
0.1 Required Classical Mechanics

The subject of statistical mechanics deals with macroscopic (large sized sys-
tems consisting of 1023 particles) systems. As a result, they have a huge
number of degrees of freedom. These degrees of freedom evolve obeying
newtons laws of motion, when we are considering a classical statistical me-
chanical system. These systems have a very large number of micro-states
defined by the position coordinates and the momenta of each particle mak-
ing up the system. All the micro-states which are consistent to an externally
imposed constraint (like constant energy of the system when its isolated from
the rest of the universe) actually makes the macro-state of the system. The
equilibrium situation which we will be concerned with in the present course
requires that the probability distribution of the system over these accessible
(consistent with the constraint) micro-states is stationary over time.

0.1.1 Hamilton’s equations

Considering a system of N particles (N ∼ 1023), the 3N position coordinates
of the system are denoted by qis, where the suffix i runs over 1-3N, and the 3N
momenta pis. We consider here the system consisting of particles which do
not have other degrees of freedom than translations. These 6N coordinates
at a time t (actually within an interval 4t at the instant t where 4t is
arbitrarily small) defines the micro-state of the system at that time t. So, to
look at the evolution of the micro-state we will consider the 6N Hamilton’s
equations of the system

ṗi = −∂H
∂qi

(1)

q̇i =
∂H

∂pi
(2)

where the dot indicates derivative with respect to time. The Hamiltonian is
a function of pi and qi and gives the total energy (T+V) of the system in a
micro-state. The existence of the Hamilton’s equations makes the Hamilto-
nian stationary in this case i.e. dH

dt
= 0.

• Prove that the Hamilton’s equations conserve the Hamiltonian when
its not an explicit function of time i.e. dH

dt
= 0.
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0.1.2 Liouville’s Equation

The micro-state of a system of N particles can be represented by a point
in a 6N dimensional space. The position vector to this phase point X has
6N coordinates (in pi and qi) and thus, has all the information about the
micro-state under consideration. This space is called the phase space or the
Γ-space of the system.

Let us consider the density of the phase points at X in the Γ-space is
given by f(X, t). This f(X, t) gives a measure of the probability of the
system to be at the micro-state X, since, having more phase point around
the point at X enhances the possibility of the system to visit this point more
often keeping the system at its neighbourhood for relatively longer time. The
velocity of the phase points at X is Ẋ (remember that the system evolves
according to the Hamilton’s equations and one can move along a trajectory
passing through the phase point X given by this dynamics). The elementary
flux through a surface area ds at X is dF = ds · (Ẋf(X, t)). The total flux
(outward by convention) through an arbitrary closed surface S enclosing the
volume V is

F =

∫
dF =

∫
S

ds · (Ẋf(X, t)). (3)

This flux has to match the time rate of decrease of the total phase points
inside the volume V which is ∂

∂t

∫
v
dvXf(X, t). Equating these tow quantities

and applying the Gauss’s theorem
∫
S
ds · A =

∫
V
dvO · A for an arbitrary

vector field A ∫
V

dvX

(
∂f

∂t
+ O · Ẋf

)
= 0. (4)

Since, the integration is over arbitrary volume, the integrand must vanish to
make the relationship hold good for all V and that gives

∂f

∂t
+ O · Ẋf = 0. (5)

Now, O · Ẋf = fO · Ẋ + Ẋ · Of and it can be shown that O · Ẋ = 0
when the components of X evolves according to Hamilton’s equations. This
divergence less flow is a signature of a Hamiltonian system and it can also be
shown from the consideration of a divergence less flow that the phase space
volume of such a Hamiltonian system remains conserved over time. Imagine
that a phase space volume dvX is evolving in time along the trajectory of the
phase points in it towards its later configuration dvfX . The divergence free
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velocity field of the phase points motion ensures that dvX = dvfX . Contrary
to the Hamiltonian systems, in dissipative systems the phase space volume
can change and that is why in dissipative dynamical systems we talk about
the attractors in phase space which can be nodes, limit cycles or strange
attractors to which an initial volume of the phase space (basin of attraction)
converges to (by getting contracted) at large time.

• Show that O · Ẋ = 0 when the system evolves along a Hamiltonian
trajectory.

Thus, the Liouville’s equation for the hamiltonian flow is

∂f

∂t
+ Ẋ · Of = 0. (6)

0.1.3 Equilibrium and Ensemble

The equilibrium of the system demands no explicit time dependence of the
phase space density. Considering ∂f

∂t
= 0 modifies eq.6 as Ẋ · Of = 0 which

can be rewritten in the form of Poisson’s bracket as {f,H} = 0. Poisson’s
bracket of two functions A and B of pi and qi is the expression

{A,B} =
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
(7)

• Prove that Ẋ · Of = {f,H}

The relation {f,H} = 0 ensures that f = f(H(qi, pi)). So, in the context of
equilibrium statistical mechanics we would always get the probability distri-
bution over the micro-states as a function of the hamiltonian. While the prob-
ability of the system to be at a micro-state is given by f(H),

∫
V
dvXf(H) = Z

over the whole accessible phase space is called the partition function and the
average of any quantity A is given as

< A >=

∫
V
dvXAf(H)

Z
(8)

which indicates that the average would not change even if f(H) = Cf(H)
where C is an arbitrary constant.

