairs and look for patterns
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TOF : ion-ion-correlation maps

Fragmentation Pathways

• Detect ion pairs from a break-up

• Plot a correlation map of the pairs

• Patterns in the map:

slope = −p2||

p1||
· q1

q2

Size of blob ≡ Kinetic Energy release
Shape of the blob ⇒ fragmentation
sequence
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ion-ion correlation map of CO2 fragments
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TOF : ion-ion-correlation

Acetylene molecule under ion impact:

Ar8+ + C2H2 → C2+ + H+ +X

Ar8+ + C2H2 → C3+ + H+ +X

Ar8+ + C2H2 → C+ + H+ +X
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TOF : ion-ion-correlation

Shapes and orientation of the blobs
(islands) can be analysed for dissociation
kinematics to reveal the internal motion of
the molecular ion!
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TOF : motivation for Coincidence Momentum Imaging

Do we have complete information about the fragmentation
dynamics
(from TOF-TOF correlation maps)?

No! We have incomplete kinetic energy information, no angular
information – need full momentum information.
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Coincidence Momentum Imaging : axial components

Ions (mass m, charge q) are extracted by a uniform electric field (~E )

• Flight time (t) from formation to
detection is measured

– start: pulsed ion source or electron
detection

– stop: ion detection

• To nullify spatial spread influence

`(drift) = 2 × `(acceleration)

• For pz = 0

t0 = [8s/E ]1/2 [m/q]1/2

• For an arbitrary ion

pz ≈ (t0 − t)qE
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Coincidence Momentum Imaging : Transverse components

• transverse components of momentum
determine the deflection of the particle
from the axis

• a large area position resolving detector
is required

• if the flight time is known, (x , y) can be
easily related to the transverse momenta

px = m(x − x0)/t

py = m(y − y0)/t
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CMI : multi-ion-coincidence

• Record all ions arising from one event

ABC→ ABCn+[+ne−]→ An1+ + Bn2+ + C(n−n1−n2)+

Experimental Technique Ion-ion coincidence

Ion-ion coincidence

Ions are separated in time; detect them as sequence [≈ microsecond
duration].

Needs fast electronics and small event rates [� 1/ ion drift time]

Arrival times are stored event-by-event, as a list
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• Create correlated momentum map

– for each ion from each event, record (ti , xi , yi)
– repeat for several events – list mode
– transform (t, x , y) =⇒ (pz , px , py) for all ions from each fragmentation
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CMI : complete momentum map

TOF

Position and TOF are simultaneously recorded and stored as a list of x, y, t triplets
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CO2 : angular distribution of fragment ions

CO2+
2 → C + O+ + O+ CO3+

2 → C+ + O+ + O+

Deviation from linear structure?
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CO2 : kinetic energy distribution of fragment ions

CO2+
2 → C + O+ + O+

CO3+
2 → C+ + O+ + O+

Non-coulombic fragmentation
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CMI : insights

We can discern from such maps

• Angular distribution of fragments in the molecular reference frame

• Bond angle at the instant of formation

• Kinetic Energy Release distribution
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Coincidence Momentum Imaging

Do we now have complete information about the fragmentation
dynamics
(From coincidence momentum imaging)?

No! We have ignored the electrons!!

Still far away from tackling the quantum-mechanical coulomb
many-body problem
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Dissociative Ionisation : the complete picture

Detection and identification of all the ionic fragments along with the electrons emitted in
the process:

• Electron energy and dissociation
fragments are detected in coincidence

• Momentum vectors are determined by
TOF/imaging methods

• Need short pulse ion beams

• Need (very) fast detectors and
electronics
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Summary

• Several techniques exist for investigting ion molecule
collisions

• Deep insights can be had into dissociative ionisation by
looking into ion channels

• Some handle on structure and dynamics of molecular ions
from collision studies

• Plenty of scope for further investigations – “complete
experiments”
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