At equilibrium, the system under consideration generally satisfies certain
macroscopic constraints like the total energy of the system is a constant or the
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temperature of the system is constant etc. which actually defines the macro-
state. The stationarity of the probability distribution over the phase space
f(H) ensures that if we prepare a large number of similar systems, called an
ensemble, which are subject to the same macroscopic constraint, then, the
micro-states of these systems at an instant of time will be distributed over the
phase space according to the probability distribution on it. Thus, averaging
over these collection of systems at an instant is equivalent to time averaging
over a larger period of time, since, given that time the system would visit
all the points in phase space where the ensemble is sitting at an instant in
accordance with the same probability distribution.

0.2 Micro-canonical Ensemble

In micro-canonical ensemble we consider an isolated system. The relevant
constraint on the system is its total energy E which is practically a constant
due to lack of interactions and we generally take the energy to remain within
a very small range δE at E so that E ≤ H(pi, qi) ≤ (E + δE). Let us
have an estimate of the phase space volume accessible to a system of N non
interacting classical particles. If we consider that all of those N particles
are identical then a transformation that exchanges the positions of any pair
of particles will produce a new phase point in the Γ-space (because particle
identifying indices are included in the suffix of ps and qs), but the actual
micro-state will be identical to the previous one. Consequently, we actually
have to alter the phase space density f(H) to f(H) = C ′ f(H)

N !
to correct the

over counting of the actual micro-states1. Here C ′ is an arbitrary constant
taking care of all other relevant things.

The probability distribution function for micro-canonical ensemble we
consider is in the form f(H) = Cδ(E −H) where δ(E −H) is a Dirac delta
function and the N! term has been absorbed in the new constant C. We want
to find the partition function of an isolated system of classical particles which

1The N! takes care of so called Gibb’s Paradox (see Pathria)
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are non interacting (classical ideal gas).

Z = C

∫
dvXδ(E −H(p, q))

= C

∫ 3N∏
i=1

dqi

3N∏
j=1

dpjδ(E −H(pj, qi))

= CV N

∫
R=2m

√
E

3N−1∏
j=1

dp′j. (9)

In the above expression V is the volume of the container and the volume
term originates from the integration over qis. Since, the constraint here is on
the kinetic energy (potential energy is zero by consideration), the constraint
will actually be felt on the momentum space. The removal of the delta
function from the integral is justified by adjustment of the integration limits
which takes care of the energy constancy. To do that we have moved to a
coordinate system which is a spherical polar analogue of 3-D in 3N-D and the
radial coordinate of such a system R will be given generally as R2 =

∑3N
j=1 p

2
j .

But, E =
P3N
j=1 pj

2m
where m is the mass of each particle, readily produces the

radius of the constant energy surface R = 2m
√
E on which all the momentum

micro-states of the system should fall. A ’′’ to the pj coordinates in the last
line of eq.9 indicates that they are now different coordinates (angle like) than
those in the previous line. So, the result of the remaining integration in the
eq.9 is the surface area of the (3N-1) dimensional sphere. General formula for

the surface area of an n-1 dimensional sphere is An = 2 πn/2

Γ(n/2)
R(n−1). So, in the

present case the value of the momentum integral is 2 π3N/2

Γ(3N/2)
(2m)3N−1E

3N−1
2 .

Z = CV N(2m)3N−1E
3N−1

2 (10)

where all the constants have now been absorbed in the constant C.
Let us look at the calculation of the partition function more closely. It

involved calculating the accessible phase space volume Ω to the system un-
der consideration and Z is actually proportional to the Ω. The constant of
proportionality which enters via the presence of C is at most a function of
the particle number N and not of E and V. So, from the calculation of Z
we can easily conclude that Ω = Ω(E, V,N). A measure of entropy due to
Boltzmann is S = kBlog(Ω) where kB is Boltzmann constant which has a
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value 1.38× 10−16 erg/K. This definition of entropy is a bridge between the
microscopic and the macroscopic domains and using this definition we can
actually get to the macroscopic thermodynamic relations from the knowledge
of the microscopic evolution of the system.

Ω being a function of E, N and V makes S a function of the same variables
in the micro-canonical case. Consider a variation of S

dS =

(
∂S

∂E

)
V,N

δE +

(
∂S

∂V

)
N,E

δV +

(
∂S

∂N

)
E,V

δN. (11)

The conservation of energy requires the increase in energy of a system δE
be equal to the amount of heat given to it δQ and the work done on it
δW . Thermodynamic definition of entropy gives us δQ = TdS where T
is the temperature of the system. δW = −PδV + µδN , where −PδV is
the work done on the system and µδN is the work done on the system by
addition of particles where µ is the chemical potential of the system. Thus,
the conservation of energy expresses the increment in entropy as

dS =

(
1

T

)
δE +

(
P

T

)
δV −

(µ
T

)
δN. (12)

Equating the coefficients of Eq.11 and Eq.12 we get the thermodynamic re-
lations as (

∂S

∂E

)
V,N

=
1

T(
∂S

∂V

)
N,E

=
P

T(
∂S

∂N

)
E,V

= −µ
T

Its interesting to note that Ω being the phase space volume of the sys-
tem in 6N-1 dimensional space (constant energy constraint H = E reduces
one dimension) is actually a constant energy surface (spherical since R is a
function of E) in 3N dimensions. Now, consider that E ≤ H ≤ (E +4). In
this case, the phase volume accessible to the system (spatial part is fixed by
fixing the volume of the system) falls within the annular region between the
two constant-energy surfaces giving us

Ω×4 = Σ(E +4)− Σ(E) (13)
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where Σ(E) is the phase volume accessible to the system for all energies less
than equal to E. Now, taking the limit 4→ 0, Ω is recognized as the density
of states at the energy E with an expression Ω = ∂Σ(E)

∂E
. Since, log(Ω) differs

from log(Σ(E)) by an additive function of N the definition of the entropy as
S = kBlog(Σ) is equivalent to that with respect to Ω. Both of these entropies
give the same temperature and retains the extensive property of it.

• Show that log(Ω) differs from log(Σ(E)) by an additive function of N
in the case of classical ideal gas.

0.2.1 Micro-canonical derivation of virial theorem

The mathematical statement of the virial theorem states that < xi
∂H
∂xj

>=

δijkBT . The average here is done on micro-canonical ensemble

< xi
∂H

∂xj
> =

1

Ω

∫ ∏
i

dpidqi

(
xi
∂H

∂xj

)
δ(E −H)

=
1

Ω

∂

∂E

∫
H<E

∏
i

dpidqi

(
xi
∂H

∂xj

)
=

1

Ω

∂

∂E

∫
H<E

∏
i

dpidqi

(
∂xi(H − E)

∂xj
− δij(H − E)

)

=
1

Ω

∂

∂E

(∫ surface

H∼E
dp′idq

′
ixi(H − E)−

∫
H<E

∏
i

dpidqiδij(H − E)

)
(14)

In the last line of the above expressions, the first integral is now the one
which is an integration over the surfce of 6N-1 dimensions. This we get by
integrating over the xj coordinate on a spherical polar frame and the rest
of the coordinates are now like angles (effectively) which define the constant
energy surface (H − E). The prime on the coordinates pi and qi actually
indicates of the fact that they are different in nature than those in the pre-
vious line2. The first integral (surface one) actually vanishesh since (H=E)

2this is not at all necessary if we keep in mind that from the very beginning we are on
a polar frame
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on it. So,

< xi
∂H

∂xj
> =

1

Ω

∂

∂E
−
∫
H<E

∏
i

dpidqiδij(H − E)

=
1

Ω
δij

∫
H<E

∏
i

dpidqi.

Thus,

< xi
∂H

∂xj
>= δij

Σ(E)

Ω
= δij

kB
kB∂ln(Σ(E))

∂E

= δij
kB
∂S
∂E

= δijkBT (15)

The measure of average K.E. per degrees of freedom can readily be got from
the expression < xi

∂H
∂xj

>= δijkBT which shows < piq̇i
2
>= 1

2
kBT which is the

average K.E. per degree of freedom.

0.3 Canonical Ensemble

In canonical ensemble we take into consideration the statistical mechanics
of a system which is in thermal contact with a reservoir of heat. The heat
reservoir is much much bigger than the system itself so that exchange of heat
to the system does not alter the temperature of the reservoir. The system
being in thermal equilibrium shares the same temperature with its reservoir.
Let the system be denoted by A and the reservoir by A′ and together they
make a micro-canonical system A0 = A + A′. Given the total energy of
the A0 as E0, the individual energies of the system and its reservoir E and
E ′ respectively add up to give E0. When the system is at an energy E, the
probability of the system to be at this state is proportional to the compatible
micro-states available in its environment to keep it stay at this energy E i.e.
Ω(E ′). Expanding ln(Ω(E ′)) = ln(Ω(E0 − E)) about E0 we get

ln(Ω(E0 − E)) = ln(Ω(E0))−
(
∂Ω(E ′)

∂E

)
E = ln(Ω(E0))− E

kBT
. (16)

Thus the probability of the system to be at the energy state E, P (E) is pro-
portional to e−βE where β = 1/kBT (T is the temperature of the reservoir
which is also the temperature of the system when it is in thermal equilibrium
with the reservoir). So, from now on we will take P (E) = e−βE/ΣEe

−βE, the
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constant of proportionality is taken care of by the normalization. The nor-
malization constant ΣEe

−βE is generally known as the partition function of
the system (exactly as in the micro-canonical case). Let us get a few points
cleared in the beginning. The energy E actually contains the kinetic and the
potential parts. But equipartition of energy, where applicable, makes the
average energy per degrees of freedom a function of temperature only. Tem-
perature of a system being in canonical equilibrium (classical) is a constant
and as a result gets cancelled by normalization. Its only the potential energy
of the system which features in the expression of the probability. Consider the
state of the system at energy E to be degenerate. If there are nE states at the
energy E then the probability of the system to be at energy must get nE fold
raised. So the probability will now be P (E) = nEe

−βE/ΣEnEe
−βE. In the

continuum, its the density of states Ω(E) that gives you the measure of the nE
because by definition density of states is the number of states at the energy E.
Thus, in continuum, the probability is P (E) = Ω(E)e−βE/

∫
dEΩ(E)e−βE.

The relation which is used to bridge the statistical mechanics to the
thermodynamics in the canonical ensemble case is the partition function
Z = e−βF where F is the Helmholtz free energy (relevant thermodynamic
potential in the canonical case) and thermodynamically F =< E > −TS.
The < E > in the expression of F is canonical average energy defined as

< E >=

∑
Ee−βE

Z
. (17)

Taking the derivative with respect to β the average energy is given by <
E >= −∂ln(Z)

∂β
. The dispersion of the system < 4E2 >=< E2 > − < E >2

is given by -∂<E>
∂β

indicates that the average energy always increases with
temperature to keep the dispersion positive definite. To get to the expression
of the dispersion let us consider

< E2 >=
1

Z

∑ ∂2

∂β2
e−βE =

∂

∂β

(
1

Z

∑ ∂

∂β
e−βE

)
+

(∑
∂
∂β
e−βE

)2

z2
(18)

So, using the expression of < E >,

< 4E2 >= −∂ < E >

∂β
. (19)

The generalized force of a system is negative gradient of energy and fol-
lowing this rule, the generalize force corresponding to the thermodynamic
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coordinate x (also called parameter) is −∂E
∂x

. so the work done by the system
under the action of this force to achieve a displacement of dx is

dw = −
∑

∂
∂x
e−βE

Z
× dx =

1

β

∂ln(Z)

∂x
× dx. (20)

Now, consider the partition function to be a function of the coordinate x and
temperature β. Given that, an increment of ln(z) is written as

d(ln(Z)) =
∂ln(Z)

∂x
dx+

∂ln(z)

∂β
dβ = βdw − d(< E > β) + βd < E > (21)

or

d(ln(Z) + β < E >) =
dS

kB
(22)

Thus, we arrive at the relation which combines canonical stat. mech. to
the thermodynamics and the relation is Z = e−βF where F =< E > −TS is
the Helmholtz free energy.

0.3.1 Gaussian form

As we know the probability distribution of a system over an energy scale
(continuum) is given by P (E) = Ω(E)e−βE, the Ω(E) part of the probability
is a very rapidly increasing quantity of energy whereas the e−βE is a rapidly
decreasing function of E. A combination of rapidly increasing and rapidly
decreasing parts make the probability P(E) have a peak at some Em on the
scale where Em is the most probable energy of the system. Since Em is the
maximum of the distribution the following relation holds.[

∂

∂E

(
e−βEΩ(E)

)]
E=Em

= 0, (23)

which immediately gives [
∂ ln Ω(E)

∂E

]
E=Em

= β. (24)

Now, from the Eq.22 and considering the relation s = kb ln Ω(E) we get

1

kB

[
∂S

∂E

]
E=<E>

= β =

[
∂ ln Ω(E)

∂E

]
E=<E>

(25)
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Eq.24 and 25 are the same relations but derived at E = Em and E =< E >,
which indicated that Em =< E > and the P (E) is a symmetric distribution
about the most probable value of it which is the same as the average of the
distribution i.e. < E >.

Having know that the P (E) is symmetric, let us try to find its actual
shape. To that end, consider the lnP (E) and expand it on a Taylor series
about < E >.

ln
(
Ω(E)e−βE

)
= ln

(
Ω(< E >)e−β<E>

)
+

1

2

[
∂2Ω(E)e−βE

∂E2

]
E=<E>

(E− < E >)2 + higherorderterms.

(26)

The first derivative does not appear in the above expression due to the fact
that < E > coincides with Em and consequently the first derivative is zero at
E =< E >. Now, using the thermodynamics relations we have encountered
so far, one can easily show that the first (constant) term on the r.h.s. of the
above equation can be writte as −β(< E > −TS), and, the coefficient of
the second term in (E− < E >)2 can be expressed as −1/2kBT

2CV . Using
these thermodynamic expressions one can write the form of P (E) down as

P (E) = e−βF × e−
(E−<E>)2

2kBT
2CV (27)

• Arrive at Eq.27 starting from Eq.26 using required thermodynamic
relations.

Equation 27 manifests a Gaussian form for the probability distribution func-
tion P (E) which has a width or standard deviation σ = T

√
kBCV where CV

is the specific heat of the system at constant volume. The CV is an extensive
quantity i.e. it scales as the number of particles (molecules) N in the sys-
tem. This can easily be understood from the definition of CV which is the
amount of heat required to raise the temperature of the system by one de-
gree. Since the temperature is a measure of the average K.E. of the particles
in the system CV should scale as N . The energy of the system < E > is also
an extensive quantity i.e. proportional to N. So, σ/ < E >∼ N

1
2 . In the

thermodynamic limit, as N → ∞ the distribution becomes infinitely sharp
on the scale of < E >.
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0.3.2 Correspondence between micro-canonical and canon-
ical ensembles

At the thermodynamic limit, considering the probability distribution to be a
delta function about its average energy, the partition function, which is the
area under the probability distribution curve on energy scale, can be written
as

Z ' Ω(< E >)e−β<E> × δE
lnZ = lnΩ(< E >)− β < E > (neglecting ln δE). (28)

The above expression of lnZ when combined to the other expression Z =
e−βF immediately leads us to the relation

S = kB ln Ω(< E >). (29)

But, this is the definition of micro-canonical entropy which we have arrived
at from the canonical distribution at thermodynamic limit. This observation
implies the correspondence or equivalence of canonical and micro-canonical
ensembles at the thermodynamic limit and one may use either of them de-
pending upon the amount of ease it provides in dealing with the mathematics.
Generally, using canonical ensemble makes life simple by not putting any re-
striction on the integration limits and one can integrate up to the extreme
limits of the phase space variables (degrees of freedom) or the energy where
the canonical distribution function takes care of the irrelevant extensions over
these scales with the help of some useful potential functions (or functionals)
of the degrees of freedom.

0.3.3 Alternative expression of entropy

Let us derive an expression of entropy, useful in the context of canonical
ensemble, starting from the expression of the canonical partition function
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lnZ = −β(< E > −TS).

S = kB

[
lnZ + β

∑
i

PiEi

]

= kB

[
lnZ −

∑
i

Pi ln (ZPi)

]

= kB

[
lnZ − lnZ

∑
i

Pi −
∑
i

Pi lnPi

]
Since,

∑
i Pi = 1, we get

S = −kB
∑
i

Pi lnPi (30)

This is the expression of entropy for a canonical ensemble which is positive
on account of the fact that Pi is a fraction.

0.3.4 Canonical distribution by entropy maximization

Let us have a look at an alternative derivation of canonical distribution func-
tion to correlate the equilibrium distribution with the maximization of en-
tropy of the system. Consider a large number ’a’ of similarly prepared sys-
tems which are in contact with a heat reservoir and the average energy over
all these systems is ¡E¿ a constant. Thus,∑

i

ai = a = constant∑
i

δai = 0 (31)

and ∑
i

aiEi =< E >= constant∑
i

δaiEi = 0 (32)

Eq.31 and 32 are the two constraints on the variation of number of elements
of the ensemble at an energy Ei. Consider the number Γ(a1, a2, ..., an) in

13



which a particular distribution such that - a1 systems of a are at energy E1,
a2 in E2 and so on - can be achieved for all distinct ais and Eis keeping the
< E > constant and

∑
ai = a. The number Γ corresponding to a particular

set {ai} is

Γ(a1, a2, ..., an) =
a!

a1!a2!....an!
. (33)

So,

ln Γ(a1, a2, ..., an) = ln a!−
∑
i

ln ai!. (34)

Since, a is very large, presumably so are all ais and that helps apply Stirling’s
formula as

ln ai! = ai ln ai − ai (35)

By the use of Stirling’s formula

ln Γ = a ln a−
∑
i

ai ln ai (36)

Let us consider that Γ({ai}) = Γ′ which is a maximum. Thus,

δΓ′ = 0 =
∑
i

ln aiδai. (37)

Equation 37 is the third equation of constraint we have corresponding to the
maximization of Γ. The situation in which Eq.31, 32 and 37 apply can be
mathematically captured by the use of Lagrange multipliers∑

i

(ln ami + α + βEi)δa
m
i = 0 (38)

where α and β are Lagrange multipliers which has to be determined and ami
explicitly mentions the set {ai} corresponding to the maximum Γ. Consid-
ering δami arbitrary, the validity of Eq.38 demands

ln ami + α + βEi = 0 (39)

or
ami = e−αe−βEi (40)

and by normalization

e−α = a(
∑
i

e−βEi)−1. (41)
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Once we know the expression of ami we an readily find out the corresponding
probability distribution function and average energy

Pi =
ami
a

=
e−βEi

e−βEi
(42)

< E >=

∑
i e
−βEiEi

e−βEi
(43)

Eq.42 is the canonical distribution we have already got. Since, all the el-
ements of the ensemble are in contact with the same heat bath the other
Lagrange multiplier β is equal to 1/kBT , where T is the temperature of the
bath, from analogy. Thus, the canonical distribution function is arrived at
on maximization of the number Γ at a constant average energy of a fixed
sized ensemble. To relate Γ to the entropy of the system rewrite Eq.36 as

ln Γ = a ln a−
∑
i

aPi ln aPi

= a ln a− a
∑
i

Pi(ln a+ lnPi)

= a ln a− a ln a(
∑
i

Pi)− a
∑
i

Pi lnPi

ln Γ = −a
∑
i

Pi lnPi

Thus, ln Γ is proportional to the canonical entropy ln Γ = a
kB
S and maxi-

mization of Γ is equivalent to the maximization of the entropy of the system.
So, in canonical equilibrium the entropy of the system is a maximum corre-
sponding to a constant average energy and temperature of the system. The
Helmholtz free energy of the system F =< E > −TS would definitely be a
minimum when entropy is a maximum at constant < E > and T and the
equilibrium thermodynamic relations are subject to these extremum condi-
tions. The maximization of entropy can be understood as a consequence
of maximizing the symmetry of the system at the microscopic level where
the thermal equilibrium would ensure no further evolution of the probabil-
ity distribution of the system towards any more symmetric situations. The
requirement of the highest symmetry is a consequence of thermalization of
the system and corresponding disorder. The level of microscopic disorder is
similar to the level of symmetry of the system at the microscopic level and
it comes out that the system tries to remain maximally disordered to fix the
probability distribution to a stationary profile.
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0.4 Grand canonical ensemble

The grand canonical ensemble represents systems which are in contact with
an environment with which it can exchange heat and particles as well. So,
unlike canonical ensemble the total number of particles is not a constant for
such systems, rather the energy and particle numbers both can vary. Follow-
ing a similar treatment as the one used to arive at the canonical distribution
function we can derive the probability distribution function for the grand
canonical system i.e. the probability of the system to be at an energy Ei
with number of particles Nj as

Pij = e−β(Ei−µNj/ZG. (44)

The ZG =
∑

ij e
−β(Ei−µNj) is grand partition function and is related to the

thermodynamics of the system through the relation

lnZG =
PV

kBT
(45)

which basically is equation of states. The Gibbs potential G = F + PV
is the relevant thermodynamic potential in the grand canonical case. The
use of it we will come accross at the time of discussing phase co-existence of
systems. Gibbs potential is a function of temperature, pressure and number
of particles of the system i.e. G=G(T,P,N). Take the definition of G as
F + PV . A variation in it is then expressed as

dG = dF + PdV + V dP = d < E > −TdS − SdT + PdV + V dP, (46)

the last equality follows from the definition of the Helmholtz potential F =<
E > −TS. Now, consider the conservation of energy as

d < E >= dQ− PdV + µdN (47)

where the change in internal energy of the system is equal to the sum of heat
given to it, mechanical work done on it, and the rise in energy of it due to
addition of particles to it. This immediately gives

d < E > +PdV − dQ = d < E > +PdV − TdS = µdN. (48)

Using Eq.48 and Eq.46

dG = µdN − SdT + V dP, (49)

which clearly shows that G=G(T,P,N).
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0.5 Application of Boltzmann statistics: Maxwell

velocity distribution

Consider a classical gas of noninteracting distinguishable particles. Such a
classical gas limit can be achieved at a high temperature and a very dilute
conditions. Since the particles are noninteracting, they only have the K.E.
which is equal to p2/2m for the particle having momentum p and the mass
m. In what follows we will consider the all the particles of mass m. From the
knowledge of the Boltzmann distribution function for a system of particles
at a constant temperature T, we can say that the probability for the particle
under consideration to remain at a momentum p within the range dp and
a position r within a range dr is f(p, r)d~pd~r ∝ e−βp

22md~pd~r. So, the total
number of particles at the momentum p and position r within the ranges dp
and dr respectively is

n(p, r)d~pd~r = Ce−βp
22md~pd~r (50)

where the proportionality constant would be found out from the consideration
of the constraint that the system has N number of particles in a volume V.
If one integrates either sides of the above equation, one gets N; thus,

N = CV

∫
e−βp

22md~p. (51)

Taking into account p2 = m2(v2
x + v2

y + v2
z), we can make the change of

variables by absorbing some constants into the constant C (which has to be
determined.

N

V
= n = C

∫
e−

βm(v2x+v2y+v2z)

2 dvxdvydvz (52)

Utilizing the symmetry along the x, y, and the z directions one can easily show

that the integral in the above equation is actually equal to

(∫
e−

βmv2x
2 dvx

)3

=(
2π
βm

) 3
2

and thus, C = n
(
βm
2π

) 3
2 . Finally, the Maxwell velocity distribution

for distinguishable non-interacting classical particles i.e. number of particles
at velocity ~v and within a range d~v reads as

f(~v, r)d~rd~v = n

(
m

2πkBT

) 3
2

e−mv
2/2kBTd~vd~r (53)
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Eq.53 gives a Gaussian distribution with zero mean. If one is interested
in the distribution of speed one has to write the d~v as 4πv2dv, because
in spherical polar coordinate we are effectively, in this way, considering all
the velocities of magnitude v irrespective of their directions. Using this
differential form of volume element in the spherical polar coordinates we
get the speed distribution function

f(v) = N4πv2

(
m

2πkBT

) 3
2

e−mv
2/2kBT . (54)

These speed distribution function is clearly not a Gaussian due to the pres-
ence of the v2 term in the coefficient of the exponential part. One can calcu-
late all the aerage quantities for such systems considering either of the two
distribution functions shown above.

0.5.1 Equation of state for ideal classical gas

The momentum transferred per unit time in positive x-direction cross the
area dA held perpendicular to the x-direction, in a gas is

F+ =

∫
vx>0

d~vf(~v)dA(|~v| cos θ)(m~v) (55)

where dA|~v| cos θ is the volume on the left hand side of the area dA from
which the particles can impinge on the surface dA within one seconds time
where |~v| cos θ = vx i.e. x-component of the velocity. Similarly, considering
particles falling on the area dA moving in the negative x directions (from the
right hand side of the surface) would transfer a momentum

F− = −
∫
vx>0

d~vf(~v)dA(|~v| cos θ)(m~v). (56)

The negative sign comes from the cos θ part. Now the pressure on the surface
perpendicular to the x-direction is the resultant force per unit area on this
surface and is given by

Px = P = F+ − F− =

∫
d~vf(~v)(|~v| cos θ)(m~v) =

∫
d~vf(~v)vx(m~v) (57)

where the integration is now on all vx from −∞ to +∞. The Px = P
is there because of the fact that the x-direction is completely arbitrary an
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that also reflects the scalar nature of the pressure. The above expression
of pressure is a general expression irrespective of the equilibrium or non-
equilibrium situations of the system. The problem in the non-equilibrium
case is due to mostly not having known an expression of f(~v) because of the
failing of the symmetry arguments we made for the system in equilibrium.
Considering the Maxwell velocity distribution one can readily show that the
integral in Eq.57 is equal to nmv̄2

x (n is the number density of particles)
where the integral consisting of the cross terms like vxvy will vanish due to
the zero mean Gaussian nature of the velocity distribution function which
means that there is no resultant tangential force on any surface in the gas.
Now, again considering the symmetry along the x, y and z-directions we can
write v̄x

2 = v̄y
2 = v̄z

2 = v̄2

3
which immediately gives

P =
1

3
mnv̄2 (58)

From equipartition of energy we know that kBT = 1
2
mv̄2 and n = N

V
(N=total

number of particles in the system and V is the volume), leading to the equa-
tion of states of the gas

PV =
2

3
NkBT (59)

0.6 quantum statistics: Bose-Einstein (BE)

and Fermi-Dirac (FD)

The semi classical treatment of quantum gases is done in such a way that a.
particles of a gas are loaded onto the quantum energy levels of a single particle
bounded by the potential well of the same size of that binding the whole
system, b. particles are considered indistinguishable unlike the classical ones
which obey Maxwell-Boltzmann (MB) distribution, c. symmetry of the many
particle wave function under the interchange of particle energies are taken
care of.

To illustrate the last point (c.), consider the wave function (function in
which all the dynamical information of the system of particles are contained)
representing the particles as ψb = ψ(q1, q2...qN). Here, the suffix b mentions of
the Bose-particles, that is particles with integral spin quantum numbers such
as 0,1,2....etc. Spin is a degree of freedom of particles of entirely quantum
origin. Thus, its difficult to visualize it as classical rotational motion of a
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particle, since, particle is structureless. But, its something of similar kind
and is measured by a set of quantum numbers. In fact, there are quantum
numbers associated to each degrees of freedom of a quantum particle. The
existence of spin degrees of freedom and like that many others have actually
been discovered from the requirement of existence of new quantum numbers
to make the theory consistent. One of the consequences of particles having
integral spin is that ψb is that interchange of the qi and qj of two particles
does not change ψb, where qis are the set of quantum numbers of the i th
particle in the system. Explicitly,

ψb(q1, q2, ...qi, ..qj, ...qN) = ψb(q1, q2, ...qj, ..qi, ...qN). (60)

Fermi particles which are characterized by half integral spin (1/2,3/2,5/2...etc.)
have anti-symetric many body wave function. In explicit forms

ψf (q1, q2, ...qi, ..qj, ...qN) = −ψf (q1, q2, ...qj, ..qi, ...qN). (61)

Now, if two fermions are at the same energy and are indistinguishable, inter-
changing the set of quantum numbers of them would not be any physically
noticeable change in the system, but, according to the relation mentioned
above the wave function will change sign. Since, identical physical situa-
tions cannot have different theoretical representations, two fermions are not
allowed to be in the same energy state. Unlike fermions, bosons can be in
an energy state in as many number as allowed by the temperature related
constraints of the system, because, the Bosonic wave function is symmetric.

0.6.1 Quantum distribution functions

The expression of the average number of particles in the i th energy level of
a quantum gas is called the quantum distribution function. The expression
of it is

< ni >=
1

eβεi+α ± 1
, (62)

where the - sign corresponds to the BE case and the + sign corresponds to
the FD statistics. The constant α = −βµ where µ is the chemical potential
given by

µ = − 1

β

∂ lnZ

∂N
. (63)
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The µ is negative for large N since Z(N) is a rapidly increasing function
of N. We will utilize this property of µ to derive the quantum distribution
functions.

The partition function Z(N) =
∑
{i} e

−β(
P
i niεi), is a rapidly increasing

function of total number of particles N =
∑

i ni where ni the number of
particles at an instant of time at the i th energy level is an integer between
0 and N. The expression of N as a sum of individual particle numbers at
different energy levels is a constraint on the system which makes general
calculations difficult and the derivation proceeds by getting rid of this con-
straint. Consider a rapidly increasing functional form e−αN

′
of N ′ where N ′

is any integral number. Since, Z(N ′) is a rapidly increasing form with N ′ the
product Z(N ′)e−αN

′
will have a sharp peak at some point on the N ′ scale,

lets call this point or number N . Considering the peak to be very sharp, the
area under the graph is approximated as∑

N ′

Z(N ′)e−αN
′
= Z(N)e−αN∆N, (64)

where ∆N is the width of the peak. Take the grand partition function as
Z =

∑
N ′ Z(N ′)e−αN

′
, and log on both sides of above equations to get

lnZ(N) = αN + Z (65)

Now, the grand partition function can be expanded, keeping in mind that∑
i ni = N ′ and N ′ varies from 0 to +∞, as

Z =
∑
{ni}

e−(α+βεi)ni

=

(
∞∑

n1=0

e−()α+βε1n1

)(
∞∑

n2=0

e−()α+βε1n2

)
.... (66)

BE Case

Due to ∞ being the maximum limit on the number of particles ni that can
remain at an energy level εi for Bosons, the sums in each perenthesis can be
done readily and the above expression for Z can be simplified as

Z =

(
1

1− e−(βε1+α)n1

)(
1

1− e−(βε2+α)n2

)
..... (67)

lnZ = −
∑
i

ln (1− e−(βεi+α)) (68)
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Thus, one gets

lnZ = αN −
∑
i

ln (1− e−(βεi+α)). (69)

The average number of particles in the state εi (energy determines the state)
is given by

< ni >= − 1

β

∂ lnZ

∂εi
=

1

β
× βe−(βεi+α)

1− e−(βεi+α)
=

1

eβ(εi−µ) − 1
(70)

where α = −βµ.

FD Case

In the FD case, since an energy state can only have either 1 or 0 particles
the Z can be written as

Z =
∑
{ni}

e−
P
i−(βεi+α)ni (71)

=

(
1∑

n1=0

e−()α+βε1n1

)(
1∑

n2=0

e−()α+βε1n2

)
.... (72)

Each sum in the above expression can be easily done, since there are only
two terms, and it immediately follow that,

lnZ = αN +
∑
i

ln (1 + e−(βεi+α)). (73)

Upon applying the usual definition of average number of particles in the
energy level εi as

< ni >= − 1

β

∂ lnZ

∂εi
=

1

eβεi+α + 1
=

1

eβ(εi−µ) + 1
(74)

Maxwell-Boltzmann

In contrast to the BE and FD distributions the MB distribution is obtained
straightforwardly considering e−βεiP

i e
−βεi to be the probability of the system to

be at state ε1 and there are N distinguishable particles in the system as

< ni >= N
e−βεi∑
i e
−βεi

. (75)
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0.6.2 Classical limit of the quantum statistics

For very low concentration of a gas or the gas at very high temperature, the
α bust be so large that eα+βεi >> 1 for all i, so that the statistics remains
consistent. So, for eα+βεi >> 1, both the FB and BE statistics reduces to

< ni >=
∑
i

e−(α+βεi) (76)

Thus,

N = e−α
∑
i

e−βεi , (77)

replacing the e−α, in the expression of < ni > we get

< ni >= N
e−βεi∑
i e
−βεi

(78)

which basically is the MB statistics. Thus, very dilute and high temperature
phase of a quantum gas would practically show the classical behavior.

23


